EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. XVIII KÖIDE FUUSIKA * MATEMAATIKA. 1969, NR. 2

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ XVIII ФИЗИКА * МАТЕМАТИКА. 1969, № 2

https://doi.org/10.3176/phys.math.1969.2.10

А. СИИМОН

ЗАДЕРЖКА СИГНАЛА В ПОТЕНЦИАЛЬНО-ИМПУЛЬСНОЙ ЭЛЕМЕНТНОЙ СТРУКТУРЕ

В данной работе исследуется задержка сигнала в потенциально-импульсной элементной структуре с преобразованием или без преобразования вида сигнала. С этой целью применяется язык, рассмотренный в $[^{1-3}]$. Порядковые номера элементов списка (ЭС) обозначаются буквами i, l, r, u, а отрезков времени существования сигнала на выходе ЭС — буквами j, p, v

1. Преобразование импульсного сигнала $\tilde{x}_{\omega_{ij}}^*$ в задержанный импульсный сигнал $\tilde{x}_{\omega_{lp}}^*$ Определяем сигнал $\tilde{x}_{\omega_{lp}}^*$

$$\begin{cases} \tilde{x}_{\omega_{lp}}^* \ (\tilde{x}_{\omega_{ij}}^*) = \begin{cases} 0, & \text{если } t_{lp\alpha} < t_{ij\alpha}; \\ \tilde{x}_{\omega_{ij}}^*, & \text{если } t_{lp\alpha} \geqslant t_{ij\alpha}, \\ \delta_1 = t_{lp\alpha} - t_{ij\alpha}; \ l > i. \end{cases}$$

2. Преобразование потенциального сигнала $\tilde{x}_{\omega_{ij}}$ в задержанный зимпульсный сигнал $\tilde{x}_{\omega_{ip}}^*$ Сигнал $\tilde{x}_{\omega_{ip}}^*$ определяем из условий:

$$\begin{cases} \tilde{x}_{\omega_{lp}}^{*}(\tilde{x}_{\omega_{ij}}) = \begin{cases} 0, & \text{если } t_{lp\alpha} < t_{ij\alpha}; \\ \tilde{x}_{\omega_{rp}}^{*}, & \text{если } t_{lp\alpha} \geqslant t_{ij\alpha}. \\ \vdots \\ \tilde{x}_{\omega_{rp}}^{*} = \begin{cases} a_{\omega_{rp}}^{**}, & \text{если } \text{случай } 1; \\ a_{\omega_{rp}}^{***}, & \text{если } \text{случай } 2; \\ a_{\omega_{rp}}^{****}, & \text{если } \text{случай } 3. \end{cases}$$

Рассмотрим эти три случая.

Случай 1.

На рис. 1 и рис. 2 показаны два возможных случая рассматриваемых сигналов.

Рис. 1.

Рис. 2.

Определяем отрезки времени a_{ija} , $a_{ij\beta}$ и a_{ipa} и значения дискретного времени t_{k_1} , t_{k_2} и t_{k_3} :

$$\begin{cases}
t_{k_1} \leqslant t_{ij}, \leqslant t_{k_1+1}, \\
t_{ij\alpha} = t_{k_1} + a_{ij\alpha}.
\end{cases}$$
(1)

$$\begin{cases} t_{k_2} \leqslant l_{ij\beta} \leqslant t_{k_2+1}, \\ t_{ij\beta} = t_{k_2} + a_{ij\beta}. \end{cases}$$
 (2)

$$\begin{cases}
 t_{k_3} \leqslant t_{lp\alpha} < t_{k_3+1}, \\
 t_{lp\alpha} = t_{k_3} + a_{lp\alpha}.
\end{cases}$$
(3)

Определяем для случая 1 $a_{\omega_{rp}}^{**}$ и δ_1 из следующих условий:

$$a_{\omega_{PP}}^{*'} = \begin{cases} \tilde{x}_{\omega_{ij}} \wedge \tau_{q}^{*} &, \text{ если } (t_{lp\alpha} \geqslant t_{ij\alpha} + \delta_{\min}) \wedge \\ \Rightarrow^{\delta_{2}} & \wedge (t_{ij\beta} - t_{ij\alpha} \geqslant 2\delta_{\min}); \\ \text{ не определен, в противном случае.} \end{cases}$$

$$\delta_{2} = \begin{cases} 0, & \text{если } (t_{k_{1}+1} \leqslant t_{k_{2}}) (t_{lp\alpha} \geqslant t_{k_{1}+1}); \\ b_{1}, & \text{если } (t_{k_{1}+1} \leqslant t_{k_{2}}) (t_{lp\alpha} \leqslant t_{k_{1}+1}); \\ b_{2}, & \text{если } t_{k_{1}+1} > t_{k_{2}}. \end{cases}$$

$$b_{1} = t_{lp\alpha} - t_{k_{1}},$$

$$a_{ij\alpha} + \delta_{\min} \leqslant b_{2} \leqslant \min(a_{ij\beta} - \delta_{\min}, a_{lp\alpha}).$$

$$q = \begin{cases} t_{k_{1}}, & \text{если } \delta_{2} \neq 0; \\ b_{3}, & \text{если } \delta_{2} = 0. \end{cases}$$

$$t_{k_{1}} < b_{3} \leqslant \min(t_{k_{4}}, t_{k_{3}}).$$

$$t_{k_{4}} = \begin{cases} t_{k_{2}}, & \text{если } a_{ij\beta} \geqslant \delta_{\min}; \\ t_{k_{2}-1}, & \text{если } a_{ij\beta} < \delta_{\min}. \end{cases}$$

$$\delta_{1} = t_{lp\alpha} - (q + \delta_{2}).$$

 au_q^* — тактный импульсный сигнал, поступающий во время $t_k=q;$ δ_{\min} — минимально допустимое временное расстояние между снятием информации с триггера и посылкой новой информации на тот же триггер.

Случай 2.

Рассматриваемые сигналы $\tilde{x}_{\omega_{ij}}$ и $\tilde{x}_{\omega_{lp}}^*$ имеют такой же вид, как на рис. 1 или 2.

В данном случае $a_{\omega_{IP}}^{*''}$ и δ_1 определяем из следующих условий:

$$\begin{cases} a_{\omega_{rp}}^{*"} = \begin{cases} \tilde{x}_{\omega_{ip}} \wedge \tau_{q}^{*}, \text{ если } t_{lp\alpha} \geqslant \max(t_{ij\alpha} + \delta_{\min}, t_{k_{2}}); \\ \to \delta_{2} \\ \text{ не определен, в противном случае.} \end{cases}$$

$$\omega_{ij} = t_{ij\alpha} \div t_{ij\beta},$$

$$\omega_{ip} = t_{ij\alpha} \div (t_{ij\beta} + \delta_{3}),$$

$$q = t_{k_{2}}.$$

$$\delta_{2} = \begin{cases} 0, & \text{если } t_{k_{2}} > t_{k_{1}}; \\ b, & \text{если } t_{k_{2}} = t_{k_{1}}. \end{cases}$$

$$a_{ij\alpha} + \delta_{\min} \leqslant b \leqslant \min(t_{ij\beta} + \delta_{3} - t_{ij\alpha} - \delta_{\min}, a_{lp\alpha}).$$

$$\delta_{3} \geqslant \begin{cases} \delta_{\min} - a_{ij\beta}, & \text{если } (t_{k_{1}} < t_{k_{2}}) (\delta_{\min} - a_{ij\beta} > 0); \\ 2\delta_{\min} - (t_{ij\beta} - t_{ij\alpha}), & \text{если } (t_{k_{1}} = t_{k_{2}}) (2\delta_{\min} - (t_{ij\beta} - t_{ij\alpha}) > 0); \\ 0, & \text{в остальных случаях.} \end{cases}$$

$$\delta_{1} = t_{lp\alpha} - (q + \delta_{2}).$$

В (4) величины $a_{ij\alpha}$ и t_{k_1} определяем по (1), а величины $a_{ij\beta}$ и t_{k_2} по (2). Нужный сигнал $\tilde{x}_{\omega_{ip}}$ в (4) получим следующим образом. Находим логическую схему, которая реализует булевскую функцию \tilde{x}_{Ω_i} , зависящую от времени, следующего вида:

где $g_1, g_2, \ldots, g_n, \ldots$ — какие-нибудь порядковые номера ЭС; h_n — какой-нибудь порядковый номер отрезка времени существования сигнала на выходе g_n -го ЭС.

В этой логической схеме находим триггер (обозначаем его через T_{ξ}), который своим сбросом в нулевое состояние определяет во время $t_{ij\,\beta}$ конечную координату $t_{ij\,\beta}$ сигнала $\tilde{x}_{\omega_{ij}}$. Сигналом, осуществляющим сброс триггера T_{ξ} во время $t_{ij\beta}$, будет какой-то сигнал $\tilde{x}_{\omega_{nv}}^{\Delta}$, для которого выполняются условия

где R_{ξ} — множество сбросовых сигналов триггера T_{ξ} . Сигналом $\tilde{x}_{\omega_{uv}}^{*}$ производим операцию $\tilde{x}_{\omega_{uv}+\delta_{3}}^{*}(\tilde{x}_{\omega_{uv}}^{*})$.

Случай 3.

Величины $a_{\omega_{rp}}^{*"'}$ и δ_1 определяем следующим образом:

$$\begin{cases}
a_{\omega_{rp}}^{*"'} = D_q(x_{\omega_{ij}}), \\
\delta_1 = t_{lp\alpha} - q, \\
q = \omega_{rp} = t_{rp\alpha}.
\end{cases} (5)$$

При определении в (5) сигнала $D_q(x_{\omega_{ij}})$ и времени $t_{rp\alpha}$ имеют место шесть случаев:

- 1) случай 3-1, 3) случай 3-3,
- 2) случай 3-2, 4) случай 3-4,
 - 5) случай 3-5. 6) случай 3-6.

Приступаем к рассмотрению этих случаев.

Случай 3-1

$$\begin{cases}
G(D_{q_1}(\tilde{x}_{\omega_{ij}})) \supset (q = q_1) (D_q(\tilde{x}_{\omega_{ij}}) = D_{q_1}(\tilde{x}_{\omega_{ij}})), \\
q_1 = t_{ij\alpha}, \\
q = t_{rp\alpha}.
\end{cases} (6)$$

Случай 3-2

$$\begin{cases}
\overline{G(D_{q_1}(\tilde{x}_{\omega_{ij}}))} S(\overline{(\tilde{x}_{\omega_{ij}})}) \supset (q = q_1) (D_q(\tilde{x}_{\omega_{ij}})) = D_{q_1}(\overline{(\tilde{x}_{\omega_{ij}})})), \\
q_1 = t_{ij\alpha}, \\
q = t_{rp\alpha}.
\end{cases} (7)$$

Случай 3-3

$$\begin{cases}
\overline{G(D_{q_1}(\tilde{x}_{\omega_{ij}}))} \, \overline{S((\tilde{x}_{\omega_{ij}}))} \supset (q = q_1) \, (D_q(\tilde{x}_{\omega_{ij}}) = U(D_{q_1}(\tilde{x}_{\omega_{ij}}))), \\
q_1 = t_{ij\alpha}, \\
q = t_{rp\alpha}.
\end{cases} \tag{8}$$

Случай 3-4

$$\begin{cases} (t_{lp\alpha} \geqslant q_1) \ G(D_{q_1}(\tilde{x}_{\omega_{ij}})) \supset (q = q_1) \ (D_q(\tilde{x}_{\omega_{ij}}) = D_{q_1}(\tilde{x}_{\omega_{ij}})), \\ q_1 = t_{ij\beta}, \\ q = t_{rp\alpha}. \end{cases}$$
(9)

Случай 3-5

$$\begin{cases} (t_{lp\alpha} \geqslant q_1) \ \overline{G(D_{q_1}(\tilde{x}_{\omega_{ij}}))} \ S(\overline{(\tilde{x}_{\omega_{ij}})}) \supset \\ \supset (q = q_1) \ (D_q(\tilde{x}_{\omega_{ij}}) = D_{q_1}(\overline{(\tilde{x}_{\omega_{ij}})})), \\ q_1 = t_{ij\beta}, \\ q = t_{rp\alpha}. \end{cases}$$
(10)

Случай 3-6

$$\begin{cases}
(t_{lp\alpha} \geqslant q_1) \ \overline{G(D_{q_1}(\tilde{x}_{\omega_{ij}}))} \ \overline{S((\tilde{x}_{\omega_{ij}}))} \Rightarrow \\
\Rightarrow (q = q_1) (D_q(\tilde{x}_{\omega_{ij}}) = U(D_{q_1}(\tilde{x}_{\omega_{ij}}))), \\
q_1 = t_{ij\beta}, \\
q = t_{rr\alpha}.
\end{cases} \tag{11}$$

Коротко о применимости случаев 1, 2 и 3. Применение для реализации операции $\tilde{x}_{\omega lp}^*$ ($\tilde{x}_{\omega ij}$) случаев 1 и 2 дает более надежные схемы, чем случая 3, так как в последнем большую роль играет крутизна фронтов преобразуемого сигнала. Несмотря на это, применение случая 3 может иногда дать хорошие результаты и поэтому он тоже рассмотрен. Таким образом, предпочтение отдается случаям 1 и 2. Самым распространенным является случай 1.

Случаи 1 и 2 перекрываются , если $t_{lp\alpha} \geqslant t_{k_2}$ и $a_{ij\beta} \geqslant \delta_{\min}$ и если в случае 1 $q=t_{k_2}$. Если $t_{lp\alpha} \geqslant t_{k_2}$, а $a_{ij\beta} < \delta_{\min}$ и если только допустима процедура образования сигнала $x_{\omega ip}$, то предпочтение следует отдать случаю 2 для того, чтобы получить более экономическую схему, особенно если один и тот же сигнал $x_{\omega ip}$ применяется для нескольких преобразо-

ваний $X_{\omega_{Ip}}(X_{\omega_{Ii}})$.

Как видно из случая 3, при $t_{lp\alpha} \geqslant t_{ij\beta}$, расчеты с целью получения более экономичной схемы можно вести по одному из выражений (6)—(8) или (9)—(11) соответственно.

3. Преобразование импульсного сигнала $\tilde{x_{\omega_{ij}}}^*$ в задержанный потенциальный сигнал $\tilde{x_{\omega_{lp}}}$

Если $\omega_{lp}=t_{lplpha}$, то сигнал $\tilde{x}_{\omega_{lp}}$ определяем следующим образом:

$$\begin{cases} \tilde{x}_{\omega_{lp}}(\tilde{x}_{\omega_{ij}}^*) = \begin{cases} (0 + \tilde{x}_{\omega_{uv}}^*(\tilde{x}_{\omega_{ij}}^*), & \text{для триггера со счетным входом;} \\ L(\tilde{x}_{\omega_{uv}}^*(\tilde{x}_{\omega_{ij}}^*)), & \text{для триггера с раздельными входами.} \end{cases}$$

$$(12)$$

$$l > u > i,$$

$$v = p.$$

Если $\omega_{lp}=t_{lp\alpha}\div t_{lp\beta}$, то сигнал $ilde{x}_{\omega_{lp}}$ определяем следующим образом:

$$\begin{cases} \tilde{x}_{\omega_{lp}}(\tilde{x}_{\omega_{ij}}^*) = \begin{cases} L(0) \wedge \overline{\tau_q^*} + \tilde{x}_{\omega_{uv}}^*(\tilde{x}_{\omega_{ij}}^*), & \text{для комбинированного триггера;} \\ \to^{\tilde{\gamma}_4} \\ L(\tilde{x}_{\omega_{uv}}^*(\tilde{x}_{\omega_{ij}}^*)) \wedge \overline{\tau_q^*}, & \text{для триггера с раздельными входами.} \end{cases}$$

$$\omega_{uv} = t_{uvx} = t_{lvx},$$

$$q = t_{k_5},$$

$$\delta_1 = a_{lp\beta},$$

$$t > u > i,$$

$$0 = t^*$$

В (13) значение дискретного времени t_{k_b} и отрезка времени $a_{lp\beta}$ определяем следующим образом:

$$\begin{cases}
 t_{k_5} \leqslant t_{lp\beta} < t_{k_5+1}, \\
 t_{lp\beta} = t_{k_5} + a_{lp\beta}.
\end{cases}$$
(14)

4. Преобразование потенциального сигнала $\tilde{x}_{\omega_{ij}}$ в задержанный потенциальный сигнал $\tilde{x}_{\omega_{lp}}$

Если $\omega_{lp}=t_{lp\alpha}\to$, то сигнал $\tilde{x}_{\omega_{ij}}$ определяем следующим образом:

$$ilde{x}_{\omega_{lp}}(ilde{x}_{\omega_{ij}}) = egin{cases} 0 + ilde{x}_{\omega_{uv}}^*(ilde{x}_{\omega_{ij}}), & \text{для триггера со счетным входом;} \ L(ilde{x}_{\omega_{uv}}^*(ilde{x}_{\omega_{ij}})), & \text{для триггера с раздельными входами.} \ \omega_{uv} = t_{uva} = t_{lpa}, \ l > u > i, \ v = p. \end{cases}$$

Если $\omega_{lp}=t_{lp\,\alpha}\div t_{lp\,\beta}$, то сигнал $\tilde{x}_{\omega_{lp}}$ определяем следующим образом:

$$\begin{cases} \tilde{x}_{\omega_{lp}}(\tilde{x}_{\omega_{ij}}^*) = \begin{cases} L(0) \wedge \overline{\tau_q^*} + \tilde{x}_{\omega_{uv}}^*(\tilde{x}_{\omega_{ij}}), & \text{для комбинированного триггера;} \\ & \rightarrow \delta_s \end{cases} \\ L(\tilde{x}_{\omega_{uv}}^*(\tilde{x}_{\omega_{ij}})) \wedge \overline{\tau_q^*}, & \text{для триггера с раздельными входами.} \\ \omega_{uv} = t_{uv\alpha} = t_{lp\alpha}, \\ q = t_{k_5}, \\ \delta_1 = a_{lp\beta}, \\ l > u > i, \\ p = v. \end{cases}$$
 (15)

В (15) значение дискретного времени t_{k_5} и отрезка времени $a_{lp\beta}$ определяем по (14).

Автор весьма признателен З. Рабиновичу и Ю. Капитоновой за денные замечания.

ЛИТЕРАТУРА

- Рабинович З. Л., Тр. Междунар. симпозиума по теории релейн. устройств и конеч. автоматов (ИФАК), Теория конечных и вероятностных автоматов, М., 1965, с. 215.
- 2. Сиймон А., Изв. АН ЭССР, Физ. * Матем., 17, № 3, 270 (1968). 3. Сиймон А., Изв. АН ЭССР, Физ. * Матем., 17, № 4, 391 (1968).

A. SIIMON

SIGNAALI VIIVIS POTENTSIAAL-IMPULSSES ELEMENTIDE SÜSTEEMIS

Vaadeldakse signaali viivist potentsiaal-impulsses elementide süsteemis signaali liigi muutumisega või ilma selleta. Signaali viivise analüütiliseks kirjeldamiseks kasutatakse artiklites $[^{1-3}]$ esitatud keelt.

A. SIIMON

DELAY OF SIGNAL IN THE POTENTIAL-PULSE ELEMENT SYSTEM

The author presents a description of the delay of a signal in the potential-pulse element system, either with a transformation of the kind of the signal or without it. For an analytical description of the delay of the signal, a language is used, which is discussed in the papers [1-3].