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Abstract. We prove quantitative strengthenings of results on polynomials that are weakly
uniformly continuous on the unit ball of a Banach space due to Aron, Lindström, Ruess, and
Ryan (Proc. Amer. Math. Soc., 1999,127, 1119–1125) and to Toma (Aplicações holomorfas e
polinômiosτ -contínuos.1993). Our method is based on the uniform factorization of compact
sets of compact operators.
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1. INTRODUCTION

Let X andY be Banach spaces over the same, either real or complex, fieldK.
We denote byL(X, Y ) the Banach space of all continuous linear operators fromX
to Y , and byK(X, Y ) its subspace of compact operators.

Let Ls(nX) denote the Banach space of continuous symmetricn-linear forms
on X and letP(nX) denote the Banach space of continuousn-homogeneous
polynomials onX. Then for eachP ∈ P(nX) there is a uniqueAP ∈ Ls(nX)
satisfyingP (x) = AP (x, . . . , x) for eachx ∈ X.

Recall thatP ∈ P(nX) is weakly uniformly continuouson the closed unit ball
BX of X if for each ε > 0 there arex∗

1, . . . , x
∗

n ∈ X∗ andδ > 0 such that if
x, y ∈ BX , |x∗

i (x − y)| < δ for i = 1, . . . , n, then |P (x) − P (y)| < ε. Let
Pwu(nX) denote the subspace ofP(nX) consisting of the polynomials that are
weakly uniformly continuous onBX . The corresponding subspace ofLs(nX) is
denoted byLs

wu(nX). Notice thatPwu(nX), with the norm induced fromP(nX),
is a Banach space (see [1], Proposition 2.4).

16

https://doi.org/10.3176/phys.math.2006.1.02

https://doi.org/10.3176/phys.math.2006.1.02


For eachP ∈ P(nX) there is a linear operatorTP : X → Ls(n−1X)
defined by(TP x1)(x2, ..., xn) = AP (x1, x2, ..., xn). Clearly, the correspondence
AP → TP is linear and‖TP ‖ = ‖AP ‖. According to [1], P ∈ Pwu(nX)
if and only if TP ∈ K(X,Ls(n−1X)). Moreover, if P ∈ Pwu(nX), then
TP ∈ K(X,Ls

wu(n−1X)).
In 1999, Aron et al. (see [2], Proposition 5) proved the following result.

Theorem 1 [2]. Let X be a Banach space and letn = 2, 3, . . . . Let Cn be
a relatively compact subset of the spaceK(X,Ls

wu(n−1X)). Then there exists a
compact subsetC of X∗ such that for allS ∈ Cn and allx ∈ X

|(Sx)(x, ..., x)| ≤ sup
x∗∈ C

|x∗(x)|n.

Theorem 1 together with its proof in [2] gives no information about the size of
the setC corresponding to the size ofCn.

The purpose of this article is to prove the following quantitative strengthening
of Theorem 1. We denote|C| = sup{‖x‖ : x ∈ C}, whereC is a bounded set in a
Banach space.

Theorem 2.LetX be a Banach space and letn = 2, 3, . . . . LetCn be a relatively
compact subset of the spaceK(X,Ls

wu(n−1X)). Then there exists a compact
circled subsetC of X∗ with |C| = max{|Cn|, 1} such that for allS ∈ Cn and
all x ∈ X

|(Sx)(x, . . . , x)| ≤ sup
x∗∈ C

|x∗(x)|n.

We use a standard notation. A Banach spaceX will be regarded as a subspace
of its bidualX∗∗ under the canonical embedding. The closure of a setA ⊂ X is
denoted byA. The linear span ofA is denoted by spanA and the circled hull by
circA.

2. PROOF OF THEOREM 2

The proof of Theorem 2 will be based on a factorization result that easily
follows from

Lemma 1. Let X and Y be Banach spaces. For every relatively compact
subsetC of K(X, Y ), there exist a reflexive Banach spaceZ, a linear mapping
Φ : span C → K(X, Z), and a norm one operatorv ∈ K(Z, Y ) such that
S = v ◦ Φ(S) for all S ∈ span C. The mappingΦ restricted toC is a homeo-
morphism and satisfies

‖S‖ ≤ ‖Φ(S)‖ ≤ min{|C|, |C|1/2b1/2‖S‖1/2},

S ∈ C, whereb ≈ 21
2 is an absolute constant.
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Proof. Sincecirc C is a compact subset ofK
(

X, Y
)

, by [3], Theorem 6, there exist
a reflexive Banach spaceZ, a linear mappingΦ : span C → K

(

X, Z
)

, and a norm
one operatorv ∈ K

(

Z, Y
)

such thatS = v ◦Φ(S), for all S ∈ span C. Moreover,
the mappingΦ restricted tocirc C is a homeomorphism satisfying

‖S‖ ≤ ‖Φ(S)‖ ≤ min
{ d

2
,

(d

2

)1/2
b1/2‖S‖1/2

}

,

S ∈ circ C, whered = diam circ C.
Since for allS ∈ C

‖S‖ =
1

2
‖2S‖ =

1

2
‖S − (−S)‖ ≤

d

2
,

we get|C| ≤ d/2. On the other hand, for allS, T ∈ circ C, we haveS = λS0 and
T = µT0 for someS0, T0 ∈ C and for someλ, µ ∈ K with |λ|, |µ| ≤ 1. Hence

‖S − T‖ ≤ ‖S‖ + ‖T‖ = ‖λS0‖ + ‖µT0‖

= |λ|‖S0‖ + |µ|‖T0‖ ≤ ‖S0‖ + ‖T0‖ ≤ |C| + |C|,

S, T ∈ C. Therefored/2 ≤ |C|. Consequently,d/2 = |C|. �

The proof of Theorem 2 follows the idea of the proof of Proposition 5 in [2].

Proof of Theorem 2. We proceed by induction onn = 2, 3, . . . . Let C2 be a
relatively compact subset of the spaceK(X,Ls

wu(1X)) = K(X, X∗). By Lemma 1
there exist a Banach spaceZ, a linear mappingΦ : span C2 → K(X, Z), and a
norm one operatorv ∈ K(Z, X∗) such thatS = v ◦ Φ(S) for all S ∈ span C2.
Then for allS ∈ C2 and allx ∈ X,

|(Sx)(x)| = |v(Φ(S)x)(x)| = |(v∗x)(Φ(S)x)|,

hence
|(Sx)(x)| ≤ ‖v∗x‖‖Φ(S)x‖.

Put
CΦ = {(Φ(S))∗(z∗) : S ∈ C2, z∗ ∈ BZ∗} ⊂ X∗.

Then CΦ is circled. To prove that it is also compact, let us fix an arbitrary
ε > 0. Let {Φ(S1), . . . ,Φ(Sn)}, Sk ∈ C2, be an ε-net in the relatively
compact set{Φ(S) : S ∈ C2}. SinceΦ(Sk) is a compact operator,(Φ(Sk))

∗

is also a compact operator and therefore(Φ(Sk))
∗(BZ∗) is a relatively compact

set. Since
⋃n

k=1(Φ(Sk))
∗(BZ∗) is clearly a relatively compactε-net in the set

{(Φ(S))∗(z∗) : S ∈ C2, z
∗ ∈ BZ∗}, this set is relatively compact. Hence,CΦ is a

compact set.
Moreover, we get

‖Φ(S)x‖ = sup
z∗∈BZ∗

|z∗(Φ(S)x)| = sup
z∗∈BZ∗

|((Φ(S))∗(z∗))(x)| ≤ sup
x∗∈CΦ

|x∗(x)|

for all S ∈ C2 and allx ∈ X.
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Denoting
Cv = v(BZ) ⊂ X∗,

we have thatCv is circled and compact, and

‖v∗x‖ = sup
z∈BZ

|(v∗x)(z)| = sup
z∈BZ

|(vz)(x)| ≤ sup
x∗∈Cv

|x∗(x)|

for all x ∈ X.
Finally, letC = CΦ ∪ Cv. ThenC is circled and compact, and

|(Sx)(x)| ≤ ‖v∗x‖‖Φ(S)x‖ ≤ sup
x∗∈Cv

|x∗(x)| sup
x∗∈CΦ

|x∗(x)| ≤ sup
x∗∈C

|x∗(x)|2

for all S ∈ C2 and allx ∈ X.
By the definition of|C|,

|C| = sup
x∗∈C

‖x∗‖ = sup
x∗∈CΦ∪Cv

‖x∗‖ = max { sup
x∗∈CΦ

‖x∗‖, sup
x∗∈Cv

‖x∗‖}

= max{|CΦ|, |Cv|}.

Let us first estimate

|CΦ| = sup
x∗∈CΦ

‖x∗‖ = sup
S∈C2

z∗∈BZ∗

‖(Φ(S))∗(z∗)‖ = sup
S∈C2

‖(Φ(S))∗‖ = sup
S∈C2

‖Φ(S)‖.

Using the conclusion of Lemma 1, we have for allS ∈ C2,

‖S‖ ≤ ‖Φ(S)‖ ≤ sup
S∈C2

‖Φ(S)‖ = |CΦ|

and
‖Φ(S)‖ ≤ |C2|.

Hence
|C2| ≤ |CΦ| ≤ |C2|,

meaning that|CΦ| = |C2|. Let us now compute

|Cv| = sup
x∗∈Cv

‖x∗‖ = sup
z∈BZ

‖vz‖ = ‖v‖ = 1.

Consequently,

|C| = max {|CΦ|, |Cv|} = max {|C2|, 1}.

Assume that the result is true forn − 1, wheren ∈ {3, 4, . . .}. Let Cn be a
relatively compact subset of the spaceK(X,Ls

wu(n−1X)). By Lemma 1 there exist
a reflexive Banach spaceZ, a linear mappingΦ : span Cn → K(X, Z), and a norm
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one operatorv ∈ K(Z,Ls
wu(n−1X)) such thatS = v ◦ Φ(S) for all S ∈ span Cn.

Then for allS ∈ Cn and for allx ∈ X, considering(x, . . . , x) ∈ (Ls
wu(n−1X))∗

(note that ifA ∈ Ls
wu(n−1X), then〈(x, . . . , x), A〉 = A(x, . . . , x)),

|(Sx)(x, . . . , x)| = |v(Φ(S)x)(x, . . . , x)| = |(v∗(x, . . . , x))(Φ(S)x)|,

hence
|(Sx)(x, . . . , x)| ≤ ‖v∗(x, . . . , x)‖‖Φ(S)x‖.

Put, as above,

CΦ = {(Φ(S))∗(z∗) : S ∈ Cn, z∗ ∈ BZ∗} ⊂ X∗.

ThenCΦ is circled and compact, and we get

‖Φ(S)x‖ = sup
z∗∈BZ∗

|z∗(Φ(S)x)| = sup
z∗∈BZ∗

|((Φ(S))∗(z∗))(x)| ≤ sup
x∗∈CΦ

|x∗(x)|

for all S ∈ Cn and for allx ∈ X. Recall thatv(BZ) is a relatively compact subset
of Ls

wu(n−1X). Hence

Cn−1 := {TP : P ∈ Pwu(n−1X), AP ∈ v(BZ)} ⊂ L(X,Ls(n−2X))

is also relatively compact. According to [1], Cn−1 ⊂ K(X,Ls(n−2X)). Therefore,
by the induction hypothesis, there is a circled and compact subsetCv ⊂ X∗ with
|Cv| = max{|Cn−1|, 1} such that

|(TP x)(x, . . . , x)| ≤ sup
x∗∈ Cv

|x∗(x)|n−1

for all P ∈ Pwu(n−1X) with AP ∈ v(BZ). Sincev(BZ) ⊂ Ls
wu(n−1X), for

all z ∈ BZ there existsP ∈ Pwu(n−1X) such thatvz = AP . By definition,
AP (x, x, . . . , x) = (TP x)(x, . . . , x), x ∈ X. Hence, for allz ∈ BZ and all
x ∈ X,

|(vz)(x, . . . , x)| = |AP (x, x, . . . , x)| = |(TP x)(x, . . . , x)| ≤ sup
x∗∈ Cv

|x∗(x)|n−1.

Therefore

‖v∗(x, . . . , x)‖ = sup
z∈BZ

|(v∗(x, . . . , x))(z)|

= sup
z∈BZ

|(vz)(x, . . . , x)| ≤ sup
x∗∈Cv

|x∗(x)|n−1.

Finally, letC = CΦ ∪ Cv. ThenC is circled and compact, and

|(Sx)(x, . . . , x)| ≤ ‖v∗(x, . . . , x)‖‖Φ(S)x‖

≤ sup
x∗∈Cv

|x∗(x)|n−1 sup
x∗∈CΦ

|x∗(x)| ≤ sup
x∗∈C

|x∗(x)|n

for all S ∈ Cn and allx ∈ X.
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To complete the proof, let us show that|C| = max {|Cn|, 1}. Similarly to the
casen = 2, we have

|C| = sup
x∗∈C

‖x∗‖ = sup
x∗∈CΦ∪Cv

‖x∗‖ = max { sup
x∗∈CΦ

‖x∗‖, sup
x∗∈Cv

‖x∗‖}

= max{|CΦ|, |Cv|}

and

|CΦ| = sup
x∗∈CΦ

‖x∗‖ = sup
S∈Cn

z∗∈BZ∗

‖(Φ(S))∗(z∗)‖ = sup
S∈Cn

‖(Φ(S))∗‖ = sup
S∈Cn

‖Φ(S)‖.

Using the conclusion of Lemma 1, we have for allS ∈ Cn,

‖S‖ ≤ ‖Φ(S)‖ ≤ |CΦ|

and
‖Φ(S)‖ ≤ |Cn|.

Hence
|Cn| ≤ |CΦ| ≤ |Cn|,

meaning that|CΦ| = |Cn|. Let us show that|Cv| = 1. Recall that|Cv| =
max{|Cn−1|, 1}. Since

|Cn−1| = sup
TP∈Cn−1

‖TP ‖ = sup
AP∈v(BZ)

‖AP ‖ ≤ sup
z∈BZ

‖vz‖ = ‖v‖ = 1,

we clearly have|Cv| = 1. �

3. APPLICATION TO POLYNOMIALS

The next theorem is proved by Toma [4] (an alternative proof is given in [2]).

Theorem 3 [4]. Let X be a Banach space, let n = 2, 3, . . ., and letP ∈ P(nX).
The polynomialP ∈ Pwu(nX) if and only if there exists a compact subsetC of X∗

such that for allx ∈ X
|P (x)| ≤ sup

x∗∈ C
|x∗(x)|n.

The following is a quantitative version of Theorem 3.

Corollary 1. LetX be a Banach space, let n = 2, 3, . . ., and letP ∈ P(nX). The
following are equivalent:
(a)P ∈ Pwu(nX),
(b) there exists a compact subsetC of X∗ such that for allx ∈ X

|P (x)| ≤ sup
x∗∈ C

|x∗(x)|n,
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(c) there exists a compact circled subsetC of X∗ with

max{‖P‖, 1} ≤ |C| ≤ max

{

nn

n!
‖P‖, 1

}

such that for allx ∈ X
|P (x)| ≤ sup

x∗∈ C
|x∗(x)|n.

Proof. (a)⇒ (c). Let P ∈ Pwu(nX), then{TP } ⊂ K(X,Ls
wu(n−1X)). Applying

Theorem 2 toCn = {TP }, we get that there is a compact circled subsetC of X∗

with |C| = max{‖Tp‖, 1} such that for allx ∈ X

|P (x)| = |AP (x, x, . . . , x)| = |(TP x)(x, . . . , x)| ≤ sup
x∗∈ C

|x∗(x)|n.

Applying the polarization formula (see, for example, [5], Theorem 1.7), we have

‖P‖ ≤ ‖TP ‖ ≤
nn

n!
‖P‖.

Hencemax{‖P‖, 1} ≤ |C| ≤ max{nn

n! ‖P‖, 1}.
(c) ⇒ (b). Obvious.
(b) ⇒ (a). Follows immediately from Theorem 3. �
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Banachi ruumi ühikkeral nõrgalt ühtlaselt
pidevatest polünoomidest

Kristel Mikkor

On tõestatud Aroni-Lindströmi-Ruessi-Ryani[2] ja Toma [4] teoreemide
kvantitatiivsed versioonid Banachi ruumi ühikkeral nõrgalt ühtlaselt pidevate
polünoomide kohta. Tõestusmeetod tugineb kompaktsete operaatorite kompaktsete
hulkade ühtlasele faktorisatsioonile.
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