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PROBLEMS OF THE THEORY OF SECONDARY RADIATION
BY IMPURITY CENTRES IN CRYSTALS

I. Introduction

The aim of the present paper is to give a survey of the results in the.
theoretical study of the vibrational structure of Raman spectra of'
impurity centres in crystals carried out at the Institute of Physics and
Astronomy of the Estonian S. S. R. Academy of Sciences during the last
2—3 years. References to earlier work are given in the review
article [*] *.

The role of the vibrations of crystal is as great in determining the.
structure of Raman spectra as it is in determining the absorption and
luminescence spectra of impurity centres. As in the case of absorption
and luminescence spectra, it is essential to take into consideration the.
distortion in crystal (i. e. continuum) vibrations and the existence of local
vibrations (see [’] for references).

The interaction between optical electrons and vibrations is very often
so strong that it is not expedient to describe it by means of the pertur-
bation method. A consistent theory must proceed from the important role
of multi-phonon processes. Such “subtle” factors of vibronic (electronic-
vibrational) interaction as the dependence of the probability of electron-
ic. transition on vibrations and anharmonic vibrational relaxation
acquire great significance in the theory of Raman scattering.

There are two essentially different limit cases in the theory of scattering
by impurities in crystals as well as in the general theory of scattering of
light: scattering when the light frequency coincides with the absorption band
of the impurity (resonance scattering) and scattering in conditions of
a considerable difference between the frequency of the incident light and
the absorption frequency of the impurity centre (non-resonance scatter-
ing). In the first case there arises the fundamental question of the
separation of the scattered light from the ordinary luminescence [4 - s]; in
the second case the task is reduced to the calculation of some first
terms of the expansion of the polarizability operator in powers of nuclear
coordinates and momenta [ 6].

The dependence of the probability of electronic transition on vibra-
tions becomes the basic cause of scattering in the non-resonance case,
since it is precisely through it that the dependence of electronic polari-...
zation on vibrations is expressed. In the resonance case the interaction

* We shall not examine the selection rules for the vibrations in Raman scattering
For references see, e. g. [2 - 3],
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with vibrations is well taken into account by means of the variation of
the adiabatic potential in electronic transition. For that it is necessary
to use such a model of vibrations which describes the rapid vibrational
relaxation in the excited state [7 - B ].

We see that owing to the rapid relaxation of vibrational excitations
localized in the impurity centre, the division of secondary radiation into
luminescence and scattering is indeed possible. The fundamental signi-
ficance of processes of relaxation in intermediate states for the classi-
fication of secondary radiation is especially clearly shown in the works
of Stepanov and Apanasevich [s], However, in these papers (as well as
in all other works known to us) the relaxation in intermediate states
does not take place proceeding from the characteristics of the model
examined, but is introduced as a certain supplementary property.

In dealing with the problem of classifying secondary radiation the
case of the impurity centre has a certain advantage when compared,
for example, with molecular gases and solutions. This advantage lies
in the fact that the relaxation as well as the structure of the impurity
spectrum is determined by the vibrations of the crystal. The vibrational
motion of the crystal can easily be described on the basis of the theory
of small vibrations. In particular, the relaxation of the localized vibra-
tional packet within the crystal in the absence of local vibrations is
described already in the simplest approximation of N independent har-
monic oscillators [ 9] (N the number of degrees of the freedom of the
crystal vibrations). If there are local vibrations, a part of the vibration-
al excitation relaxes in the crystal owing to its anharmonic interaction
with the crystal vibrations. Methods of calculating these interactions
have now also been well elaborated (see, e. g. [ 10]).

The luminescence arising in the impurity tentre in case of optical
excitation is usually described in the first order of the perturbation method
according to the interaction between light and substance (see, e. g. [u ]).

The whole process of secondary radiation is divided into three stages:
the absorption of the photon of frequency (o0 (1), the vibrational relaxa-
tion in the impurity centre until the establishment of thermal equilib-
rium (2), the emission of the photon of frequency <2 (3). In such a treat-
ment (which is wholly sufficient for the description of luminescence)
absorption and emission are essentially two independent processes.
Accordingly, two theoretical tasks are solved. The task of finding the
absorption spectrum by means of one or another variant of the quantum-
mechanical perturbation method assuming as an initial condition that
there is thermal equilibrium in the impurity centre before absorption,
and precisely the same task for emission, but with a new initial con-
dition the assumption of thermal equilibrium for vibrations in an excit-
ed electronic state at the time of radiation.

As is generally known, the description of scattering requires the
second approximation of the perturbation method. In that case secondary
radiation is regarded as an i n d i v i s i b 1 e process. In connection with this
it is necessary to take into account two essential factors. Firstly, second-
ary radiation in the general case obviously also comprises luminescence,
for the latter was obtained in the first order of the perturbation method
and described in full correspondence with the experiment; a more precise
theoretical description cannot lead to its loss. It is also obvious that
luminescence constitutes an overwhelming part of the summary intensity
of secondary radiation if only the frequency of incident light is in reso-
nance with the absorption band. Secondly, the assumption of thermal
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equilibrium of the lattice in the impurity centre before the act of photon
emission cannot be introduced now. A consistent theory should obtain
all the results proceeding from the properties of the model and from the
one single initial condition the condition of thermal equilibrium
in the crystal before the interaction with the incident light. If there is
relaxation it must naturally be allowed by the properties of the model.
The ordinary contour of the luminescence spectrum corresponding to the
thermal equilibrium of vibrations in the excited electronic state in the
theory of the first order must now also be obtained in the natural way
by assuming the equilibrium of vibrations only in the ground electronic
state before the interaction between the impurity centre and the incident
light. It is precisely this programme that is carried out in the papers
P’ B].

The vibrational relaxation in the impurity centre does not depend on
the properties of the crystal only, but also on the characteristics of the
exciting light. The present survey deals mainly with monochromatic
excitation. A more detailed analysis of the situation of vibrational
relaxation depending on the characteristics of exciting light is given in
section V.

The resonance secondary radiation of impurity centres on the basis of
the second order of the interaction between the electromagnetic field and
substance has been examined earlier in papers * [ I2-17]. In these papers only
Rayleigh and Raman scattering were obtained. In fact, the formulae work-
ed out by the authors [ l2 - 17] comprise luminescence but their analysis has
not been completed, the terms (the greatest) proportional to уГ 1 (yi
the radiative width of the excited electronic state) describing luminescence
have not been taken into consideration. At the same time the authors [ l3> I7]

examine in detail the models which on principle cannot describe lumines-
cence on the basis of the second order perturbation theory the model of
zero-dispersion vibrations [ l3], the one-oscillator and the two-oscillator
models in the harmonic approximation [ l7]. The paper [ l2] merits particular
attention as the author has shown that in case of continuous excitation the
spectral structure of secondary radiation coincides for the most part exactly
with the spectrum of ordinary impurity luminescence. However, the
author [ l2] has net interpreted this spectrum as luminescence.

11. Raman Scattering in Case of Excitation
Distant from Resonance [ lß]

Let us examine the spectrum of light scattered by an impurity crystal
where in case of excitation with a monochromatic wave of light the transi-
tion ov~>ev" —>ov' takes place. Here 0 and e denote the ground and all
the possible intermediate electronic states, v the vibrational state of the
system crystal + impurity. As usually, we examine the process in adiabatic
approximation. The concentration of impurities in the crystal is consider-
ed to be small, so that the interaction between impurities and the interfer-
ence of the scattered light by different impurities may be neglected.

We proceed from the usual formula for the intensity of the scattered
radiation per unit of the solid angle [l9]

N.<4 _

. .
W(coo, H) = Ay.ps (coo, Й), (2.1)

a

* The paper [lG] contains some essential inaccuracies (see[8 ]).
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where co o, V> are respectively the frequencies of the light falling on the crys-
tal and the light scattered by it; Nj the number of impurity centres in
the crystal; n the unit vector of polarization of the scattered radiation;:
E+ and E~ the amplitudes of the electromagnetic field of radiation
(E=E+ ei(°nt + Е~е~ 1ш°( ) . The function ia-

( , 33 is connected with the tensor
of polarizability P«p in the following way

ia-(, (3&(o)0 , Q)= J£w{v)<v' |p!t I ü><ü|Ppe I u'>6(co low), (2.2)
V 1

w{v) is the Boltzmann factor, o>=Q coo, (ü VV ' =Eo— Eo .

Making use of the integral representation of the 6-function, the following
rewriting is possible

00

ps = j dteiwi <Pvs{t)P*4 (0) >. (2.3)
00

Here P a p ( t) is operator Pa p in Heisenberg’s representation

f<o I Afo ! ev"><ev" \Ma|o>.<o j Ma \ ev"><ev" | io> ]
2j ■ :

.
(2.4)irf' ' . l\e ' . l\e I(Oeo JrU> v"v— COQ-f- 2 (ÖsO + Wpiy+tOOT 2

where M is the operator of the dipole momentum of the crystal, ye the
radiative width of the excited electronic level *, o>eo =Ee E0 the energy
of the pure-electronic transition 1).

Examining the spectrum in case of excitation distant from resonance,,
we can in (2.3) expand the denominator in a power series making use of
conditions

(Oc QeO
CO v"v £2eo COo

(in this case the radiative width can be neglected) and sum up over inter-
mediate vibrational states. We obtain (see also [2o])

p [ (Tfp) pe(Pe —Eq Qep) 11 (Ma)cQ .n=oe\ (£2 eo -C0 0 ) 71 + 1 '

■ (Tt a )oe(Pe ” (Tf p)eQ ) (2 5V
' (Q eo-«o)" +1 j

Here H e denotes the vibrational Hamiltonian of the system crystal -f
impurity in the electronic state e, Eo denotes the vibrational energy of the-
v level of the ground electronic state, Q eo=co e o+ E denotes the distance
between the adiabatic potentials in the minimum point of the initial adia-
batic potential.

Unlike [ l9l we introduced у* in order to use the formula (2.3) also in the resonance-
case.
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The given formula is somewhat different from the usual Placzek for-
mula [ 6] which is obtained by replacing E ev «, 0u .simply by E eo (neglecting
fully the variation of the vibrational energy) and expanding the electronic
matrix elements in a power series of the nuclear coordinates. In addition we
take into account here the variation of vibrational Hamiltonians in
electronic transition that leads to the dependence of the polarizability tensor
on nuclear momenta. This expands the sphere of application of the given
formula.

On the basis of the formula (2.5) it is not difficult to draw the conclu-
sion that the Condon approximation (according to which the dependence
of (M a )oe on the vibrational coordinates is fully neglected) is considerably
less precise in the case of non-resonance Raman scattering than in the
theory of the absorption of light by the impurity centre. Indeed, it can be
seen from (2.2) and (2.5) that when the main term of the expansion
(я = 0) is equal to zero in the Condon approximation. Consideration of the
dependence of the electronic matrix element on the coordinates of nuclear
vibrations is consequently the more essential, the farther the frequency of
the incident light coo is from the absorption band.* It is not difficult to
understand that this must really be so: if coo is not in resonance with the
vibronic frequencies, the electronic polarizability whose vibrational modu-
lation is given by the dependence of the electronic wave functions on the
nuclear coordinates plays an important role.

On the basis of the formulae (2.3), (2.5) it is easy to carry out thermal
averaging and to find expressions for the intensities of one-, two-, etc.
phonon transitions.

Let us choose the Hamiltonians as follows;

H 0 = Sanföoi +-) + - 2jvUk + at) ( a ,■ + af) {ak + at) +

+TI SwHki (ai 4- at) {aj+ a/) (a* + at) {at + at)
,

4 ' i]kl
(2.6)

V—He— Hq *— Qeo = b\ {ai -f- cit) -f-
-i

+ ~o {at + at){Oj -f- af).z tj

Here the anharmonicity of the third and the fourth order and the variation
of the equilibrium positions and frequencies as well as the mixing of normal
coordinates in electronic transitions are taken into account.

Expanding electronic matrix elements in powers of vibrational coordi-
nates we obtain the following formulae for the Rayleigh (zero-phonon)
line and for the first and second order Raman spectra:

‘■ lo '
= + О44о)]% (“). (2-0

where Da is the first (constant) term of the expansion of the electronic
matrix element [Ma)oe-

* The same conclusion has been drawn earlier by Shorygin and Krushinski on the
analysis of experimental data [2l ],

6*
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1 (I) Jjjj {Pq • ~f“ PP-)“ ini ф(и ®i) H“ ini 1)ф(0Э “f- CO t )];
i 1 1

Pq- { [A<? f- Ät\+b\ *[ (Ae )2 4“ (Ae”) 2J} > (2-8)
e

p„. = .2бГЧ[(ДГ)2 + (Ä^) 2 ]; At = (Q.O ± шо)
e

D a , iis determined by the formula Da , i{arf- a/") = (Al a)oejQi',

/ , \ i r,ф(со + (Ot) л (со±сог) 2+ Г г -

nL = {exp {(Oi/kT) —I}-1 and (Dj = оз г- +Eh is the renormalized frequency
and

jq. ___

_L \
v2Г 1 +Пк +Пт

_

1+tlk +n m I2nh n m I
k,m 1 if!m l(j ü)fe COm CO + COft + COm (0 + COfc (OmJ

2Viikv kmm •
~

iikk {2flk —j- 1) f ,(U/i J

i— ~2 v ikm ((I~Ь nk ~h [Ö (со (О*. CO m) Õ (to Ык “Г wm)H~
k,m

4~ 2 {tlk nm) õ(ö) -j- ö>ft t0,7 7) }.

P2) JŽj{ + Pppk ) 2 i ni +1) ink +1) Ф (ü) 4- СО/ + ®k) +

+ { рарк Ppfl) 2 ЩПк ф' (со (õi О)*) + 2P2
q.qk ni (Н* +1) ф'(со СО; + СО*) },

where Рярк (^aöp) /Ä[Äe + Н~ е ) 2 +

+ (А^) 2]+^Ч*)[(А7) 3 + (А+) 3 ]}, (2.9)

Рр,Ч= 2{№*o}) кьРщ+i 6»Ы(][(ДГ) B+(At) 3)},
£

ф'(со + (Ог + Ш-а) =/ Ф (л: + (Ог ) ф((0 —X + COfe) dx.

It is evident from the formulae (2.8), (2.9) that the importance of the
variation of vibrational Hamiltonians is that much the greater, the closer
the exciting frequency is to the absorption band and the higher the order
of the Raman scattering.

These formulae easily convince one that the Raman spectrum of impu-
rity centres may have a quasiline structure.

As can be seen from (2.6), the Rayleigh line has a finite intensity. The
line corresponding to the variation of the state of a local vibration (transi-
tions, accompanied by creation or destruction of the quanta of the local
vibration) has also a finite intensity as the coefficients b t, Д-, Dik in (2.8),
(2.9) are finite for local vibrations. The intensity of the line corresponding
to the variation of one crystal vibration by one quantum is of the order AM.
Indeed, the coefficients b k , Dk \ eik ,

D ik for crystal vibrations have the order
N~ 1b

}
ДМ respectively. The density of frequencies in the spectrum of
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crystal vibrations (outside singular points) is proportional to N. Therefore
the total contribution to the intensity by crystal vibrations whose frequen-
cies are in the interval со, со -\- Aco is finite. The scattering which is accom-
panied by the emission or the absorption of the phonons of crystal vibra-
tions leads to a continuous background. The background may of course
also have a structure caused either by singularities of the phonon spectrum
of the host crystal or by Raman-active pseudolocal vibrations.

Thus, we arrive at the conclusion that in the absence of local vibrations
the spectrum of the scattered light consists of a quasi-continuous back-
ground conditioned by the Raman scattering on crystal vibrations and of a
sharp Rayleigh line corresponding to the scattering without variation of
the vibrational state of the lattice and which in this respect is analogous
to the Mössbauer line. In case there are local vibrations, the picture
described above is supplemented by vibrational recurrences of the
zero-phonon line which correspond to scattering with variation of the vibra-
tional state of the local oscillators only. These quasilines represent an
analogue to the vibrational recurrences of the zero-phonon line in the Möss-
bauer and Shpolski effect.

Hence, we can certainly speak of the quasiline vibrational structure of
the Raman spectrum which is in many respects analogous to the
vibrational structure in the vibronic and in the Mössbauer spectra of
absorption and radiation.

There are, however, two essential differences.
Firstly, the quasiline is formed by real transitions between different

vibrational levels of the ground electronic state. Therefore the quasiline
can have a structure only as a result of the anharmonicity of vibrations in
the ground electronic state. Excited electronic states with their vibrational
structure occur only as virtual states and do not directly influence the
structure of the quasiline. In particular, it should be pointed out that
no influence is exerted by the inequality of frequencies in different
electronic states which may cause the decay of the quasiline into separate
components in the absorption and luminescence spectra.

Secondly, the width of the quasiline is determined by the width of the
line of the incident light as well as by the width of the corresponding
vibrational level (in case of local vibration) or by the vibrational wave
packet (in case of pseudolocal vibration). The first width is for ordinary
sources of light of the order of the width of vibrational levels. It is far great-
er than the radiative width of the line. For that reason the investigation of
details in the quasiline structure of the Raman spectrum and that of the
Rayleigh line in particular is obviously one of the tasks that can successfully
be solved by means of lasers.

It must be mentioned that the non-resonance case does not appear to
be appropriate for the experimental Raman scattering by impurity centres:
it is difficult to distinguish between the spectrum of the impurity centre
and that of the host crystal. Even when the host crystal lacks a first order
spectrum, one cannot be sure that the observed spectrum (of the first
order) belongs to the impurity which interests us, for accidental impu-
rities and defects occurring in minor quantities may turn out to be in reso-
nance with the excitation and produce noticeable luminescence or
scattering.

The resonance case of the excitation of Raman scattering represents a
far more promising subject in the investigation of impurities.
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111. Resonance Scattering [7 8- 22 ]

1. Luminescence in the Resonance Secondary Radiation of the
Imparity Centre

As in the previous section, we shall describe the process of interaction
between light and crystal by means of the second order formula (2.1) and
use an adiabatic approximation for the study of vibronic states of the
impurity crystal. In connection with the fact that the resonance case will
be examined, it is possible to introduce some additional simplifications. We
shall take into account only the resonance intermediate electronic transi-
tion. In the formula (2.4) let us omit the second term in brackets as in this
case it is small when compared with the first term and let us neglect the
dependence of the electronic matrix element on the vibrational coordinates
((Ma)eo = const the Condon approximation).

With these assumptions it is possible to rewrite the formula (2.1) as
follows (see[ 15 ]):

00 00

W(coo, Q) =2— j tipexp[/(Q tö0 ) p] j J dtdt'X (3.1)
OO Ü

X exp [—fto o (C —t) У (/'+ t)]A{tt'\x.),
where

A (3.2)

д/ „4
■jV/QJo: j x o j EM 1 1 > < 1 j nM ! 0> 1 2 , (3.3)
2л c 3

<...>„ = Sp(... e-H’ IKT ) j Sp(e^ H“ ,KT
). (3.4)

It is evident that in case of excitation in the absorption band of the
impurity, ordinary luminescence should arise as the main part of secondary
radiation as a whole. Therefore, any consistent theory of the resonance
secondary radiation of impurity centres must, first of all, provide a correct
description of luminescence.

Let us show that the main part of the secondary radiation given by
the formula (3.1) belongs indeed to ordinary impurity luminescence.* To
do that let us rewrite the formula (3.2) for A{tt'p) in the following form;

4(tt'n)=</ fl'5 f (|i)e"™'S( (ii('-o«>i, (3.2a)
where

<... >, -Sp(. ..e~H‘ , “7')/Sp(e“'W), (3.4a)

Spv.)=e i^“e-,'fH\ (3.5)

S (p + V — f)= e 4r-+‘'-oH,—i(v.+r-i)H,' (35a)

R =S+(ilkT)Sp(e~H'IKT )ISp(e~ H‘ ll<T). (3.6)

* The proof adduced here is of a more general character than that provided in the
papers [ 7 . B ].

&
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It is easy to be convinced of the correctness of (3.2a) if we use
(3.4a) (3.6).

We shall regard jx, p+ f — t and fas the new independent variables.
In that case A(tf\\) is a double-time correlator parametrically dependent
on p and on p ~|— f —t:

A (tt'n) = <a(f)b(0) >,, (3.7)
where

a= S + (p) , b=S (p -\-f t)R.
We shall separate the part which does not damp with an increase of '| f j
irom the correlator <^a(f)b( o)>i:

A (1) (tf\x) = lim A(tf\x) = oo ) b(0) >i =

f -> 00

(3.8)
= <a>l <b>,= < S+ (p) > l <s(p + f-/)>0 .

The remaining part damps if 1 f j increases. We shall denote the region of
the values of jf\ as Ae-1 in which AW (tf p) = A(tfp) A(1) (tfp) is_consid-
«erably different from zero. If local vibrations are missing, Ae > со where
со denotes the mean frequency of the lattice vibrations in the excited state.
It must be stressed that Ae may considerably exceed со in case of strong
electron-phonon interaction as then the main contribution to AW (tfp) is
made by multi-particle correlators whose speed of damping is higher. If
local vibrations are present, Л (2) contains terms damping only on
-account of the anharmonicity of vibrations. In that case Ae > Г where
Г denotes the anharmonic damping constant of local vibrations.

Let us point out that Л(1) represents the product of characteristic
Junctions of absorption (/* (p-f-/' /)=<S(p-|-//

— /) > 0 ) and lumi-
nescence ( /г/ (p) =<<5 + (p) >i) of the impurity centre [23 ].

For further discussion it is essential that in case of impurity centres
.there usually exists the inequality

(3.9)
The condition (3.9) expresses the fact that thermal averaging with

xegard to vibrations (vibrational relaxation) is established far more quickly
than that for electronic states. Indeed, even in case of local vibrations
when Ae= Г > 10~3со ~ 10 10 sec-1 the radiative width does not usually
■exceed 108 sec-1 .

At present it is not clear whether the condition (3.9) may not be realized Jor some
Find of impurity centres. We are of the opinion that the violation of this condition may
most probably be expected in special cases of molecular impurities possessing intramo-
Jecular vibrations of very high frequency.

Attention should be drawn to the following interesting possibility of describing reso-
лапсе secondary scattering if cases really become known where the condition, the reverse
of (3.9) ; Г < Yi is fulfilled for vibrations of high frequency. It is possible to apply an adiaba-
tic approximation for the second time p4 ], considering the above-mentioned vibrations of

Tiigh frequency to be a rapid sub-system. Then we may interpret the resonance electronic
transition as a resonance electronic + vibrational transition for high frequency vibrations.
In that case the corresponding vibronic matrix elements occur instead of electronic matrix
•elements and the Hamiltonians H 0 and H- are the vibrational Hamiltonians of the slow
■vibrational sub-system only. In other words, the theory remains the same but only the
.concrete sense of parameters is changed.
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Let us show that owing to the condition (3.9) in case of excitation in the
phonon wing of the absorption band, the main contribution to the spectrum
of the resonance secondary scattering yields A (1) (/Fp).

In this case the essential values of \\i-\-t' — 1\ are small
Cl p-f F — /] < Ae-1 ). It is easy to be convinced of this if one takes into
account that

A(tt'ii) =<CS{t / )ei^+t'~t)Ho S+{t)e~ i{{X+t'~ t)Ho
>0

consists of the term equal to <S(F) >o <s+(/) >0 which does not damp
with an increase of |p+ F— t\ and the term which damps in the region
of Ip4- F— t 1 < Ae -1 . Indeed, after integrating in (3.1) over p, F — t
both terms make a contribution of the order < Ae~’ that being the deter-
mination of the region of essential values of [ p-f-F— l\.

Let us put AW (tt' p.) into (3.1). Since AW{tfp) does not damp in case
of an increase of F the integrand will be noticeably different from zero on
the integration plane over t and Fin the region of | p+F— t\< Ae-1

,

F < yi_1 . At the same time AW [tt' p) differs from zero in the far smaller
region of |p-j-F 1 1 < Ae-1

, t < Ae-1 . Therefore the contribution
AW {tt'p) to the Fourier transform of the spectrum (and, consequently, to
the spectrum itself) is of the order of magnitude Ae/yi > 104 times smal-
ler than that made by AW{tt'p).

Let us examine in greater detail the spectrum determined by AW[tt'\x),
Introducing the variables f—t —x, t' +t у and using the Fourier
transformation

oo

<S(n + <'-o>o= j (3.10)
oo

oo

<S+( (i) >,= j (3.11)
OO

we integrate over x and y. Then we make the reverse Fourier transforma-
tion and integrate over г. We obtain

oo

IF* 1 ) (юо, Sž) =— j X

(3.12)
oo

X[ dx е“ гш°т
< e lzHle~ nH

°> o exp {— -у 1 1 p |}.

oo

In view of the fact that upon excitation of the phonon wing the essen-
tial values of jl l are small (| t(< Ae-1 yF 1 ), it is possible to replace
exp {— у —pj) by exp {— у([ t’| +1PI) }• Hence, the formula (3.12)
leads to the product of the absorption spectrum

oo

/,Ы = -| (3.13)
oo
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and of the normalized luminescence spectrum
oo

/„(Й)=~ j (3.14)

Therefore in case of excitation in the phonon wing of the absorption’
band, the main part of the secondary radiation Q) represents ordi-
nary impurity luminescence:

\Г<')(соо, Q) =/x((üo )Iy{Q). (3.15)’
The appearance of the absorption band in the formula (3.15) has an evident physical

significance: the constant factor /x (coo) (in the sense of independence from Q) expresses
the number of photons of frequency roo “absorbed ’ by luminescence centres. If the
absorption of frequency Wo is not small as often happens for Wq in the absorption band
of an actual activated crystal of sufficient thickness and with noticeable concentration of
impurities, I x (co 0) is trivially replaced by the factor which takes account of the actual
number of photons absorbed by the impurities of the given type. The general considerations
here are the same as in the discussion of the correspondence of luminescence excitation,
spectrum to the absorption spectrum of a single impurity centre.

Let us also stress the following circumstance. As shown by a number
of papers (see [ 12,13,22]), the integral intensity of the secondary radiation
determined by the formula (3.1) is exactly equal to the probability of
absorption. On the basis of the formula (3.15) it becomes evident that the-
integral intensity of the whole secondary radiation (i. e. of luminescence
and scattering but not only of scattering!) coincides with the probability
of absorption.

We do not intend to carry out a detailed investigation of the resonance
secondary radiation spectrum in case of excitation in the region of the pure-
electronic line. Such a study can be found in [B], We shall give only the-
general characteristics of the above-mentioned spectrum.

As is also the case with excitation in the phonon wing, the spectrum
that is distant from the pure-electronic line represents the vibrational wing;
of luminescence and is described by the formula (3.15) on condition that
Q сою (сою is the frequency of the pure-electronic transition, it depends-
on the temperature in the general case; the formula for сою can be found
in [«]).

In the region of the pure-electronic transition the spectrum consists of
a pure-electronic line of the width yi-j-yy (y0 being its vibrational
broadening connected with the variation of elastic constants and with the
anharmonicity of vibrations [25>26 > 8]) and the Rayleigh line. The total
relative probability of both lines in the spectrum is equal to the relative
probability of the pure-electronic line in the luminescence spectrum in
case of excitation in the phonon wing. The relative probability of the Ray-
leigh and the pure-electronic line is equal to yi/y0 . The width of the pure-
electronic line is usually some orders greater than the radiative width yi.
Owing to this circumstance the main part of the resonance secondary
scattering is ordinary impurity luminescence also in case of excitation
in the region of the pure-electronic line.

2. Rayleigh and Raman Scattering [ B]

The part of the resonance secondary radiation not included in (3.15)
is of noticeable interest as it can occur in another spectral region than
luminescence and can be experimentally observed despite its relatively
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•small intensity. Below we shall examine the secondary radiation spectrum
in case Q = co 0 and in the region of frequencies near co 0 within a range of

■several toL (coL the maximum frequency of normal modes). In other
words, we shall examine the spectral region where the frequencies of
Rayleigh and Raman scattering are located. However, it is obvious that
the spectrum near the Rayleigh line should be interpreted as the Raman
spectrum only when it differs essentially from the wing of the lumi-
nescence band of this region. In particular at low temperatures and
<oo > «10 the luminescence does not make any contribution to the spectrum
in the region of coo. So at least in this case the spectrum of the secondary
radiation can be considered as Raman scattering.

It can easily be seen that the spectrum of the secondary radiation
contains (in case of monochromatic excitation) a õ-shaped Rayleigh line

Q) /#(o>o)0(fi co 0). The probability of Rayleigh scattering
/y?(coo) is determined by the asymptotic value of limH(// / l u)

(J, ->co
X <S+(/) >0

00

Ir=В I I dti"' < S (t)>o f 2 = В1Ф(m0)|2. (3.16)
0

Here
7 /Jco)

Ф(соо) =PJ da
й _Юо -f in h («о), (3.17)

7 х = 2луl/BL is the normalized absorption spectrum.

In this way the intensity of Rayleigh scattering can be easily calculated
if the absorption spectrum of the impurity is known.

It should be mentioned that Rayleigh scattering can be considered as
-an elastic scattering by impurities. Therefore it is possible to use a well-
known optical theorem for finding the cross section of the above-mentioned
-scattering, which also leads to (3.16).

Let us now examine the vibrational wing of the Rayleigh line. To do this
-it is necessary to evaluate the correlator A{tt'\x). Taking into account that

t

S (/) = T(_) exp {i jofsV(s)}, (3.18)
о

t

s+(/)=Гехр{ i |dsV(s)} (3.19)
6

where V(s) denotes the operator V=H\ HO in Heisenberg’s represen-
tation, T and T(_) being operators of the positive and negative chronolog-
ical arrangement respectively, we obtain

r t

A <CJSS ' exp {i j dsV{s)—i j ds'V{s' +ц+ 1—-V)} >G . (3.20)
о 0

Here Tss ■ is the operator of the negative chronological arrangement for
V’(s) and of the positive chronological arrangement for R(s /

) that places
the operators of moment s to the left of the operators of moment s'.
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We can rewrite A{tt'\i) in the following form:

Mtt'h) -<5(O >o <5(— t) > о exp [K{tt'\i)\ (3.21)
where

<S{-t)>o = <S+ {t)> o,

t t

X(«V) = j dsf *'[< V(s)V(s'+ ц+ f t)>о —<I7 > 2H- ... ,

U 0
(3.22)

If we neglect the variation of elastic constants in the formula (3.22),
then only the first term differs from zero in the harmonic approxi-
mation [ ls]. Consideration of variations of elastic constants and the anhar-
monicity of vibrations leads to the infinite expansion (3.22).

It is evident that the higher the approximation in V we use for the
broader the spectral distribution we obtain near the Rayleigh line. The width of the
above-mentioned distribution for the fixed approximation depends then on the model of
the impurity centre used for the description. Taking account of the variation of elastic
constants in the harmonic approximation increases the above-mentioned region two times
in comparison with the model which takes into account only the variations of the nuclear
equilibrium positions. Indeed, if we neglect the variation of elastic constants in the k-i\\
order, we obtain the Ä-particle correlators; taking account of variations of elastic
constants it is necessary to add to V the quadratic terms of creation and destruction
operators. Hence, 2&-particle correlators which attain a two times broader spectral distrib-
ution appear in the Ä-th order. The above-mentioned region is analogously increased
also by the vibrational anharmonicity.

Thus, in the frequency region | Q'| > coL (Й 7 = to 0 — Й) the variation of elastic
constants and the vibrational anharmonicity make a contribution in lower orders than
the variation of the equilibrium states of nuclei. Hence it follows that the relative
influence of the variation of elastic constants and the vibrational anharmonicity is the
weaker the smaller is Й* on condition that |Й' | > a>L . Therefore it is possible to restrict
ourselves to the second approximation in V for in the region under study (small

1 fi' I) not only in case of a weak electron-phonon interaction but also in case of a strong
interaction. In contrast to that we cannot restrict ourselves to the second approximation
in ln« S{t') > 0 <C 5+ (t) >o) in case of a strong interaction as the main contribution
to <S(t)>о is made by terms of higher orders in V where the influence of the variation
of elastic constants and the vibrational anharmonicity is relatively great.

Let us carry out the Fourier transformation in (3.22)

oo

<f(i|l'(s4|iif'-f)>o-<V>s= jda/ (to) e ' ,u(s'~ s+ !J +
.

(3.23)

After integrating over 5 and s' we obtain the formula for K{tt'p)
CO

K{tt'n) = J 4^<(l|<М-<,-<и'), (3.24)
CO

* Here we take into account that the contribution to the intensity of Raman scatter-
ing decreases with an increase of the order in the expansion of exp‘[/C] in V. See
below, section H 1.4.
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Let us expand A{tt'\i) in powers of K(tt'n):

Д(й» =<S(n„><S(-t)> o jžPŠ&. (3.25)
n =ü n -

We call the contribution made by the term of number n = k the k-ih order
spectrum. It is easy to see that the zero order spectrum represents the
Rayleigh line. The first and second order spectra are determined by the
formulae

й') = В~рФ(оо)-Ф(и o -£2') 12, (3.26)

OO

«Ми». Й') = | j dx '^s'~f| Ф (ii)c) + Ф (o) 0 - Q') -

(3.27)
Ф(coo —x) Ф (coq ~f~ x £F) 2

.

The higher order spectra can be found analogously.

Formulae determining the vibrational wing of the Rayleigh line will
be simplified in the essential case of low temperatures (/(со) is consid-
erably different from zero only for positive to) and for small frequencies
I Q' j. Indeed, if

oo

1 Q'|<C| j >ol 2 (3.28)
о

then the function K\tt'\y) in the formula (3.25) can be expanded in
powers of t and f and restricted to the terms that are the first ones differ-
ing from zero. In doing so we obtain

oo

U7*((o0, fl') =-/*(□') 1 f ditk e iuiot~2 '<s(/) >0 12.I2 . (3.29)
о

Here Jk{Q') is the folding of the k-\h order of the function
oo

= J2 {Q') = f dxJ{x) . Thus,
oo

the shape of the spectrum in the immediate proximity of the Rayleigh line
is determined by the sum of /(□') * and its foldings.

For comparison it should be mentioned that the partial spectra of the
first, second, etc. orders in the phonon wings of the absorption and lumi-
nescence spectra of the impurity centre are determined by the fold-
ings of the function /(+(Q сою) ) / — мю) 2 .

If local or pseudolocal modes are present, the function /(со) has nar-
row maxima at corresponding frequencies. Every such maximum will
appear in the spectrum forming a series of quasilines, i. e. local and pseu-

* In [ B] the formula for /(со) has been obtained, the variations of the equilibrium
states and elastic constants in electronic transition and also the vibrational anharmoni-
city having been taken into consideration.
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dolocal modes must lead to a quasiline structure in the resonance Raman
spectrum.

The formulae (3.26), (3.27) and (3.29) allow us to calculate the reso-
nance Raman spectra if the frequency dependence of the function /(со)
and the absorption spectrum of impurities are known.

As examples let us now consider the spectra of the secondary radia-
tion of impurity centres in two concrete cases: (1) the one-oscillator model,
(2) the centre with appreciable Stokes losses.

3. Spectrum of Resonance Secondary Radiation
for a One-Oscillator Model [7]

For simplicity’s sake let us consider here the case where upon electronic
transition only the nuclear equilibrium states are changed, whereas the
elastic constants remain the same. In that case the vibrational Hamilto-
nians H 0 and Hi are connected with unitary transformation of the
displacement:

H i = Hq c сою, (3.30)

where V = JSJqomair^—, qma and qoma denote respectively the coordinates
та та

of the cartesian component a of nucleus number m and its variation in
electronic transition.

In the approximation (3.30) the correlator A{tt'\x) can be presented in
the following form

A ( tt'n ) = < (3.3!)

where v(h) = exp (грЯ o)у exp ( — i\xH o).

In further calculation of A{tt'\x) let us restrict ourselves to the approxi-
mation of pair correlators. Then

A {tt'p) exp {g (— t)-\- g(t') + g(p) + žf(q + t' I) g(p + t')
(3.32)

—g(h —t) } exp [teo-ю {t' —t) I
Here

£Г Ы =<V(O) V (m) >o- (3.33)

Here we are considering the model where g(p.) is the correlator of one
damping oscillator. For simplicity’s sake let us restrict ourselves to the
approximation of exponential damping and examine the zero temperature
{T = 0). In that case

g{t) =I2 [exp (fort —Г) 1 1) —l] (3.34)
(£ 2 denotes Stokes losses).

The correlator g{t) may have the form (3.34) if optic electrons are in
interaction either with a single local mode or with a single pseudolocal
one. In the first case Г is the anharmonic damping constant of the local
mode, in the second case Г differs from zero already in the harmonic
approximation.
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Let us place the formula (3.31) into (3.1) taking account of (3.34).
After expanding A{tt'\i) in powers of g{t) and integrating, we obtain

R of 2 “ /4-7' t:2(/n+ m'lV-\-p-\-k)
Щ<*о, Ö) =&e-K 2 (-l) l+l - 6 - Xm\ rn \ l\ I \ p\ k\

p, k =0

X {[*(& toio-f- 03(p ffi-f O) —I(P X m X T)] 1 X
X [(Lo(m I') —h Yi +Г(m m'-f- / + {f{m+/'+ k)

f{m' + /' —k) +f{m'+l' + k)f l —k)
(3.35)

k)f* (m +/ +

—[i(Й coo -\- to (p -j- k -f- / I'))
+/ + /

/ )]-7(m, -b/, + * (m—l —k) +Cc)

where f{m' + /'+•£) = f£-(o>ю to0 + to(m' + +k)) —у Г(т' +/' +

+ Ä)] -1 ; Cc denotes complex conjugated terms.

Let us examine the terms corresponding to m m'—l —V 0
(i. e. g{—t) +g(C) g(M'-H') £(ia —t) =0) in case of йо^йш .

The
main contribution to (3.35) is made by the following terms: *

Г<Ч( Ио , Q) =5-ГГ* 1 X (3.36)
p=o j(fi_ö)10 + CO/7) —У±— Тр

X 1 1 1+ Cc~
k=\ Ь ■ Li ((Ol0 (00 -f- <pk) —Tk / (CO 10 (00+ (i)k) Tk J

в _9=2 V (У. + 2Гp)l 2p /p\ yr 2Tkl2k Ik\

6 P= о (Q co 10 + шр) 2 + Гр.| 2
*= l (“ю-®о + <оЛ)*+(ГА)*-

The factor containing the sum over p gives luminescence and the sum
over k corresponds to the absorption spectrum. Hence the secondary radia-
tion spectrum contains luminescence.

It is easy to see that the terms m, mf, /, /'XO contain the Rayleigh line
(Q —too) and its vibrational recurrences (L> = too — соP).

Let us discuss as an example the intensity of these lines if the frequency
of the exciting light coincides with the maximum of one of the absorption
lines, i. e. сою too X Afco О (Л1 ■— tn —}— / —(— k m/ —)— I' —(— k ). Then the
intensity of the line of number P X M (P = p + k + /X /'X 0) is expressed
by the formula

D oc„ P P-k P—k l ~ „w?
= e 2 2 2 (-1)' +/ X

k= 0 1= 0 V= 0
(3.37)

6,[ p_,_P +2( Hl-*)] (p + JW _IÄ)
Xk\ l\ l'\ (M —/ k)\ {P—l I' k)\{M —k)(P+ M 21 —2k) ’

* The omitted terms are all at least Г/yi times smaller.
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Comparing the formulae (3.36) and (3.37) we are convinced that the
Raman scattering is indeed Г/yi times weaker than the luminescence.

If the absorption band consists of the non-overlapping quasilines
and if the exciting light falls between the absorption bands U (coo)

is practically equal to zero in (3.15), (3.36). It is easy to notice that then
Г can be neglected. This gives the results obtained byE. Trifonov and
K. Peuker [ l7 ]. Thus the model used in [ l7 ] is applicable only in this par'
ticular case.

4. Appreciable Stokes Losses

Let us examine Rayleigh and Raman scattering by the impurity centre,
with appreciable Stokes losses (when 7 X (coo) is described by a Gaussian).

2
In this case < S (/) <0 = exp [it ( b +co 0) t 2] where bis the difference

between the exciting frequency and the maximum of the absorption
band, a 2 the second central moment of the absorption band. The
condition for appreciable Stokes losses is
to the second order terms in the expansion of ln<S(o< then

oo

6 = <V< о —wo, a 2 —J* J{co)dco.
oo

In the case under consideration the total intensity of the Rayleigh line,
is equal to

Z

r 2ij -2z*rVn , .1’ *• .I 2 .0 004Ip q 2 2 I J ’ г/2 ' (3.38),
6 ■

°
'

The analysis of this formula shows that the intensity of the Rayleigh,
line is highest in case of excitation in the maximum of the absorption
band (2 —0), with an increase of \z] the intensity of the Rayleigh line
decreases quickly: at lzj<l exponentially ( exp (—2z2)), at

Z

Izl> las —exp ( — 2z2 )[j exp{x2 )dx]2 . The temperature dependence or
U

the Rayleigh line is the following: at | z | <1,4 its intensity decreases with
the increase of the temperature, at l,4<)z|<3 it increases and at
!z|>3 it does not essentially depend on the temperature (more exactly,
it decreases slowly).

Let us now consider the spectrum of Raman scattering. Owing to the.
condition (3.28), the formula (3.29) is correct for jQ'] in the region from
zero to several a>L (at z—o the excitation in the maximum of the
absorption band, the condition (3.28) is replaced by \Ll'\<šSa, at z< Ov
j Q' l may be greater). In this region the total intensity of the /г-th order
spectrum Ik is equal to

7 * = IsiMr + 'J dx\ } Г ■ (3- 39>>
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In particular,

/,= £{nz*e-^+H-2zw(z)f},
(3.40)

h= §{(l- 2z*)Ч-* - + [г+(1 - 2г2 ) w(z)P}.
z

The function w{z) = e~ z2 j e* 2dx is tabulated in [27].

о
As we can see, the relation between the total intensities of the first,

second and higher order Raman spectra of a centre with appreciable Stokes
losses is determined by two parametres of the absorption spectrum; its
half-width and maximum position. The temperature dependence of total
intensities is analogous to that of the Rayleigh line. The relation of total
intensities /2//1 is the highest possible (л/4) in case of excitation at the
maximum of the absorption band, it decreases with the increase of \z\.

The spectral distribution of intensities of the first, second and higher
order scattering is determined as shown in section 111, 2 by the foldings
of the function Z(Q').

The experimental study of the resonance Raman scattering by impurity
centres may provide us with new information about their vibronic states.
That concerns especially the centres with strong electron-phonon
interaction.

Indeed, it follows from the formulae (3.29), (3.39) that the contribution
of multi-phonon transitions to the region of the first-order Raman scattering
may be small. That considerably facilitates the task of restoring the func-
tion /(со) on the basis of the Raman scattering spectra as compared with
the absorption and luminescence spectra. It must be stressed that the find-
ing of /(со) is of noticeable interest since this function gives us detailed
information about the local dynamics and electron-phonon interaction of
the impurity centre.

IV. Calculation of Resonance Raman Scattering
by F-Centres in KCI and NaCl

The number of experiments on the resonance scattering by lumi-
nescence centres is very modest. Among works specially devoted to this
promising trend of investigating impurity centres one should mention
the experiments of Stekhanov and his collaborators in the field of the
Raman spectra of alkali halide crystals activated with Li+, Br~, J", Na+ [ 2B],
etc. and the experiments of Worlock and Porto [29]. Using helium-neon and
argon lasers as the sources of excitation, Worlock and Porto examined the
resonance Raman spectra of F-centres in NaCl and KCI.

For purposes of comparing the results of the above-presented theory
with those of Worlock and Porto, a concrete calculation of the correspond-
ing resonance Raman spectra of F-centres in KCI [ 3o] and NaCl has been
carried out. *

As is known, the electron of the F-centre is in strong interaction with
lattice vibrations. That enabled us to choose the relatively simple model
of appreciable Stokes losses examined in the previous section. We calcu-
lated the spectral distribution of intensities of one- and two-phonon tran-
sitions which is determined by the formulae (3.26), (3.27) as was shown

* The calculation for NaCl has been made by K. Loide.



Problems of the Theory of Secondary Radiation. . 225

above. Taking account of the lack of local modes in the F-centre in KCI
and NaCl> we are justified in restricting ourselves to the harmonic
approximation. Then

/((0) =E2 ((ö) со 2Ио) +l] —■ (4.1)

where £2 (co) is the distribution function of Stokes losses ['].

When calculating |2 (o>) we took into consideration that a totally sym-
metric variation of equilibrium states of the six K + (or Na+) ions nearest
to the vacancy takes place in electronic transition. In that case

|2 (co) =-Md2 e2 ((o) со, (4.2)

where e2 (oi) determines the dependence of the coefficient of the expansion
in normal coordinates of the totally symmetric combination of reduced
shifts of the nearest neighbours on the vibrational frequency со; M is
the mass of ions K + (Na+), d is the shift of the equilibrium position of
the totally symmetric coordinate under discussion in electronic transi-
tion.

The function e2 (co) has been calculated, taking into account the distor-
tion of vibrations near the F-centre and assuming the interaction between
the nearest neighbours. We have used the formula obtained in [3l ]

e2 (co) =~/mG(co){[l —p/?eG(co)]2 + [p/mG(co)]2 }- 1 . (4.3)

Here G(co) denotes the linear combination of the classical Green
functions. We had the opportunity of using the Green functions calcu-
lated by Zavt for KCI and by Loorits and Loide for NaCl. * Constant p
is determined by the temperature dependence of the second central
moment of the absorption bands of F-centres on the basis of the experi-
mental data of Markham and Konitzer [33 ]. The relation of total inten-
sities of one-phonon and two-phonon transitions is expressed by the for-
mulae (3.40) (/2//1—0,2 for KCI and /2//i 0,6 for NaCl).

Contours of the Stokes component of the Raman spectrum calculated on
the basis of the formulae (4.1) (4.3) and (3.26), (3.27) and the Green
functions [3l ] are presented in Figures I—2.1 —2. For comparison the experi-
mental curves of Worlock and Porto are added. The comparison of
the calculated curve with experimental data shows that the contour of
the spectrum is mainly determined by one-phonon transitions, two-pho-
non transitions make a considerable contribution only to the high-
frequency region of the spectrum: for KCI higher than 150 cm-1

, for
NaCl —2OO cm-1 . The maximum of one-phonon transitions of the cal-
culated curve is пёаг 75 cm -1 for KCI, coinciding with the experi-
mentally observed maximum at 60 —90 cm -1 and at 165 cm-1 for NaCl
(the experimental datum is ~ 170 cm -1).

Taking into account the degree of the exactness of the experiment
and the relative simplicity of the model used, the agreement of the theory
with the experiment for KCI can be considered satisfactory.

* The Green functions for KCI have been calculated in [3l ] in the approximation of
the interaction between the nearest neighbours (both central and non-central interactions
having been taken into account). The Green functions for NaCl have been calculated
on the basis of the tables of dispersion laws calculated by Maradudin in the approxima-
tion of deformed ions of Karo and Hardy [32 ].
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In case of NaCl the theoretical curve lacks an experimentally observ-
ed maximum in the low-frequency region. The observed dependence on
the polarization of light and the exciting frequency also remains

Frequency,cm' 1

Fig. 1. The resonance Raman spectrum of the F-centre in KCI (the Stokes
component) in case of the exciting light of wave-length Я = 6328 A:

/ the spectrum measured by Worlock and Porto (the unpolarized spectrum); 2 the
calculated spectrum (2a the one-phonon region of the calculated spectrum, 2b the

two-phonon region of the calculated spectrum).

unaccounted for. It results from the formula (3.1) that only the intensity
of the scattered light, but not the spectral distribution, depends on its
polarization in the Condon approximation. It can be supposed that in
case of NaCl side by side with ordinary also FA- or F 2-, R-, etc.
centres make a contribution to scattering, a fact which would explain the
observed dependence upon polarization. The relative increase in the
intensity of the longer-wave region of the scattering spectrum in case of

Fig. 2. The resonance Raman spectrum of the F-centre in NaCI (the Stokes
component) in case of the exciting light of wave-length Я = 5145 Ä

(notations are the same as in Fig. 1).

the longer-wave exciting light in Worlock’s and Porto’s experiments
speaks in favour of assuming the existence of scattering centres whose
absorption bands are on the longer-wave side from excitation.
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V. Conclusion

1. On the Classification of Secondary Radiation
We are not of the opinion that secondary scattering should always be

divided into luminescence and scattering. On the contrary, secondary
scattering represents an entity in the general case, attempts to divide it
may prove to be fruitless because they may be senseless. As is generally
known, a physically reasonable division is possible in case of non-reso-
nance excitation. Then there exists practically no luminescence, but only
scattering. Division is possible and physically reasonable sometimes also
in case of resonance excitation. We have shown above that it is possible
in the impurity centre under certain sufficiently broad conditions.

We have examined the classification of the secondary radiation from
a purely spectral aspect. It is evident that various other approaches
are also possible. One should first of all take into consideration the classi-
fication according to the temporal feature according to the speed
of the radiation damping as compared with the period of light vibrations.
That has been used as one of the two basic features in the classical defi-
nition of luminescence by Vavilov (see, e. g. [4]). It should be mentioned,
however, that the experiment is usually set so that namely the time-aver-
aged radiation spectrum is measured. Therefore the spectral feature (in
those cases when it is possible to use it) must be equivalent to the tempo-
ral criterion.

The classification of the secondary radiation by the impurity centre
according to the time and character of the afterglow in case of excitation
by a pulse of light has recently been elaborated by Purga [34 ].

The secondary radiation excited by a pulse of light represents an inter-
esting and prospective phenomenon for the examination of the lumi-
nescence centre. In particular, the methods of quantum beats belong here.
However, this interesting field of study is not included in the present
survey.

2. Generalization for the Exciting Line of Finite Width

We have examined the secondary radiation by impurity centres in case
of monochromatic excitation. The generalization of the results for the
concrete case of an exciting line with a finite spectral width is express-
ed by the formula

W{Q) = [n{Q) + 1] J d(üoW{ux>, Q), (5.1)

where W(Q) is the secondary radiation spectrum, /г(О) the function
of density of the number of photons, Й and too include directions of wave
vectors and the index of the polarization of photons. In this formula the
term proportional to n(Q) describes stimulated processes (stimulated
Raman scattering and stimulated emission).

We are not going to discuss here the results to which the formula (5.1)
leads in case of non-monochromatic excitation outside resonance. They are
rather trivial. Let us dwell briefly upon the resonance case.

In case of excitation in the phonon wing of the absorption band, the
main part of the secondary radiation represents luminescence independ-
ent of the exciting spectrum. Moreover, the spectrum contains much

7*
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(Ae/yi times) weaker Rayleigh and Raman scattering whose spectrum is
dependent on the position, form and width Ao) 0 of the exciting spectrum.
However, if the exciting line is sufficiently narrow the Raman
scattering spectrum does not depend on Acoo and is determined by the
formulae in section 111.

If the excitation takes place in the region of pure-electronic transition,
the secondary radiation spectrum in the region of )Q (oj o ~r У-j
also represents luminescence (the phonon wing of the latter). The spectrum
near со i о depends, however, essentially on the width of the exciting line.
If Aojo<CAi +Yf the spectrum contains a Rayleigh line of width Acoo and
a pure-electronic line of width yi + y v . The relation of their finite intensi-
ties is equal to y\/y v . If + Yu, the spectrum in the region of 0)10
is a pure-electronic line.

3. Spectral Width of the Photon Packet of Excitation
and Vibrational Relaxation

Let us consider the process of interaction of the impurity centre with
a photon wave packet of finite width Acoo; we pay particular attention
to the mutual relation between the vibrational relaxation resulting from
electronic transition and the width of the photon packet of excitation.

To begin with, let us examine the situation from the point of view of
the classical theory of vibrations. In this case it is important to stress
that the vibrational relaxation starts already from the very beginning of
the interaction between the photon packet and the centre. It is interesting
to examine to what range the vibrational excitation spreads as a result
of relaxation during the interaction between the luminescence centre and
the incident photon packet, i. e. our aim is to obtain an estimate of the
thermal spike of the crystal in the impurity region after the electronic tran-
sition.

Let us study the case where the impurity does not create local or well-
expressed pseudolocal vibrations. Here we may take the speed of sound
v 105 cm sec -1 as the spreading speed of vibrational waves in the
vicinity of the impurity centre. The duration of the interaction between
the photon packet of width Acoo and the luminescence centre is obviously
of the order Acöq -1 . Consequently, the linear dimensions (L) of the ther-
mal spike region during electronic transition is of the order

L ~ 2u/Aco o, (5.2)

where we take v— 5- 105 cm sec -1 for purpose of estimation.

(1) Highly non-monochromatic excitation.

In case of an exciting packet of width Acoo > 10-IeV(.AÄ> 103cm _I )

the time of the interaction with the impurity centre is < 10“ 14 sec. Then
L < 10~ 8 cm. In case of such an excitation for centres with appreciable
Stokes losses, the redundant local thermal spike may constitute several
thousand degrees*. But already ~ 1CM 2 sec after electronic transition the
excitation spreads over the region L ~~ 10~6 cm. As a result, the local thermal
spike decreases to the practically insignificant value of order 10-2 degrees.

* One cannot, of course, speak in the strict sense of the temperature of an impurity
centre during a smaller time interval than the period of vibrations —-10~ 13 sec. As redun-
dant temperature we regard here only the mean redundant (in relation to the!rma\l
equilibriurh) vibrational energy of the impurity centre.
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(2) Sufficiently monochromatic excitation.
If the exciting photon packet has a width Acoo 10~3 eV(A& ~10 cm -1 )

the time of its interaction with the centre is ~ 10-12 sec. Within this time
the vibrational excitation spreads to a distance of order 10~ 6 cm. There-
fore the local thermal spike does not exceed several hundredths of a degree
immediately after electronic transition. It is important to note that in
case of the interaction of a light packet of width Atoo ~ 10~ 3 even
with a centre which has appreciable Stokes losses, the redundant temper-
ature does not rise over some tenths of a degree at any moment (we
regard a time moment as a time interval of 10~ 13 sec). In case of a
more monochromatic excitation, the local thermal spike is still smaller.
Consequently, at Acoo < 10~3 eV the thermal equilibrium of the impurity
centre with regard to vibrations in general is not appreciably violated
(neither during nor after electronic transition).

The given estimates are, of course, but rough estimates. They cannot
be applied in case of pseudolocal or local modes. In that case the share
of redundant energy belonging to the above-mentioned modes as a result
of electronic transition may be one or two (but sometimes even more)
times greater. Nevertheless, even in case of sufficiently monochromatic
excitation (during which Acoo may still be far greater than the radiative
width yi) the thermal equilibrium of vibrations is not violated after electron-
ic transition.

In case of a quantum theoretical examination of the problem, it is
best to base the discussion on the width Ae of the wave packet of energet-
ic states of the impurity centre arising upon excitation with a photon
packet whose width is Acoo. It is natural to assume Ae < Acoo. The suf-
ficiently stationary state of the impurity centre corresponds to the suf-
ficiently monochromatic excitation.

If too falls on the narrow levels of local or clearly expressed pseudo-
local modes, a well localized vibrational excitation arises also in case of
small Acoo. The impurity centre receives considerable vibrational energy,
a strong local thermal spike occurs and ordinary relaxation the grad-
ual departure of the redundant vibrational energy from the centre during
т(т^lo~ 11

— IQ- 12 sec) takes place. Since the theory presented
in 111. l is correct and luminescence forms the main part of the secon-
dary radiation. However, the formula (3.29) in 111.2 for the secondary
radiation supplementary to luminescence is not applicable since the con-
dition (3.28) is violated already in the frequency interval [ AQ' ] = Aco 0.
it can be supposed on the basis of physical considerations that some
part of the radiation (of order of the relation between the time of
the vibrational relaxation and the optical life-time) will correspond to
the emission of the “heated” centre.

If o) 0 falls on the region of the energy spectrum without narrow levels,
the arising state is sure to be matched by corresponding fairly extensive
vibrational packet. In the limit case Acoo = Ae = 0 a stationary vibrational
state arises with a determined set of quantum numbers of crystal vibra-
tions to which corresponds the excitation of the vibration of the whole
crystal and the insignificantly small thermal spike of the impurity centre.
If we turn our attention to the corresponding estimations of the finite
values of Atoo, it can easily be seen that they are reduced to the estimation
obtained above on the basis of the classical theory of vibrations.

Thus, also a quantum theoretical study leads to the conclusion that
in case of excitation with sufficiently monochromatic light (Ato o lO~ 3 eV,
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A 6 ~ 10 cm -1) of an impurity centre which does not contain local or
clearly expressed pseudolocal vibrations, there is no noticeable local
thermal spike whatever. Consequently, there is no considerable relaxation
of redundant vibrational energy either.

Thus, the wide-spread opinion that thermal equilibrium is violated
in the impurity centre as a result of optical absorption is incorrect if
the excitation is sufficiently monochromatic. In the latter case there is
no need, when describing luminescence, for an intermediate process of
vibrational relaxation after the absorption of the photon.

It should be stressed that what has been said above does not depreciate
the role of vibrational relaxation in explaining luminescence. We should
like to point out that the latter must not be considered only as a relaxation
after electronic transition.

After all,, it ils important from the point of view of the secondary
radiation (both for luminescence as well as for scattering) that the local-
ized vibrational excitation arising in some way in the centre could decay
quickly in comparison with the optical life-time. The property of quick
relaxation is then inherent among the properties of the vibrational spectrum
of the impurity crystal. In case of monochromatic excitation, the localized
vibrational packet does not come into being, there is no relaxation, but
the property of “quick relaxation” appears to be essential in this case as
well. As a result of this property, in particular, the criterion (3.9) is ful-
filled, allowing us to divide the secondary radiation into scattering and
luminescence.

4. On the Role of Thermal Quenching

We have not examined here the case of thermally quenched lumi-
nescence centres which is topical from the experimental point of view.
In order to describe such centres it is necessary to disregard the adiabatic
approximation. However, it is evident from general considerations (see,
e. g. [s ]) that if the characteristic period of quenching xq (determined by the
probability of non-radiation transitions) is, on the one hand, essentially
smaller than the life-time of the excited state yi -1

, but on the other hand
far greater than the time of establishment of thermal equilibrium with
regard to vibrations Ae^ 1 :

Ae-1 <C' x q yr l

then the impurity centre will produce resonance Raman scattering, but
the secondary radiation spectrum will lack luminescence.

5. On Scattering on Forbidden Electronic Transitions
We have studied scattering on allowed electronic transitions. In accord-

ance with this, the matrix elements of dipole transitions were presented
as electronic matrix elements in our formulae. The formal generaliza-
tion for the quadrupole, etc. interactions is trivial; it is only necessary
to replace dipole electronic matrix elements by quadrupole ones. Both
these as well as the others is only the parametre of the theory. There-
fore all the conclusions drawn from the vibrational structure of spectra
remain the same as before, but the contribution to the total spectrum of
the forbidden level is far smaller than to that of the allowed level (a4

times where a has the order of the relation of atomic dimensions to the
light wave length). Owing to this last factor, scattering on forbidden
transitions of impurity centres is hardly ever topical. In the non-reso-
nance case scattering on forbidden transitions is insignificant in the
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summary polarizability. Also in the resonance case the intensity of scat-
tering by impurity centres is so small that it becomes extremely difficult
to distinguish it against a background of non-resonance scattering of the
host crystal or resonance luminescence and scattering on allowed transi-
tions of impurities and defects which cannot be checked up.

In particular, it is difficult to obtain information about the impurity
centre Cr 3+ in ruby by means of Raman scattering of frequencies near the
R-line.
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К. REBANE, V. HIZNJAKOV, J. TEHVER
MÕNINGAID KRISTALLI LISANDUSENTRITE SEKUNDAARSE

KIIRGUSE TEOORIA KÜSIMUSI

Artikkel kujutab endast ülevaadet meie töödest lisanditsentrite kombinatsioonhajumis-
teooria alal. Vaadeldakse lisanditega kristalli sekundaarse kiirguse spektrit kahel
juhul; esiteks kui kristallile langeva valguse sagedus on kaugel neeldumisribast, tei-
seks kui ta langeb lisandi neeldumisribasse (resonantsjuht). Mõlemal juhul kasuta-
takse adiabaatilist lähendust.

Töös käsitletakse sekundaarse kiirguse teooria üldküsimusi, nagu sekundaarse kiirguse
jaotamine luminestsentsiks ja hajumiseks ning võnkerelaksatsiooni osa lisanditsentri
sekundaarses kiirguses.

Esitatakse sekundaarse kiirguse spektri intensiivsuse jaotuse valemid, arvestades
võnkumiste anharmoonilisust, tuumade tasakaaluasendite nihkeid ja võre elastsuskonstan-
tide muutust elektronüleminekul. Esimesel juhul on oluline arvesse võtta elektron-maatriks-
elementide sõltuvust võnkekoordinaatidest (s. o. arvestada kõrvalekaldumist Condoni
lähendusest). On saadud parandusliikmed Placzeki lähenduses tuntud valemile, mis võivad
intensiivsuse jaotust oluliselt mõjutada.

Erilist tähelepanu on osutatud resonantsjuhule. Näidatakse, et tavaliselt hajumise
jaoks kasutatav teist järku valem sisaldab ka luminestsentsi. Viimase eraldamiseks on
oluline arvestada vonkeergutuste spektri lõplikku laiust Ae, eeldades, et Ae >Yi (Yi on
ergutatud elektronseisundi loomulik laius). Üksikasjalikumalt vaadeldakse sekundaarse
kiirguse spektri võnkestruktuuri ühe ostsillaatori (on arvestatud elektroni interaktsiooni
ühe (lokaalse) võnkumisega) ja suurte Stokesi kadudega tsentri jaoks. Kui viimase kor-
ral luminestsentsi spekter kujutab endast laia struktuurita riba, siis kombinatsioonhaju-
rnisspekter võib omada selgesti väljendatud kvasijoon-struktuuri.

On antud F-tsentri resonantshajumisspektri arvutuse tulemused KCI ja NaCl kris-
talli jaoks. Arvutatud kõveraid võrreldakse eksperimentaalsetega (Worlocki ja Porto
eksperiment [ 29 ]).

К. РЕБАНЕ, В. ХИЖНЯКОВ, И. ТЕХВЕР

НЕКОТОРЫЕ ВОПРОСЫ ТЕОРИИ ВТОРИЧНОГО СВЕЧЕНИЯ
ПРИМЕСНЫХ ЦЕНТРОВ КРИСТАЛЛА

Статья содержит обзор цикла работ авторов по теории комбинационного рассеяния
света на примесных центрах в кристалле.

Рассматриваются спектры вторичного свечения и их колебательная структура при
возбуждении: 1) вдали от резонанса с полосами поглощения (нерезонансный случай),
2) в полосе примесного поглощения (резонансный случай). Используется приближение
Борна и Оппенгеймера.

Обсуждаются проблема разделения вторичного свечения на люминесценцию и рас-
сеяние и роль колебательной релаксации во вторичном свечении примесных центров.

Получены формулы для распределения интенсивностей в соответствующих спектрах
с учетом энгармонизма колебаний, различия положений равновесия ядер и упругих по-
стоянных решетки в разных электронных состояниях. В резонансном случае исполь-
зовалась методика упорядоченных операторов, а в нерезонансном разложение по
степеням разности колебательных гамильтонианов. В последнем случае весьма сущест-
венен учет зависимости электронного матричного элемента от колебательных координат.
Получены известные формулы комбинационного рассеяния в приближении Плачека и
поправки к ним. Показано, что в резонансном случае модифицированная для кристалла
формула Крамерса-Гейзенберга, используемая обычно лишь для релеевского и ком-
бинационного рассеяний, описывает также и люминесценцию. Для выделения люмине-
сценции из спектра вторичного свечения необходимо учесть конечную ширину Ае спек-
тра колебательных возбуждений, приняв во внимание условие Ae > Yi (yi радиацион-
ная ширина возбужденного электронного уровня). Подробно исследована колебатель-
ная структура спектра резонансного вторичного свечения для модели, учитывающей
взаимодействие электронного перехода с одним (локальным) осциллятором, и для
центра с большими стоксовыми потерями. В последнем случае спектр люминесценции
представляет собой широкую бесструктурную полосу, в то время как резонансное
комбинационное рассеяние может иметь четко выраженную квазилинейчатую структуру.

Приведены результаты конкретного расчета колебательной структуры спектров ре-
зонансного комбинационного рассеяния .F-центров в NaCl и КСI. Рассчитанные кривые
сравниваются с экспериментальными кривыми Ворлока и Порто [29 ].
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