EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. XVI KÖIDE FOOSIKA * MATEMAATIKA. 1967, NR. 2

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ XVI ФИЗИКА * МАТЕМАТИКА, 1967. № 2

https://doi.org/10.3176/phys.math.1967.2.11

А. КИНК, Ю. ИВАНОВ

ГЛУБИНА ПРОНИКНОВЕНИЯ И ГРАНИЦЫ КРУГЛОГО ТУРБУЛЕНТНОГО ДИФФУЗИОННОГО ГАЗОВОГО ФАКЕЛА В ПОПЕРЕЧНОМ ПОТОКЕ

Рациональное и эффективное использование газообразного топлива подразумевает различную организацию процесса его сжигания в соответствии с требованиями технологического процесса, протекающего в каждой конкретной тепловой установке. Для этого необходимо знать закономерности изменения длины факела, его границ, глубины проникновения в поток, светимости и многих других характеристик, определяемых режимными и конструктивными параметрами газогорелочных устройств.

В настоящей работе решается только часть этой сложной задачи — изучение процесса горения газа, вытекающего из сопла круглого начального сечения в свободное пространство и поперечный поток воздуха.

1. Глубина проникновения факела в поток. Существенный интерес с точки зрения конструирования и расчета топочных устройств представляет вопрос о глубине проникновения в поток факела и его границах. Эти характеристики необходимы не только для обобщения закономерностей изучаемых процессов горения газа, но и для расчета и конструирования реальных тепловых аппаратов различных типов. Знание конфигурации пламени позволяет обоснованно выбирать формы и размеры камер сгорания или принимать допустимые размеры факелов в имеющихся камерах. Глубиной проникновения струи в поток называется расстояние от плоскости выхода до оси струи, принявшей направление потока [¹]. Как видно из работы [²], теоретически определенной глубины проникновения не существует. Практически, например, можно считать глубиной проникновения $\bar{x} = \bar{h}$ или $\bar{y} = \bar{h}$, при которой ось факела наклонена к потоку под достаточно малым углом v (например, $10 \div 15^{\circ}$), чтобы факел можно было считать практически принявшим направление этого потока.

Глубину проникновения в вертикальный поток можно определить из уравнения оси факела в параметрической форме

$$\begin{cases} \vec{x} = \vec{s} \cos v_0 \\ \vec{y} = 0.065 n_{2\mu}^{-1} \vec{s}^3 (q_{12} + 2.7 \text{Ar}_{\Phi}) + \vec{s} \sin v_0. \end{cases}$$
(1)

При дифференцировании (1) с учетом v получаем после некоторых преобразований уравнение (2) для глубины проникновения в поток:

$$\bar{h} = 2.25 \left[(4 - \operatorname{tg} v_0) n_{2\mu} \cos^3 v_0 (q_{12} + 2.7 \operatorname{Ar}_{\Phi})^{-1} \right]^{0.5}.$$
(2)

Из уравнения оси факела в горизонтальном поперечном потоке

$$\begin{cases} \bar{y} = \bar{s} \sin v_0 + \bar{0}, 175 \, n_{2u}^{-1} \, \mathrm{Ar}_{\Phi} \, \bar{s}^3 \\ \bar{x} = \bar{s} \cos v_0 + 0,065 \, n_{2u}^{-1} \, q_{12} \bar{s}^3 \end{cases}$$
(3)

получаем аналогичным способом для глубины проникновения в поток зависимость

$$\overline{h} = 2,25n_{2u}^{0,5}[(4\sin\nu_0 - \cos\nu_0)(q_{12} - 11\mathrm{Ar}_{\phi})^{-1}]^{0,5}\sin\nu_0 + + 2\mathrm{Ar}_{\phi}[(4\sin\nu_0 - \cos\nu_0)(q_{12} - 11\mathrm{Ar}_{\phi})^{-1}]^{1,5}.$$
(4)

Рис. 1. Глубина проникновения факела в горизонтальный поперечный поток при различных начальных углах истечения.

На рис. 1 сопоставлены результаты расчета по формуле (4) с экспериментальными данными, полученными в опытах по сжиганию сланцевого газа в потоке. Из рисунка следует, что формула (4) дает удовлетворительное совпадение с экспериментальными данными.

На рис. 2 приведено сравнение расчетной кривой по формуле (2) с экспериментальными данными, полученными в опытах по сжиганию сланцевого газа в открытом пространстве (при отсутствии потока). При этом каждая опытная точка характеризует то же расстояние от плоскости выхода до оси струи, изогнутой только подъемной силой, названное дальнобойностью струи \overline{h} .

Рис. 2. Дальнобойность факела сланцевого газа при различных начальных углах истечения.

2. Границы факела. Для границ факела (передней и задней) используем зависимость расширения факела с учетом конечной его ширины в виде

$$r = 0.5 + cs.$$
 (5)

где c — коэффициент расширения факела, не зависящий от переменной s [2].

Обозначим длину по оси факела *l*, тогда можно написать

$$dl = \sqrt{\bar{x}'^2 + \bar{y}'^2} \, ds. \tag{6}$$

Границы факела в вертикальном поперечном потоке получаем из следующих зависимостей по координатам:

$$\vec{y}_{rp} = \vec{y}_{ocb} \pm \vec{r} \, d\vec{x} / d\vec{l} = \vec{s} \sin v_0 + 0,065n_{2u}^{-1} \vec{s}^3 \, (q_{12} + 2,7Ar_{\Phi}) \pm \\ \pm (0,5 + c\vec{s}) P^{-0.5} \cos v_0 \\ \vec{x}_{rp} = \vec{x}_{ocb} \mp \vec{r} \, d\vec{y} / d\vec{l} = \vec{s} \cos v_0 \mp (0,5 + c\vec{s}) [\sin v_0 + 0,195n_{2u}^{-1} \vec{s}^2 (q_{12} + \\ + 2,7Ar_{\Phi})] P^{-0.5},$$

$$(7)$$

где

$$P = 1 + 0.39n_{2u}^{-1}\bar{s}^2(q_{12} + 2.7\mathrm{Ar}_{\phi})\sin\nu_0 + 0.038n_{2u}^{-2}\bar{s}^4(q_{12} + 2.7\mathrm{Ar}_{\phi})^2;$$

$$c = 0.2.$$

Для горизонтального потока также получаем

$$\vec{y}_{rp} = \vec{s} \sin v_0 + 0.175 n_{2u}^{-1} \operatorname{Ar}_{\Phi} \vec{s^3} \pm (0.5 + c\vec{s}) (\cos v_0 + 0.195 n_{2u}^{-1} q_{12} \vec{s^2}) P^{-0.5}$$

$$\vec{x}_{rp} = \vec{s} \cos v_0 + 0.065 n_{2u}^{-1} q_{12} \vec{s^3} \mp (0.5 + c\vec{s}) (\sin v_0 + 0.525 n_{2u}^{-1} \operatorname{Ar}_{\Phi} \vec{s^2}) P^{-0.5},$$

$$(8)$$

где

 $P = 1 + (\operatorname{Ar}_{\phi} \sin v_0 + 0.39q_{12} \cos v_0) \overline{s}^2 n_{2u}^{-1} + (0.275 \operatorname{Ar}_{\phi}^2 + 0.038q_{12}^2) \overline{s}^4 n_{2u}^{-2};$ c = 0.2.

Рис. 3. Границы факела, развивающегося в открытом пространстве.

На рис. З приведено сравнение границ факела, рассчитанных по формуле (7), с экспериментальными данными, полученными в опытах по сжиганию сланцевого газа в факеле, ориентированном под углом 47° в открытом пространстве (без поперечного потока).

199

Рис. 4. Границы факела, развивающегося в горизонтальном поперечном потоке.

На рис. 4 сопоставлены результаты расчета границ факела по формуле (8) для горизонтального потока с экспериментальными данными, полученными в опытах с горящим факелом, ориентированным под углом 140° (встречный поток $v_0 =$ = 180°) в горизонтальный поток.

Выводы

1. Выведены уравнения (2) и (4) для расчета глубины проникновения в вертикальный и горизонтальный потоки и дальнобойности горящего факела, которые удовлетворительно соответствуют опытным данным.

 Выведены уравнения (7) и
 для расчета границ горящегогазового факела в вертикальном и горизонтальном воздушном потоках, удовлетворительно совпадающие с экспериментальными данными.

ЛИТЕРАТУРА

- Иванов Ю. В., Эффективное сжигание надслойных горючих газов в топках, Таллин, 1959.
- 2. Кинк А., Иванов Ю., Изв. АН ЭССР. Физ. Матем., 16, № 1, 94—99 (1967).

Институт термофизики и электрофизики Академии наук Эстонской ССР Поступила в редакцию. 1/XII 1966

A. KINK, J. IVANOV

ÜMARA TURBULENTSE DIFUSIOONILISE GAASILEEGI ULATUVUS JA ÄÄRJOONED RISTVOOLUSES

Artiklis esitatakse analüütilised lahendid põlevate gaasijugade ulatuse ja äärjoonte kohta ristvooluses. Arvutuse andmed on rahuldavas kooskõlas katsetulemustega.

A. KINK, J. IWANOW

EINDRINGUNG UND GRENZLINIEN EINER RUNDEN TURBULENTEN DIFFUSEN GASFLAMME IM QUERSTROM

Vorliegende Arbeit bringt analytische Lösungen über die Eindringung und die Grenzlinien brennender Gasstrahlen im Querstrom.

Die Berechnungsangaben entsprechen den Experimentresultaten.