EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. XVIII KÕIDE FUUSIKA * MATEMAATIKA. 1969, NR. 2

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ XVIII ФИЗИКА * МАТЕМАТИКА. 1969, № 2

https://doi.org/10.3176/phys.math.1969.2.10

А. СИЙМОН

ЗАДЕРЖКА СИГНАЛА В ПОТЕНЦИАЛЬНО-ИМПУЛЬСНОЙ Элементной структуре

В данной работе исследуется задержка сигнала в потенциально-импульсной элементной структуре с преобразованием или без преобразования вида сигнала. С этой целью применяется язык, рассмотренный в [¹⁻³]. Порядковые номера элементов списка (ЭС) обозначаются буквами *i*, *l*, *r*, *u*, а отрезков времени существования сигнала на выходе ЭС — буквами *j*, *p*, v

 Преобразование импульсного сигнала x^{*}_{wij} в задержанный импульсный сигнал x^{*}_{wip}
 Определяем сигнал x^{*}_{wip}

$$\begin{cases} \tilde{x}_{w_{lp}}^{*} (\tilde{x}_{w_{ij}}^{*}) = \begin{cases} 0, & \text{если } t_{lpa} < t_{ija}; \\ \tilde{x}_{w_{ij}}^{*}, & \text{если } t_{lpa} \geqslant t_{ija}, \\ \vdots \\ \delta_{1} = t_{lpa} - t_{ija}; & i > i. \end{cases}$$

2. Преобразование потенциального сигнала $x_{\omega_{ij}}$ в задержанный импульсный сигнал $\tilde{x}^*_{\omega_{lp}}$

Сигнал х ..., определяем из условий:

$$\tilde{x}_{\omega_{lp}}^{*}(\tilde{x}_{\omega_{lf}}) = \begin{cases} 0, & \text{если } t_{lp\alpha} < t_{ij\alpha}; \\ \tilde{x}_{\omega_{rp}}^{*}, & \text{если } t_{lp\alpha} \ge t_{ij\alpha}; \\ \Rightarrow \delta_{1} \end{cases}$$

$$\tilde{x}_{\omega_{rp}}^{*} = \begin{cases} a_{\omega_{rp}}^{*'}, & \text{если случай } 1; \\ a_{\omega_{rp}}^{*''}, & \text{если случай } 2; \\ a_{\omega_{rp}}^{*'''}, & \text{если случай } 3. \end{cases}$$

$$l > r > i$$

Рассмотрим эти три случая.

6 ENSV TA Toimetised F * M-2 69

Случай 1.

На рис. 1 и рис. 2 показаны два возможных случая рассматриваемых сигналов.

Определяем отрезки времени $a_{ij\alpha}$, $a_{ij\beta}$ и $a_{ip\alpha}$ и значения дискретного времени t_{k_1} , t_{k_2} и t_{k_3} :

$$\begin{cases} t_{k_1} \leqslant t_{ij_{\alpha}} < t_{k_1+1}, \\ t_{ij_{\alpha}} = t_{k_1} + a_{ij_{\alpha}}. \end{cases}$$

$$\tag{1}$$

$$\begin{array}{l} t_{k_2} \leqslant t_{ij\beta} < t_{k_2+1}, \\ t_{ij\beta} = t_{k_2} + a_{ij\beta}. \end{array}$$

$$(2)$$

$$t_{k_{3}} \leqslant t_{lp\alpha} < t_{k_{3}+1}, t_{lp\alpha} = t_{k_{3}} + a_{lp\alpha}.$$
 (3)

Определяем для случая 1 а["] и б₁ из следующих условий:

217

$$a_{\omega_{rp}}^{*} = \begin{cases} \tilde{x}_{\omega_{ij}} \wedge \tau_{q}^{*} &, \text{ если } (t_{lpa} \ge t_{ija} + \delta_{\min}) \wedge \\ \to \delta_{2}^{*} & \wedge (t_{ij\beta} - t_{ija} \ge 2\delta_{\min}); \\ \text{не определен, в противном случае.} \end{cases}$$

$$\delta_{2} = \begin{cases} 0, & \text{если } (t_{k_{1}+1} \le t_{k_{2}}) (t_{lpa} \ge t_{k_{1}+1}); \\ b_{1}, & \text{если } (t_{k_{1}+1} \le t_{k_{2}}) (t_{lpa} < t_{k_{1}+1}); \\ b_{2}, & \text{если } (t_{k_{1}+1} \ge t_{k_{2}}) \\ e_{2}, & \text{если } (t_{k_{1}+1} \ge t_{k_{2}}) \end{cases}$$

$$b_{1} = t_{lpa} - t_{k_{1}}, \\ a_{ija} + \delta_{\min} \le b_{2} \le \min(a_{ij\beta} - \delta_{\min}, a_{lpa}).$$

$$q = \begin{cases} t_{k_{1}}, & \text{если } \delta_{2} \neq 0; \\ b_{3}, & \text{если } \delta_{2} = 0. \\ t_{k_{1}} < b_{3} \le \min(t_{k_{4}}, t_{k_{3}}). \\ t_{k_{4}} = \begin{cases} t_{k_{2}}, & \text{если } a_{ij\beta} \ge \delta_{\min}, \\ t_{k_{2}-1}, & \text{если } a_{ij\beta} \le \delta_{\min}. \\ \delta_{1} = t_{lpa} - (q + \delta_{2}). \end{cases}$$

 τ_q^* — тактный импульсный сигнал, поступающий во время $t_k = q$; δ_{\min} — минимально допустимое временное расстояние между снятием информации с триггера и посылкой новой информации на тот же триггер.

Случай 2.

Рассматриваемые сигналы $x_{\omega_{ij}}$ и $x_{\omega_{lp}}$ имеют такой же вид, как на рис. 1 или 2.

В данном случае a^{*"}_{wrp} и δ₁ определяем из следующих условий:

$$\begin{aligned}
a_{w_{rp}}^{*"} &= \begin{cases} \tilde{x}_{\omega_{ip}} \wedge \tilde{t}_{q}^{*}, \text{ если } t_{ipa} \geq \max(t_{ija} + \delta_{\min}, t_{k_{2}}); \\ \rightarrow \delta_{2} \\ \text{ не определен, в противном случае.} \\
\omega_{ij} &= t_{ija} \div t_{ij\beta}, \\ \omega_{ip} &= t_{ija} \div (t_{ij\beta} + \delta_{3}), \\ q &= t_{k_{2}}. \\
\delta_{2} &= \begin{cases} 0, & \text{если } t_{k_{2}} > t_{k_{1}}; \\ b, & \text{если } t_{k_{2}} = t_{k_{1}}. \end{cases} \\
a_{ija} + \delta_{\min} \leq b \leq \min(t_{ij\beta} + \delta_{3} - t_{ija} - \delta_{\min}, a_{lpa}). \\
\delta_{3} &\geq \begin{cases} \delta_{\min} - a_{ij\beta}, & \text{если } (t_{k_{1}} \leq t_{k_{2}}) (\delta_{\min} - a_{ij\beta} > 0); \\ 2\delta_{\min} - (t_{ij\beta} - t_{ija}), & \text{если } (t_{k_{1}} = t_{k_{2}}) (2\delta_{\min} - (t_{ij\beta} - t_{ija}) > 0); \\ 0, & \text{в остальных случаях.} \end{cases}
\end{aligned}$$

6*

А. Сиймон

В (4) величины $a_{ij\alpha}$ и t_{k_1} определяем по (1), а величины $a_{ij\beta}$ и t_{k_2} по (2). Нужный сигнал $\tilde{x}_{\omega_{ip}}$ в (4) получим следующим образом. Находим логическую схему, которая реализует булевскую функцию \tilde{x}_{Ω_i} , зависящую от времени, следующего вида:

$$\begin{split} \tilde{x}_{\Omega_{i}} &= f(\tilde{x}_{s_{1}}^{\Delta}, \tilde{x}_{s_{2}}^{\Delta}, \dots, \tilde{x}_{s_{n}}^{\Delta}, \dots), \\ s_{1} &= \Omega_{g_{1}}, \\ s_{2} &= \Omega_{g_{2}}, \\ \dots & \dots & \dots, \\ s_{n} &= \Omega_{g_{n}}, \\ \dots & \dots & \dots, \\ \Omega_{i} &= \{\omega_{i1}, \omega_{i2}, \dots, \omega_{ij}, \dots, \omega_{im_{1}}\}, \\ m_{1} &= j', \\ \Omega_{g_{n}} &= \{\omega_{g_{n}1}, \omega_{g_{n}2}, \dots, \omega_{g_{n}h_{n}}, \dots, \omega_{g_{n}m_{2}}\}, \\ m_{2} &= h_{n}', \end{split}$$

где $g_1, g_2, \ldots, g_n, \ldots$ — какие-нибудь порядковые номера ЭС; h_n — какой-нибудь порядковый номер отрезка времени существования сигнала на выходе g_n -го ЭС.

В этой логической схеме находим триггер (обозначаем его через T_{ξ}), который своим сбросом в нулевое состояние определяет во время $t_{ij\beta}$ конечную координату $t_{ij\beta}$ сигнала $\tilde{x}_{\omega_{ij}}$. Сигналом, осуществляющим сброс триггера T_{ξ} во время $t_{ij\beta}$, будет какой-то сигнал $\tilde{x}_{\omega_{uv}}^{\Delta}$, для которого выполняются условия

$$\begin{split} \tilde{x}^{\Delta}_{\omega_{uv}} &= \tilde{x}^{*}_{\omega_{uv}}, \\ \omega_{uv} &= t_{ii\beta}, \\ \tilde{x}^{*}_{\omega_{uv}} \in R_{\xi}, \end{split}$$

где R_{ξ} — множество сбросовых сигналов триггера T_{ξ} . Сигналом $\tilde{x}_{\omega_{uv}}^{*}$ производим операцию $\tilde{x}_{\omega_{uv}+\delta_{a}}^{*}(\tilde{x}_{\omega_{uv}})$.

Случай 3.

Величины а^{*}^{***} и δ₁ определяем следующим образом:

$$a_{\omega_{rp}}^{*'''} = D_q(x_{\omega_{ij}}),$$

$$\delta_1 = t_{lp\alpha} - q,$$

$$q = \omega_{rp} = t_{rp\alpha}.$$

(5)

При определении в (5) сигнала $D_q(x_{wij})$ и времени t_{rpa} имеют место шесть случаев:

1) случай 3-1, 3) случай 3-3, 5) случай 3-5, 2) случай 3-2, 4) случай 3-4, 6) случай 3-6.

Приступаем к рассмотрению этих случаев.

Случай 3-1

$$G(D_{q_1}(\tilde{x}_{\omega_{ij}})) \supset (q = q_1) (D_q(\tilde{x}_{\omega_{ij}}) = D_{q_1}(\tilde{x}_{\omega_{ij}})),$$

$$q_1 = t_{ij\alpha},$$

$$q = t_{rp\alpha}.$$
(6)

Случай 3-2

$$\overline{G(D_{q_1}(\tilde{x}_{\omega_{ij}}))} S((\tilde{x}_{\omega_{ij}})) \supset (q = q_1) (D_q(\tilde{x}_{\omega_{ij}}) = D_{q_1}((\tilde{x}_{\omega_{ij}}))),$$

$$q_1 = t_{ij\alpha},$$

$$q = t_{rp\alpha}.$$
(7)

Случай 3-3

$$\overline{G(D_{q_1}(\tilde{x}_{\omega_{ij}}))} S((\tilde{x}_{\omega_{ij}})) \supset (q = q_1) (D_q(\tilde{\tilde{x}}_{\omega_{ij}}) = U(D_{q_1}(\tilde{x}_{\omega_{ij}}))),$$

$$q_1 = t_{ij\alpha},$$

$$q = t_{rp\alpha}.$$
(8)

Случай 3-4

$$(t_{lp\alpha} \geqslant q_1) \ G(D_{q_1}(\tilde{x}_{\omega_{ij}})) \supset (q = q_1) \ (D_q(x_{\omega_{ij}}) = D_{q_1}(\tilde{x}_{\omega_{ij}})),$$

$$q_1 = t_{i_1\beta},$$

$$q = t_{rp\alpha}.$$
(9)

Случай 3-5

$$\begin{array}{l} (t_{lp\alpha} \geqslant q_1) \ \overline{G(D_{q_1}(\tilde{x}_{\omega_{ij}}))} \ S(\overline{(\tilde{x}_{\omega_{ij}})}) \supset \\ \supset (q = q_1) \ (D_q(\tilde{x}_{\omega_{ij}}) = D_{q_1}(\overline{(\tilde{x}_{\omega_{ij}})})), \\ q_1 = t_{ij\beta}, \\ q = t_{rp\alpha}. \end{array}$$

$$\begin{array}{l} (10) \\ \end{array}$$

Случай 3-6

$$(t_{lp\alpha} \ge q_1) \ \overline{G(D_{q_1}(\tilde{x}_{\omega_{ij}}))} \ \overline{S((\tilde{x}_{\omega_{ij}}))} = \sum_{i=1}^{\infty} (q = q_1) (D_q(\tilde{x}_{\omega_{ij}}) = U(D_{q_1}(\tilde{x}_{\omega_{ij}}))), \qquad (11)$$

$$q_1 = t_{ij\beta},$$

$$q = t_{rr\alpha}.$$

Коротко о применимости случаев 1, 2 и 3. Применение для реализации операции х (х (х и)) случаев 1 и 2 дает более надежные схемы, чем случая 3, так как в последнем большую роль играет крутизна фронтов преобразуемого сигнала. Несмотря на это, применение случая 3 может иногда дать хорошие результаты и поэтому он тоже рассмотрен. Таким образом, предпочтение отдается случаям 1 и 2. Самым распространенным является случай 1.

Случаи 1 и 2 перекрываются, если $t_{lpa} \geqslant t_{k_2}$ и $a_{ij\beta} \geqslant \delta_{\min}$ и если в случае 1 $q = t_{k_2}$. Если $t_{lp\alpha} \geqslant t_{k_2}$, а $a_{ij\beta} < \delta_{\min}$ и если только допустима процедура образования сигнала x_{wip} , то предпочтение следует отдать случаю 2 для того, чтобы получить более экономическую схему, особенно если один и тот же сигнал х_{шіл} применяется для нескольких преобразо-Ваний X win (X wii).

Как видно из случая 3, при $t_{ipa} \ge t_{ij\beta}$, расчеты с целью получения более экономичной схемы можно весги по одному из выражений (6) — (8) или (9) — (11) соответственно.

3. Преобразование импульсного сигнала х та в задержанный потенциальный сигнал Х.

Если $\omega_{lp} = t_{lpa}$, то сигнал $x_{\omega_{lp}}$ определяем следующим образом:

 $\left\{ \tilde{x}_{\omega_{lp}}(\tilde{x}_{\omega_{ij}}^{*}) = \begin{cases} (0 \pm \tilde{x}_{\omega_{uv}}(\tilde{x}_{\omega_{ij}}^{*}), & \text{для триггера со счетным входом;} \\ L(\tilde{x}_{\omega_{uv}}^{*}(\tilde{x}_{\omega_{ij}}^{*})), & \text{для триггера с раздельными входами.} \end{cases} \right\}$

 $\omega_{uv} = t_{uva} = t_{uva}$ l > u > i, v = p.

Если $\omega_{lp} = t_{lpa} \div t_{lp\beta}$, то сигнал $x_{\omega_{lp}}$ определяем следующим обра-30M:

(12)

3)

$$\tilde{x}_{\omega_{lp}}(\tilde{x}_{\omega_{lj}}^{*}) = \begin{cases} L(0) \wedge \overline{\tau_{q}^{*}} \pm \tilde{x}_{\omega_{uv}}^{*}(\tilde{x}_{\omega_{lj}}^{*}) \\ \rightarrow^{\delta_{4}} \\ L(\tilde{x}_{\omega_{uv}}^{*}(\tilde{x}_{\omega_{lj}}^{*})) \wedge \overline{\tau_{q}^{*}}, \\ \rightarrow^{\delta_{4}} \end{cases}$$

для комбинированного триггера;

для тригера с раздельными входами.

$$w_{uv} = t_{uvx} = t_{lrx},$$

$$q = t_{ks},$$

$$\delta_1 = a_{lp\beta},$$

$$t > u > i,$$

$$p = v.$$
(1)

В (13) значение дискретного времени t_{ks} и отрезка времени $a_{lp\beta}$ определяем следующим образом:

 $t_{k_s} \leqslant t_{lp\beta} < t_{k_s+1},$ (.14) $t_{IPB} = t_{ks} + a_{IDB}.$

4. Преобразование потенциального сигнала Х в задержанный потенциальный сигнал $x_{\omega_{In}}$

Если $\omega_{lp} = t_{lpa \rightarrow}$, то сигнал $x_{\omega_{ii}}$ определяем следующим образом:

 $\tilde{x}_{\omega_{lp}}(\tilde{x}_{\omega_{ij}}) = \begin{cases} 0 + \tilde{x}_{\omega_{uv}}^*(\tilde{x}_{\omega_{ij}}), \\ L(\tilde{x}_{\omega_{uv}}^*(\tilde{x}_{\omega_{ij}})), \end{cases}$

для триггера со счетным входом;

для триггера с раздельными входами.

$$\begin{split} \omega_{uv} &= t_{uva} = t_{lpa}, \\ l &> u > i, \\ v &= p. \end{split}$$

Если $\omega_{lp} = t_{lpa} \div t_{lp\beta}$, то сигнал $x_{\omega_{lp}}$ определяем следующим обра-30M:

$$\tilde{\boldsymbol{x}}_{\omega_{lp}}(\tilde{\boldsymbol{x}}_{\omega_{ij}}^{*}) = \begin{cases} L(0) \ \wedge \overline{\boldsymbol{\tau}}_{q}^{*} + \tilde{\boldsymbol{x}}_{\omega_{uv}}^{*}(\tilde{\boldsymbol{x}}_{\omega_{ij}}) \\ \xrightarrow{\delta_{5}} \\ L(\tilde{\boldsymbol{x}}_{\omega_{uv}}^{*}(\tilde{\boldsymbol{x}}_{\omega_{ij}})) \ \wedge \overline{\boldsymbol{\tau}}_{q}^{*}, \\ \xrightarrow{\delta_{5}} \end{cases}$$

для комбинированного триггера;

для триггера с раздельными входами.

p = v.

В (15) значение дискретного времени t_{ks} и отрезка времени a_{lpb} определяем по (14).

Автор весьма признателен З. Рабиновичу и Ю. Капитоновой за шенные замечания.

ЛИТЕРАТУРА

1. Рабинович З. Л., Тр. Междунар. симпозиума по теории релейн. устройств и конеч. автоматов (ИФАК), Теория конечных и вероятностных автоматов, М., 1965, c. 215.

2. Сиймон А., Изв. АН ЭССР, Физ. * Матем., 17, № 3, 270 (1968). 3. Сиймон А., Изв. АН ЭССР, Физ. * Матем., 17, № 4, 391 (1968).

Инститит кибернетики Академии наук Эстонской ССР Поступила в редакцию 17/IV 1968

A. SIIMON

SIGNAALI VIIVIS POTENTSIAAL-IMPULSSES ELEMENTIDE SÜSTEEMIS

Vaadeldakse signaali viivist potentsiaal-impulsses elementide süsteemis signaali liigi muutumisega või ilma selleta. Signaali viivise analüütiliseks kirjeldamiseks kasutatakse artiklites [1-3] esitatud keelt.

A. SIIMON

DELAY OF SIGNAL IN THE POTENTIAL-PULSE ELEMENT SYSTEM

The author presents a description of the delay of a signal in the potential-pulse element system, either with a transformation of the kind of the signal or without it. For an analytical description of the delay of the signal, a language is used, which is discussed in the papers [1-3].