EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. XVII KÕIDE FOOSIKA * MATEMAATIKA. 1968, NR. 2

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ XVII ФИЗИКА * МАТЕМАТИКА. 1968, № 2

https://doi.org/10.3176/phys.math.1968.2.12

Т. МАУРИНГ

ОБ ИНФРАКРАСНОМ ПОГЛОЩЕНИИ МОЛЕКУЛЯРНЫХ ИОНОВ ВО⁻ В ЩЕЛОЧНОГАЛОИДНЫХ КРИСТАЛЛАХ

T. MAURING. MOLEKULAARSETE IOONIDE BO_2^{-} INFRAPUNASEST NEELDUMISEST LEELISHALOGENIIDKRISTALLIDES

T. MAURING. ON THE INFRARED ABSORPTION OF MOLECULAR IONS BO2 IN ALKALI HALIDE CRYSTALS

В настоящей работе изучались спектры инфракрасного поглощения метаборатных ионов, введенных в щелочногалоидные кристаллы КСІ, КВг и ҚЈ, привлекающие к себе внимание некоторыми чрезвычайно узкими линиями поглощения [¹].

Кристаллы выращивались по методу Киропулоса в открытой атмосфере из солей марки «о.ч.» и «х.ч.» (для КЈ) с добавкой в шихту борного ангидрида (B₂O₃) в концентрации 0,7 мол.%. При температуре выращивания кристаллов борный ангидрид разлагается, давая борсодержащие анионные примеси, в том числе и молекулярные ионы BO₂.

Молекула ВО₂ является линейной и имеет точечную группу симметрии $D_{\infty h}$ [²]. Для такой молекулы возможны следующие основные частоты: валентное полносимметричное колебание $v_1(\Sigma_g^+)$, дважды вырожденное деформационное колебание $v_2(\Pi_u)$ и асимметричное валентное колебание $v_3(\Sigma_u^+)$.

Спектры поглощения измерены на двухлучевом инфракрасном спектрофотометре ИКС-14. На рисунке в качестве примера приведен спектр поглощения образца на основе КЈ. Две очень узкие линии поглощения, принадлежащие частоте v_3 изотопических молекул $B^{10}O_2^{16-}$ и $B^{11}O_2^{16-}$, наблюдаются при 2016 и 1946 см⁻¹. Аналогичные линии с несколько смешенными частотами наблюдаются также в основаниях КСІ и КВг (см. табл. 1). По данным работы [¹], полуширина этих линий составляет около 1 см⁻¹ при комнатной температуре и 0,4 см⁻¹ при 4 °K. Их интенсивности, измеренные нами во всех трех основаниях, соотносятся как 1:4, что хорошо согласуется с природным изотопным составом бора (81% В¹¹ и 19% В¹⁰). Деформационное колебание v_2 имеет полосу поглощения в районе 600 см⁻¹. Максимумы при 611, 609, 607 и при 591, 589, 587 см⁻¹ соответственно для оснований КСІ, КВг и КЈ обязаны молекулам В¹⁰O₂¹⁶⁻

При внедрении молекулы ВО₂ в кристалл ее симметрия не изменяется. На это указывает отсутствие частот 2v₃ и v₂ + v₃, запрещенных для симметричных линейных молекул. Локальная симметрия центра зависит от ориентации примесной молекулы в элементарной ячейке.

Спектр инфракрасного поглощения КЈ-ВО₂ при комнатной температуре.

Таблица 1

Максимумы поглощения (см-1)			Интерпретация		
KCI	KBr	KJ	Молекула	Частоты	
at the Wibration	th an a Decelui	LEXIDEX.	S & ROTABLOMOSH UN		
2048	2032	2016	B ¹⁰ O ¹⁶ O ¹⁶ -	V3	
2032	2017	2000	B10O16O18-	v3	
1977	1962	1946	B ¹¹ O ¹⁶ O ¹⁶ -	V3	
1962	1949	1931	B ¹¹ O ¹⁶ O ¹⁸ -	v3	
2038	2022	2006	B ¹⁰ O ₂ ¹⁶ -	V3	
1967	1952	1937	B ¹¹ O ₂ ¹⁶	v'a	
2028	2012	1996	B ¹⁰ O ₂ ¹⁶⁻	v3	
1957	1942	1927+	B ¹¹ O ₂ ¹⁶	v3	
611	609	607	B ¹⁰ O ₂ ¹⁶	N2STON	
591	589	587	B ¹¹ O ₂ ¹⁶⁻	v2	

Возможные ориентации и соответствующие группы симметрии для линейных молекул типа XY_2 в кристаллах симметрии O_h приведены в табл. 2. Как следует из таблицы, ориентация BO_2^- вдоль оси C_2 или более произвольным образом влечет за собой снятие вырождения с колебания v_2 , что в спектрах поглощения нами не наблюдалось. Таким образом, BO_2^- может располагаться по осям C_4 или C_3 . Отметим, что энергетически более выгодным кажется направление вдоль пространственной оси куба, т. е. вдоль оси C_3 .

Благодаря тому, что линия поглощения v_3 очень узка уже при комнатной температуре, а частота v_2 достаточно мала, удалось наблюдать разностные частоты типа $v'_3 = G(0, 1, 1) - G(0, 1, 0)$ и $v''_3 = G(0, 2, 1) - G(0, 2, 0)$, где колебательный уровень $G(n_1, n_2, n_3)$ соответствует воз-

Ориентация	Группа	Неприводимые представления		
молекулы	симметрии	v_1	v ₂	v ₃
Свободная молекула	$D_{\infty h}$	Σ_{α}^{+}	Пи	Σ_{n}^{+}
По оси С4	D_{4h}	Alg	Eu	Azu
То оси С3	D_{3d}	A _{1g}	Eu	- A _{2u}
То оси C ₂	$D_{2h} \equiv V_h$	Ag	B_{2u} , B_{3u}	Biu
Троизвольная	C_i	Ag	A_u, A_u	Au -

буждению n_1 квантов колебания v_1 , n_2 квантов колебания v_2 и n_3 квантов колебания v_3 . Как известно [²], разностные частоты типа v_3 и v_3 не совпадают точно с частотой v_3 в силу взаимодействия колебаний v_3 и v_2 .

Учитывая, что колебание v_2 двукратно вырождено, соотношение интенсивностей линий v'_3 и v_3 должно быть в два раза больше множителя Больцмана exp ($-hcv_2/kT$). При комнатной температуре вычисленное значение $I_{v'_3}/I_{v_3}$ составляет 11,3%, что хорошо согласуется с опытными данными (14, 12 и 13% соответственно для КСІ, КВг и КЈ). Разностная частота v''_3 , наблюденная нами впервые, имеет очень слабые полосы поглощения. Вычисленное значение соотношений интенсивностей составляет здесь 0,9%, если учесть, что состояние G(0, 2, 0) является трехкратно вырожденным. С точностью эксперимента такое соотношение действительно наблюдается в спектрах.

Во всех трех основаниях обнаружены также слабые линии, принадлежащие изотопическим молекулам В¹⁰O¹⁸O¹⁶- и В¹¹O¹⁸O¹⁶- (см. табл. 1 и рисунок). Так как природный кислород содержит 0,2% изотопа O¹⁸, который может заменять в молекуле любой из двух атомов, то соотношение интенсивностей изотопических линий ВO¹⁸O¹⁶- и ВO¹⁶- должно равняться 1:250, что подтверждается на опыте.

Замечательным свойством спектров поглощения BO₂ в щелочногалоидных кристаллах является узость линий, свидетельствующая о слабом взаимодействии примесной молекулы с окружающей решеткой. Интересно отметить, что полуширина линии поглощения частоты v₃ имеет тот же порядок, что и вращательные компоненты NO₂ в щелочногалоидных кристаллах при температуре жидкого гелия [³]. Кажется, что в случае BO₂ вращение столь «заморожено», что оно не проявляется деже при комнатной температуре.

В заключение приношу искреннюю благодарность К. К. Ребане и А. Лайсаару за полезные советы при обсуждении результатов.

ЛИТЕРАТУРА

- 1. Morgan H. W., Staats P. A., J. Appl. Phys., 33, 364 (1962).
- Герцберг Г., Колебательные и вращательные спектры многоатомных молекул, М., ИЛ, 1949.
- 3. Narayanamurti V., Seward W. D., Pohl R. O., Phys. Rev., 148, 481 (1966).

Институт физики и астрономии Академии наук Эстонской ССР Поступила в редакцию 18/І 1968

Таблица 2