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Abstract. Elevator cars suffer from vibrations caused by irregularities in the guide system. These 
irregularities include random imperfections that are responsible for excitation of stochastic nature, 
resulting in the stochastic response of the car. The present paper focuses on this aspect of the car 
vibration. The nonstationary equations for the second-order statistical moments are formulated and 
a model example using the parameters of a typical building elevator installation is presented. It is 
shown that the weaker the correlation of the rail excitation process the higher the variance of the 
dynamic displacement of the car. 

Key words: elevator car, suspension rope, stochastic excitation, vibration, stochastic process, 
variance. 

1. INTRODUCTION

Lift cars are subjected to vibrations caused by various sources of excitation. 
They include lateral excitations due to the irregularities and imperfections of the 
rail guide system resulting from the accumulation of manufacturing errors [1,2]. 
Lateral vibrations of the car are then transmitted to the suspension and 
compensating ropes resulting in adverse dynamic behaviour of the entire elevator 
system. In particular, excessive friction wear affects the integrity of the 
suspension system and reduces the safe service life of the installation [3,4]. 

In general, the nature of guide rail imperfections should be classified as 
nondeterministic. If the unevenness of guide rails is measured, then the record for 
one rail will be different from that for the other. Thus, these imperfections are 
random or stochastic [5]. Consequently, the response of the car–hoist rope system 
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is also a random phenomenon. Thus, the excitation caused by guide rail 
imperfections could be described by a stochastic process so that the methods of 
stochastic dynamics could be employed to seek a description of the dynamic 
behaviour of the lift car–suspension rope system in terms of probabilities. How-
ever, the stochastic analysis is complicated because the dynamic characteristics 
of the suspension ropes are time-variant. Variation of their length results in the 
change of the mass, stiffness, and damping characteristics of the system. 
Consequently, slow variation of the natural frequencies occurs, rendering the 
entire system nonstationary [6,7]. 

This paper is based on the results of a fundamental study to predict the car 
vibrations induced by the stochastic guide rail excitation, focusing on the 
presentation of the necessary theory and analysis of relevant models. The model 
applied in the analysis takes into account the fact that the dynamic characteristics 
of the suspension ropes are of time-variant nature. The guide rail excitation 
mechanism is subsequently discussed and a case study is presented where the 
stochastic response of the lift car is determined and analysed. 

 
 

2. DYNAMIC  MODEL  OF  THE  CAR–SUSPENSION  ROPE  SYSTEM 
 
The configuration of a typical traction elevator installation is shown in Fig. 1. 

The main components of a modern traction elevator system are the driving 
machine with traction sheave, elevator car assembly which carries passengers, 
the counterweight for balancing the weight of the car assembly and a portion of 
the rated load, the suspension means for the car and counterweight which are 
typically steel wire ropes, ropes for compensating tensile forces over the traction 
sheave, and travelling cables supplying the elevator car with electrical energy and 
connecting the car with the control unit. A diverting pulley may also be used to 
deflect the suspension rope to ensure that sufficient distance between the car and 
counterweight centre lines is maintained. 

In order to predict correctly the vibration interaction in a lift installation, the 
car–suspension rope system should be considered using an adequate dynamic 
model. Assuming that the lift drive control system allows realization of an 
accurately prescribed motion of the traction sheave, the car and counterweight 
sides can be considered separately in the dynamic model. A schematic illustration 
of the model is shown in Fig. 2. In this representation the car assembly of mass 
M  is suspended by the hoist rope of mass m  per unit length and the car–guide 
rail interface is represented by a linear spring of the equivalent stiffness 
coefficient .k  The kinematic excitation, caused by unevenness and bending of 
the guide rails, is modelled by the base motion ( ),s l  where ( )l t =  

0
(0) ( )d

t
l V ξ ξ± ∫  represents the distance travelled by the lift at speed .V  The 
signs “+” and “–” correspond to descending and ascending, respectively. The 
parameter ( )L L t=  denotes the time-varying length of the rope.  The variation of  
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Fig. 1. Typical configuration of an elevator installation. 
 

      Fig. 2. Model of a lift car–hoist rope 
      system. 

 
 
the rope length is assumed to be slow and can be considered a function of slow 
time defined as ,tτ ε= where 1ε <<  represents a small parameter given as 

 

0 0

,
V

L
ε

ω

=                                                   (1) 

 

where 0ω  denotes the lowest natural frequency and 0L  is the corresponding 
length of the rope [7]. 
 
 

3. EQUATIONS  OF  MOTION 
 
Noting that the speed of the rope is d d ,L Lε τ=

�  where the overdot indicates 
total differentiation with respect to time ,t  the lateral oscillations ( , )w x t  of the 
rope are described by the following equation: 
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2 2 2( 2 ) ( ) ( ) 0,tt xt xx x t x x xm w L w L w L w w L w Twε ε ε γ ε′ ′ ′′ ′+ + + + + − =         (2) 
 

where x  is spatial coordinate measured as shown in Fig. 2, ( )′ denotes 
differentiation with respect to slow time , ( )tτ  designates partial derivative with 
respect to time , ( )xt  denotes partial derivative with respect to ,x γ  is the 
constant damping parameter, and T  is the mean tension of the rope. The 
boundary condition at the sheave end 0x =  is assumed to be trivial and the 
equation of motion of the car is defined by the boundary condition at ,x L=  
given as 

 

' 2 2 2( 2 ) | ( ) | ( ) | 0.tt xt xx x x L x L x x LM w L w L w L w k w s Twε ε ε
= = =

′ ′ ′′+ + + + − + =       (3) 
 

An approximate solution to Eq. (2) with the boundary condition (3) is sought 
using the expansion 

 

1

 ( , ) ( ; ) ( ),
N

n n
n

w x t x q tΨ τ

=

=∑                                      (4) 

 

where 
 

( ; ) sin ( )n nx xΨ τ β τ=                                           (5) 
 

represent the slowly varying natural vibration modes (eigenfunctions) of the 
rope–car system with uniformly distributed slowly varying mean tension, 
expressed as 1

2
( ) [ ( )] .T M mL gτ τ= +  The slowly varying eigenvalues ( )nβ τ  are 

defined by the frequency equation 
 

2( ) sin ( ) ( ) cos ( ) 0.n n n n

M
k T L T L

m
τ β β τ τ β β τ

 
− + = 

 
                  (6) 

 

It should be noted that the eigenvalues nβ  are related to the natural frequencies 

nω  by ,n n cβ ω=  and 1/ 2( )c T m=  represents the speed of the lateral wave. 
 

By substituting Eq. (4) into the equation of motion (2) and into the boundary 
condition (3), and orthogonalizing the result with respect to the natural modes, 
then neglecting the terms ( )O ε  and 2( ),O ε  the following system of differential 
equations, representing the dynamic behaviour of the car–rope system is 
obtained: 

 

2 ( ( ))
( ) 2 ( ) ( ) ( ) ( ), 1, 2, , ,

( )
r

r r r r r r
r

L
q t q q t ks t r N

m

Ψ τ
ς ω τ ω τ

τ
+ + = =�� � …          (7) 

 

where 2 2

0
( ) ( ; )d ( )

L

r r rm m x x M Lτ Ψ τ Ψ= +∫  and the coefficients rς  represent 
modal  damping  in  the  rope. 
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4. THE  STOCHASTIC  PROBLEM 
 
In the dynamic analysis of road vehicles the random road profile is usually 

idealized as a zero-mean stationary Gaussian process. The same assumption 
about the nature of the rail imperfections is adopted in the following analysis. 

Hence, the rail profile is assumed to be represented as a zero-mean stationary 
Gaussian process ( ),s l  characterized by the autocorrelation function 
 

2 | |( ) ,s sK e α λ
λ σ

−

=                                           (8) 
 

where 2
sσ  represents the variance of the random process ( ),s l  λ =  

2 1 ( ,  1, 2),i il l l Vt i− = =  and α  is the correlation parameter. If the correlation 
between the values 2( )s l  and 1( )s l  of the random process ( )s l  is strong, α  is 
small, and if this correlation is weak, α  is large. 

The corresponding spectral density function of the power is given as 
 

2

2 2
( ) .

( )
s

sS
σ α

ω

π α ω

=

+

                                        (9) 

 

This represents a typical spectral density of many wide-band stationary stochastic 
processes. The stochastic process ( ),s l  characterized by the autocorrelation 
function (8) and the spectral density (9), is governed by Itô’s stochastic 
differential equation 

 

d d 2 d ( ),ss s l W lα σ α= − +                                 (10) 
 

where ( )W l  is the standard Wiener (Brownian motion) process. If the velocity of 
the car d dV l t=  is constant, then we obtain Itô’s stochastic differential equation 
in the following form: 

 

d d 2 d ( ).ss sV t V W tα σ α= − +                                 (11) 
 

The equations governing the state variables ( ),  1, 2, , 2 1,iZ t i N= +…  are then 
as follows: 

 

d ( ) ( ( )) ( )d d ( ).t L t t W tτ= +Z C Z b                                (12) 
 

Assuming that the response of the system is dominated by one mode, the 
expansion (4) may be confined to a single mode. Consequently, the single-mode 
approximation yields 

 

2

0 1 0

( ( ))
2 , [ ] , [0 0 2 ] .

( )

0 0

T Tr
r r r r r s

r

L
k q q s V

m

V

Ψ τ
ω ς ω σ α

τ

α

 
 
 = − − = =
 
 

− 

C Z b�     

(13) 
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Differential equations governing directly the statistical moments of the 
response may be obtained from Itô’s differential rule [8], which has the following 
form for the above problem: 

 

( , ( )) ( , ( ))
d ( , ( )) d ( , ( ))dj

j j

t t t t
t t t c t t t

t Z

Φ Φ
Φ

∂ ∂
= +

∂ ∂
∑

Z Z
Z Z                     

 

2

,

1 ( , ( )) ( , ( ))
d d ( ),

2 k

k

j j
j k jj j

t t t t
b b t b W t

Z Z Z

Φ Φ∂ ∂
+ +

∂ ∂
∑ ∑

Z Z
         (14) 

 

where ( , ( ))jc t tZ  represents the drift term of Eq. (12). 
By assuming that ( , ( )) ( ) ( ),i jt t Z t Z tΦ =Z  and performing the expectation 

operation over the rule (14) and interchanging the order of expectation and 
differentiation with respect to time, the differential equations for the statistical 
moments of the second-order response [ ( ) ( )]ij i jE Z t Z tκ =  are obtained as 

 

d
2{ } ;  , 1, 2, ... ,2 1,

d
ij

im mj s i jC b b i j N
t

κ

κ= + = +                    (15) 

 

where { }s…  denotes the symmetrization operation 
 

2 1

1
( )

2{ } 2 .
2

N
im mj jm mim

im mj s

C C
C

κ κ

κ

+

=

+

=
∑

                      (16) 

 

The variance of the lateral displacement ( , )w x t  is subsequently expressed as 
 

2

1 1

( , ) ( ) ( ) ( ).
N N

w ij i j
i j

x t t x xσ κ Ψ Ψ

= =

=∑∑                            (17) 

 
 

5. SIMULATION  AND  RESULTS 
 
The model described above is used to conduct a simulation study of the 

random response of a car–suspension rope system. The suspension is a 2 : 1 
roping system with six 12 mm ropes of mass per unit length 0.65 kg/mm =  each. 
The simulation involves the ascending and descending of a fully loaded car of 
mass 2000 kg with rated load of 1250 kg (so that 3250 kg)M =  at two different 
speeds. The well height of the installation is 70 m, the car height is 3.2 m and the 
total travel height is 60 m. The damping ratio of 0.4 for the fundamental mode 
( 1)r =  of the suspension rope system is assumed. The stiffness coefficient for the 
car guide shoe–rail interface is 2083 N/mk =  and the maximum roughness 
(deviation from the straight line) of the rail profile is assumed as max 1 mms =  [1]. 
The standard deviation sσ  is subsequently assumed as the root mean square 
(RMS) value RMS max0.707 .s s sσ = ≈  
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The results of the simulation are presented in Figs 3–6. They demonstrate the 
fundamental features of the dynamic response of the lift car–hoist rope system 
subjected to the stochastic guide rail excitation represented as a zero-mean 
stationary Gaussian stochastic process. It is evident that the variance of the car 
response changes during the elevator travel. It appears that the higher the value of 
the coefficient α  (thus, the weaker the correlation of the rail excitation process) 
the higher the variance of the dynamic displacement of the car. During ascent the 
variance is initially increasing rapidly with decreasing length of the suspension 
rope, and it starts decreasing slowly after reaching its maximum value, as 
demonstrated in Figs 3 and 4. This trend is more evident for the higher values of 
α  (the less correlated excitation processes). On the other hand, during descent 
the behaviour of the variance is more regular: it is increasing with increasing 
length of the suspension rope (Figs 5 and 6). The variance of the car response 
depends on the rated speed of the elevator. It can be observed that the higher the 
speed the lower the variance of the car displacement during the entire ascending 
cycle. However, the behaviour during the descent appears to be more diverse: the 
variance is initially higher for lower speeds but from a certain height this trend 
becomes inverted (the higher the speed the larger the variance). 
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Fig. 3. Standard deviation of car displacement ( , )w L tσ  vs. rope length ;L  ascent at the rated 
speed V = 1.5 m/s. 
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Fig. 4. Standard deviation of car displacement ( , )w L tσ  vs. rope length ;L  ascent at the rated 
speed V = 6 m/s. 
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Fig. 5. Standard deviation of car displacement ( , )w L tσ  vs. rope length ;L  descent at the rated 
speed V = 1.5 m/s. 
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Fig. 6. Standard deviation of car displacement ( , )w L tσ  vs. rope length ;L  descent at the rated 
speed V = 6 m/s. 

 
 

6. CONCLUSIONS 
 
Poor ride quality of an elevator car is primarily caused by guide rail 

imperfections. Uneven bent rails, incorrect installation, and rough surfaces cause 
vibration of the car and of the suspension members. The rail excitation 
mechanism can be represented as a stochastic process and used in the dynamic 
model to predict the probabilistic characteristics of the car response. 

The variation of the length of the ropes during the lift motion results in slow 
variation of the mass and stiffness of the entire system. This nonstationary nature 
of the elevator installation must be taken into account in the analysis of its 
stochastic response. The model applied in this paper accommodates this 
fundamental feature, and the results of numerical simulation demonstrate that the 
variance of the car response changes during the elevator travel. In particular, it is 
demonstrated that the weaker the correlation of the rail excitation process the 
higher the variance of the dynamic displacement of the car for the range of 
parameters used in the study. Also, the influence of the speed on the random 
response characteristics is apparent. It is shown that during the ascent the higher 
the speed the lower the variance of the car response. The influence of the speed 
during the descent is less regular. Closer examination of the simulation results 
reveals that the variance is initially higher for lower speeds, but from a certain 
travel height this trend becomes inverted. 
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Tõstukikabiini  dünaamiline  reaktsioon  juhtrööpa  
juhuslikele  mõjutustele 

 
Stefan Kaczmarczyk ja Radoslaw Iwankiewicz 

 
Juhtsüsteemi ebaregulaarsused kutsuvad esile tõstukikabiini võnkumise. Need 

on tingitud konstruktsiooni juhuslikest ebatäpsustest ja nende mõju on stohhas-
tilise iseloomuga. Artiklis on vaadeldud kabiini võnkumisi stohhastilisest aspek-
tist. On formuleeritud statistiliste momentide teist järku võrrandid ja analüüsitud 
tulemusi näidismudelil, mille parameetrid vastavad tüüpilisele ehitustõstukile. On 
näidatud, et mida nõrgem on korrelatsioon juhtrööpa mõjuga, seda suurem on 
kabiini dünaamilise paigutuse dispersioon. 

 
 

 


