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Abstract. The classK2 is a variety of distributive Ockham algebras that includes the varieties
of Kleene and Stone algebras. Polynomial functions of algebrasA ∈ K2 were first studied
by Haviar (Acta Math. Univ. Comenianae, 1993,2, 179–190). After that (local) polynomial
functions were described for all proper subvarieties ofK2. In this paper we characterize unary
(local) polynomial functions ofK2-algebras.
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1. INTRODUCTION

LetA be a universal algebra. A functionf : An → A is calledcompatible(or
congruence preserving), if, for any congruenceρ of A, (ai, bi) ∈ ρ, i = 1, . . . , n,
implies

(f(a1, . . . , an), f(b1, . . . , bn)) ∈ ρ.

The functionf is said to be alocal polynomial functionif it can be interpolated by
a polynomial on every finite subset ofAn.

Our main goal is to study the clone of compatible functions on a given algebra.
We say that an algebra isaffine completeif the clone of compatible functions
coincides with the clone of polynomial functions.

Originally, the problem of characterization of affine complete algebras was
formulated in [1]. For various varieties of algebras affine completeness has already
been studied. The affine completeness for Stone and Kleene algebras has been
investigated in [2−4]. These results, together with many other results on affine
completeness, can be found also in a recent monograph [5]. The generalization of
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these results to the varietyK ∨ S generated by all Stone and Kleene algebras is
presented in [6]. The results of [6] show that local polynomials of algebras inK∨S
can be characterized fairly similarly to those of Kleene and Stone algebras.The
varietyK2 containsK ∨ S as a unique maximal subvariety. Polynomial functions
of algebras in the varietyK2 were first studied in [7]. In the present paper we show
that inK2 the theory of local polynomial functions is more complicated: there exist
functions which preserve congruences and the uncertainty order butare not local
polynomials. Recently it was proved in [8] that in the varietyK ∨ S the clone
of congruence and the uncertainty order preserving functions of a given algebra is
generated by polynomial functions together with certain special unary functions.
We conjecture that the same statement is valid forK2. This motivates to study
first unary local polynomials. Our main result is Theorem 4.3 saying that unary
local polynomial functionsf(x) of any algebraA ∈ K2 can be characterized by
three properties: (1) they must preserve congruences, (2) they mustpreserve the
uncertainty order, and (3) the function(f(x)∨ f(x)∗)∧ x∗∗ has to satisfy a certain
very special interpolation property on the subsetA∨ ⊆ A. We hope that this result
will help us to describe (locally) affine complete members of the varietyK2.

2. PRELIMINARIES

A distributive Ockham algebrais an algebra 〈L;∨,∧,∗ , 0, 1〉, where
〈L;∨,∧, 0, 1〉 is a bounded distributive lattice and∗ is a unary operation such that
0∗ = 1, 1∗ = 0, and for allx, y ∈ L,

(x ∧ y)∗ = x∗ ∨ y∗,

(x ∨ y)∗ = x∗ ∧ y∗.

We refer to [9] as the basic source of information about distributive Ockham
algebras. The varietyK2 is the subvariety of the variety of all distributive Ockham
algebras defined by the following additional identities:

x ≤ x∗∗,

x ∧ x∗ = x∗∗ ∧ x∗,

x ∧ x∗ ≤ y ∨ y∗. (1)

Equivalently,K2 is the variety generated by the four-element chainN4 =
{0, a, b, 1}, where0 < a < b < 1 and0∗ = 1, a∗ = a, b∗ = 1∗ = 0. It is known
thatN4 and its subalgebrasS3 = {0, b, 1}, K3 = {0, a, 1}, andB2 = {0, 1} are
the only subdirectly irreducible algebras inK2. Thus, given an algebraA ∈ K2,
we may write

A ≤s.d.

∏

i∈I

Ai ,

whereAi ∈ {B2,K3,S3,N4}. Further, we will often say thatA is aK2-algebra.
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The largest proper subvariety ofK2 is the varietyK ∨ S. The varietyK ∨ S is
characterized inK2 by the identityx ∨ y∗ ∨ y∗∗ ≥ x∗∗.

The next lemma will be crucial in the proofs of our main results because it
reduces all problems to Kleene algebras and to functions with range contained in
A∨ defined below.

Lemma 2.1. Every algebra inK2 satisfies the identity

x = x∗∗ ∧ (x ∨ x∗) . (2)

Proof. It is easy to check that the identity holds inN4.

For every algebraA ∈ K2 we denote

A∨ = {x ∨ x∗ | x ∈ A} = {x ∈ A | x ≥ x∗} .

It is not difficult to see thatA∨ is a filter of the latticeA.
An elementu ∈ A is called a Kleene elementif u∗∗ = u. The set of all

Kleene elements ofA is a subuniverse ofA; in fact it is a Kleene algebra,
which we will denote byA∗∗. It is easy to observe that the operation∗∗ is an
idempotent endomorphism ofA with rangeA∗∗. We shall call the kernelΦ of this
homomorphism theGlivenko congruenceof A.

Given an elementu ∈ A, we denote by[u]Φ theΦ-block containingu. Note
that [u]Φ is a distributive lattice with the greatest elementu∗∗ which obviously is a
Kleene element.

Throughout the paper we assume thatA ∈ K2 and there is an embedding

A ≤ N4
I , (3)

for some index setI. We denote byπi : A → Ai the projection map to theith
subdirect factor ofA. We write the elements ofA in the formx = (xi)i∈I . It is not
difficult to see that iff : An → A is a compatible function ofA andx,y ∈ An,
thenxi = yi impliesf(x)i = f(y)i. This means that every compatible function
f of A determines the coordinate functionsfi of πi(A) such thatfi(xi) = f(x)i

for all x ∈ An. Obviously, the family(fi)i∈I completely determinesf , so we may
identify f with this family.

Theuncertainty orderof theK2-algebraA is a binary relationv, defined by

x v y ⇔ x ∧ s ≤ y ≤ x ∨ s∗ for some s ∈ A∨.

This relation generalizes one which for Kleene algebras was introduced by
Haviar et al. in [2]. It is always a partial order relation onK2-algebras. In the
algebraN4 we have0 v a and1 v b v a.

We say that functionf on an algebraA ∈ K2 is uncertainty preservingif it
preserves the uncertainty order relation ofA.

The next two lemmas list some properties of the uncertainty order relation.
Originally similar results were proved and used in [2] for Kleene algebras, but one
can easily generalize them to algebras from the varietyK2.
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Lemma 2.2. The restriction of the uncertainty order toA∨ coincides with the
reverse order relation of the latticeA∨.

Lemma 2.3. If A ≤s.d.

∏

i∈I
Ai andx, y ∈ A, thenx v y iff xi v yi for every

i ∈ I.

For distributive lattices we have the following description of local polynomial
functions.

Theorem 2.4. ([10]) A function on a distributive lattice is a local polynomial
function iff it is compatible and order preserving.

The next theorem gives a description of local polynomial functions for algebras
in the varietyK ∨ S.

Theorem 2.5. ([6]) A function onA ∈ K ∨ S is a local polynomial function iff it
preserves the congruences ofA and the uncertainty order.

Remark 2.6. Let A ∈ K ∨ S and assume thatA ≤s.d.

∏

i∈I
Ai. Using Lemma

2.3, we can reformulate Theorem 2.5 as follows.
A function onA is a local polynomial function iff it is compatible and for every

i ∈ I the coordinate functionfi is a polynomial function ofAi.
The following example shows that in general this does not hold for algebras

in K2.

Example 1. Consider algebrasA1 andA2, A2 ≤ A1 ≤ N4 × S3 as shown in
Fig. 1 and define a unary polynomial functionp onA1

p(x) = ((1, b) ∨ x) ∧ x∗∗.

It is easy to see thatA2 is closed with respect top. Since the variety of distributive
Ockham algebras has the congruence extension property, the restriction f = p|A2

is a compatible function ofA2.
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Fig. 1.AlgebrasA1 andA2.
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Note that the coordinate functionsf1 andf2 of f are polynomial functions,
namely f1(x) = x∗∗ and f2(x) = x. But, using the canonical form (6) of
polynomials inK2, one can show thatf is not a polynomial function ofA2.

Our main motivation to study unary polynomial functions inK2 is the following
recent result.

Theorem 2.7. ([8]) Every compatible, uncertainty preserving function on
A ∈ K ∨ S is a composition of polynomial functions and unary compatible,
uncertainty preserving functions.

3. COMPATIBLE, UNCERTAINTY PRESERVING FUNCTIONS

In this section we present some properties of compatible, uncertainty preserving
functions.

Lemma 3.1. ( [9]) Any lattice congruenceψ ∈ Conlat(A) such thatψ ≤ Φ is a
congruence ofA.

Corollary 3.1.1. Let f be a compatible function on an algebraA ∈ K2. Assume
that for someu ∈ A the functionf preserves[u]Φ. Then the restrictionf |[u]Φ is a
compatible function of the lattice[u]Φ.

Proof. If ρ is a congruence of the lattice[u]Φ, then it can be extended to some
congruenceσ of the latticeA (since the variety of distributive lattices has the
congruence extension property). Now Lemma 3.1 implies thatτ = σ ∧ Φ is a
congruence of the algebraA, and it is easy to see thatτ |[u]Φ = ρ.

Let f be a compatible function on an algebraA ∈ K2. By (2) we have

f(x) = f(x)∗∗ ∧ (f(x) ∨ f(x)∗) .

The next lemma shows that the functionf(x)∗∗ can be considered as a compatible
function of the Kleene algebraA∗∗.

Lemma 3.2. Let f be a compatible, uncertainty preserving function onA. Then
the restrictiong = f∗∗|A∗∗ is a compatible function of the Kleene algebraA∗∗

which preserves the uncertainty order relation ofA∗∗.

Proof. SinceA∗∗ is a subalgebra ofA and the variety of distributive Ockham
algebras has the congruence extension property, any congruence of A∗∗ can be
extended to a congruence ofA. Thus, sincef∗∗ preservesA∗∗, we have thatg is a
compatible function ofA∗∗.

SinceA∗∗ is a subalgebra ofA, it follows from Lemma 2.3 that the uncertainty
order onA∗∗ is the restriction of the uncertainty order onA. Thusg preserves the
uncertainty order relation ofA∗∗.
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4. UNARY LOCAL POLYNOMIAL FUNCTIONS

In this section we will describe unary local polynomials of algebrasA ∈ K2.

Lemma 4.1. A unary compatible, uncertainty preserving functionf onA is a local
polynomial function iff the functionf ∨ f∗ can be interpolated by a polynomial
function on any finite subset ofA∨.

Proof. Obviously we only have to prove the sufficiency. By (2) we know that

f(x) = f(x)∗∗ ∧ (f(x) ∨ f(x)∗) .

Since f preserves the Glivenko congruence, we have the identityf(x)∗∗ =
f(x∗∗)∗∗. By Lemma 3.2 and Theorem 2.5 this implies thatf(x)∗∗ is a local
polynomial function ofA. Hence it remains to prove thatg(x) = f(x)∨f(x)∗ is a
local polynomial function, too. LetF be a finite subset ofA andp be a polynomial
function ofA which coincides withg onF∨ = {x ∨ x∗ | x ∈ F}. We shall show
that theng coincides with the polynomialq(x) = (p(x)∨x∗)∧ (g(0)∨x∗∗) onF .
In view of the embedding (3) this means that we must prove the equality

gi(xi) = (pi(xi) ∨ x
∗

i ) ∧ (gi(0) ∨ x∗∗i ) , (4)

for every i ∈ I andx ∈ F . It is easy to see that ifxi = 0, then (4) holds.
Assume thatxi ∈ {a, b, 1}. Thenxi = xi ∨ x∗

i
and sincex ∨ x∗ ∈ F∨, we

havegi(xi) = pi(xi). The identity (1) impliespi(xi) ≥ x∗
i
. Thus, in order to

prove (4), we only have to show thatgi(xi) ≤ gi(0) ∨ x∗∗
i

. The latter is obvious
if xi ∈ {b, 1}. If xi = a, thenxi = xi ∧ x∗

i
. Since0 v a, Lemma 2.3 implies

0 v x ∧ x∗. Sinceg preserves the uncertainty order, we haveg(0) ≥ g(x ∧ x∗).
Thusgi(xi) ≤ gi(0) ∨ x∗∗

i
.

Lemma 4.2. Let g be a unary compatible, uncertainty preserving function onA
such that the range ofg is contained inA∨. Then the following are equivalent:

(i) g is a local polynomial function;
(ii) h(x) = g(x) ∧ x∗∗ is a local polynomial function;
(iii) h(x) can be interpolated by a polynomial on any finite subset of the set

{x ∈ A∨ |x ≤ g(1)}.

Proof. The implications(i) ⇒ (ii) ⇒ (iii) are obvious. In order to prove that (iii)
implies (i), we first prove the equality

g(x) = g(u) ∨ h(x) , (5)

for anyu ∈ A∨ and everyx ≥ u. In view of the embedding (3) this is equivalent
to gi(xi) = gi(ui)∨ (gi(xi)∧ x

∗∗

i
) for everyi ∈ I. If xi ∈ {b, 1}, then the latter is

obvious. Assume thatxi = a. Thenui = xi andgi(xi) = gi(ui).
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Now we show thatg(x) = g(x ∧ g(1)) for everyx ∈ A∨. We again use the
embedding (3). Obviouslygi(xi) = gi(xi ∧ gi(1)) holds if gi(1) ∈ {a, 1}, or
gi(1) = b andxi ∈ {a, b}. It remains to prove thatgi(1) = b impliesgi(b) = b.
Sinceg preserves the uncertainty order,gi(1) = b implies gi(b) ∈ {a, b} but
gi(b) = a is impossible becauseg preserves the Glivenko congruence.

Let F be a finite subset ofA∨ andF1 = {x ∧ g(1) |x ∈ F}. By condition
(iii) there exists a polynomialp(x) that interpolatesh at F1. Then obviously the
polynomialp(x ∧ g(1)) interpolatesh atF . By formula (5), ifu =

∧

{x |x ∈ F},
theng(x) = g(u) ∨ h(x) holds for everyx ∈ F . This yields that the polynomial
g(u)∨ p(x∧ g(1)) interpolatesg atF . We have proved that if condition (iii) holds,
then the functiong can be interpolated by polynomials at all finite subsets ofA∨.
By Lemma 4.1 this proves the implication(iii) ⇒ (i).

Now we are ready to prove our main result.

Theorem 4.3.A unary functionf on aK2-algebraA is a local polynomial function
iff it satisfies the following conditions:

(i) f preserves congruences;
(ii) f preserves the uncertainty order;
(iii) the functionh(x) = (f(x) ∨ f(x)∗) ∧ x∗∗ can be interpolated by a

polynomial on every two-element set{u, v} ⊆ A∨ such thatu∗∗ < v ≤ h(1)∗∗;
moreover, there existsw ∈ A such that

h(u) = ((w ∨ u) ∧ h(1)) ∧ u∗∗,

h(v) = ((w ∨ v) ∧ h(1)) ∧ v∗∗.

Proof. Let f be a local polynomial function onA. Clearly, f preserves the
congruences and the uncertainty order ofA. Sincef is a local polynomial function,
alsoh(x) is a local polynomial function. Thus there exist constantski ∈ A such
thath(x) coincides with the polynomial

p(x) = (k1 ∨ x) ∧ (k2 ∨ x
∗) ∧ (k3 ∨ x

∗∗)

∧ (k4 ∨ x ∨ x∗) ∧ (k5 ∨ x
∗ ∨ x∗∗) ∧ k6 (6)

on the set{u, v, 1}. Choosingx = 1, we getk2 ∧ k6 = h(1). However, since
h(A∨) ⊆ ↓h(1) = {y ∈ A | y ≤ h(1)}, we may replacep(x) by the polynomial
p(x) ∧ h(1) and then it is easy to see that we may takek2 = k6 = h(1). Similarly,
sinceh(x) ≤ x∗∗ for everyx ∈ A∨, we may replacep(x) by the polynomial
p(x) ∧ x∗∗ which means that we are free to takek3 = 0. Since{u, v, 1} ⊂ A∨, we
may also assume thatk4 = k5 = 1. Thus we have

p(x) = (k1 ∨ x) ∧ x
∗∗ ∧ h(1) .

Hence the condition (iii) holds withw = k1.
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Now suppose thatf is a unary compatible, uncertainty preserving function on
A which satisfies condition (iii) of the theorem. We have to prove thatf is a
local polynomial function. By Lemmas 4.1 and 4.2 we only need to prove that the
functionh(x) can be interpolated by a polynomial function on every finite subset
F ⊆ A∨ ∩ ↓h(1). SinceA admits the majority term(x∧ y)∨ (y ∧ z)∨ (z ∧ x), it
follows from the well-known Baker–Pixley Lemma (see [5], Theorem 3.2.2) that it
is sufficient to consider only two-element setsF .

First consider the caseF = {u, v}, whereu < v ≤ h(1). Let z = v ∨ u∗∗.
Thenz ≤ h(1)∗∗ and by condition (iii) there existsw ∈ A such that

h(u) = ((w ∨ u) ∧ h(1)) ∧ u∗∗ and h(z) = ((w ∨ z) ∧ h(1)) ∧ z∗∗.

Using the embedding (3), we note thatvi ∈ {ui, zi}, for everyi ∈ I. Thus we also
have

h(v) = ((w ∨ v) ∧ h(1)) ∧ v∗∗.

To conclude the proof, we consider the general case, withu andv possibly
incomparable. Letz = u ∧ v. By the above proof, there exist polynomialsp1 and
p2 such thatp1 meetsh at{z, u} andp2 at{z, v}. Now we define

p(x) = p1(x ∧ u) ∨ p2(x ∧ v).

Sinceh preserves the uncertainty order, it is easy to check thatp agrees withh at
{u, v}.

We must say that we are not completely satisfied with Theorem 4.3. We hoped
that local polynomial functions ofK2-algebras could be characterized using some
preservation properties, that is, there were one or more relations defined uniformly
for all K2-algebras such thatf was a local polynomial function iff it preserved the
congruences and these relations. Example 1 constructed in Section 2 shows that
if such relations exist, they cannot be defined first for subdirectly irreducibles and
then extended componentwise to arbitrary algebras. It is still possible that such
relation(s) exist, but so far we do not know how to construct them.

In some sense the characterization given by Theorem 4.3 is not much better
than what we already know by Lemma 4.2. The advantage of Theorem 4.3 is
that it reduces general polynomial interpolation to the interpolation on very special
subsets by very special polynomials. That this is of some use is illustrated by the
following example.

Example 2. An algebraA ∈ K2 \ K ∨ S such that every unary compatible,
uncertainty preserving function ofA is a local polynomial.

Let A1 = 〈A1;∨,∧,
◦ , 0, 1〉 be a non-Boolean Stone algebra such that[0]Φ =

{0} and [1]Φ = A∨

1 are the only blocks of the Glivenko congruence ofA1. (For
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example, we may takeA1 = S3.) Let A2 = 〈A2;∨,∧,
• , 0, 1〉 be an arbitrary

Kleene algebra. PutA = A1 ∪A2 with 0A1
< x < y for anyx ∈ A2 andy ∈ A∨

1 .
Clearly,A is a bounded distributive lattice with0 = 0A1

, 1 = 1A1
. Define a unary

operation∗ onA by

x∗ =

{

x◦ if x ∈ A1,

x• if x ∈ A2 .

Then straightforward calculations show thatA = 〈A;∨,∧,∗ ,0,1〉 belongs toK2.
Now, if we take anyx ∈ A∨

2 andy ∈ A1 \ {0A1
, 1A1

}, thenx∗∗ = x ≤ y < y∗∗ =
1. By [6], Lemma 1.2, this implies thatA 6∈ K ∨ S.

Let f be a unary compatible, uncertainty preserving function ofA. Consider
h(x) = (f(x) ∨ f(x)∗) ∧ x∗∗. Takeu, v ∈ A∨ such thatu∗∗ < v ≤ h(1)∗∗. We
are going to show that the polynomial

p(x) = (h(v) ∨ x) ∧ h(1) ∧ x∗∗

coincides withh on the set{u, v}. Sinceu∗∗ = 1 if u ∈ A1, we may assume
u ∈ A∨

2 . Henceu∗∗ = u, implying p(u) = h(1) ∧ u, and we have to proveh(u) =
h(1) ∧ u. In view of the embedding (3) this is equivalent tohi(ui) = hi(1) ∧ ui,
for every i ∈ I. The latter holds obviously ifui = 1. Sinceu is a Kleene
element, the only remaining possibility isui = a. By definition of h we have
hi(a) ≤ a∗∗ = a. On the other hand, sinceh(A) ⊆ A∨, we also havehi(a) ≥ a.
Hence,hi(a) = a = hi(1) ∧ a.

We proved the equalityh(u) = p(u). Similarly one can proveh(v) = p(v) if
v ∈ A∨

2 . Thus we only have to proveh(v) = p(v) if v ∈ A∨

1 . In this casev∗∗ = 1,
hence

p(v) = (h(v) ∨ v) ∧ h(1) = (h(v) ∧ h(1)) ∨ (v ∧ h(1)) = h(v) ∨ (v ∧ h(1)) .

Now we shall be done if we prove the inequalityh(v) ≥ v∧h(1), which due to the
embedding (3) is equivalent to

hi(vi) ≥ vi ∧ hi(1) (7)

for everyi ∈ I. Sincev∗∗ = 1, we havevi ∈ {b, 1}, for everyi ∈ I. The formula
(7) obviously holds ifvi = 1 or vi = b ≤ hi(vi). If vi = b andhi(vi) = a, then
we also havehi(1) = a becauseh preserves the Glivenko congruence. Hence (7)
is valid also in this case.
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K2-algebrate unaarsed lokaalsed polünoomfunktsioonid

Vladimir Kutšmei

K2-algebrate klass on distributiivsete Ockhami algebrate muutkonna alam-
muutkond, mis sisaldab Kleene ja Stone’i algebrate muutkondi. KlassiK2 kuu-
luvate algebrate polünoomfunktsioone uuris esimesena M. Haviar oma 1993.
aastal ilmunud artiklis. Hiljem on (lokaalseid) polünoomfunktsioone kirjeldatud
muutkonnaK2 kõigis pärisalammuutkondades. Käesolevas artiklis kirjeldatakse
K2-algebrate unaarseid lokaalseid polünoomfunktsioone.
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