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Abstract. The clasdC, is a variety of distributive Ockham algebras that includesvrieties
of Kleene and Stone algebras. Polynomial functions of algelAras K, were first studied
by Haviar (Acta Math. Univ. Comenianae, 1923,179-190). After that (local) polynomial
functions were described for all proper subvarietiefCef In this paper we characterize unary
(local) polynomial functions ok2-algebras.
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1. INTRODUCTION

Let A be a universal algebra. A functigh: A™ — A is calledcompatible(or
congruence preserving), if, for any congruencef A, (a;,b;) € p,i =1,...,n,
implies

(f(at,...,an), f(br,...,bn)) € p.

The functionf is said to be docal polynomial functionf it can be interpolated by
a polynomial on every finite subset df*.

Our main goal is to study the clone of compatible functions on a given algebra.
We say that an algebra &ffine completef the clone of compatible functions
coincides with the clone of polynomial functions.

Originally, the problem of characterization of affine complete algebras was
formulated in []. For various varieties of algebras affine completeness has already
been studied. The affine completeness for Stone and Kleene algebras has been
investigated in {~%]. These results, together with many other results on affine
completeness, can be found also in a recent monograpfilie generalization of
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these results to the varief§ v S generated by all Stone and Kleene algebras is
presented in%. The results of {] show that local polynomials of algebraskiv S

can be characterized fairly similarly to those of Kleene and Stone algebhees.
variety Iy containsiC Vv § as a unigue maximal subvariety. Polynomial functions
of algebras in the varieti’, were first studied in”]. In the present paper we show
that in K, the theory of local polynomial functions is more complicated: there exist
functions which preserve congruences and the uncertainty ordaréurtot local
polynomials. Recently it was proved ifi][that in the varietyX v S the clone

of congruence and the uncertainty order preserving functions ofea gilgebra is
generated by polynomial functions together with certain special unatifuns.

We conjecture that the same statement is validkfer This motivates to study
first unary local polynomials. Our main result is Theorem 4.3 saying thatyun
local polynomial functionsf(z) of any algebraA € K can be characterized by
three properties: (1) they must preserve congruences, (2) theyprassrve the
uncertainty order, and (3) the functigfi(x) v f(x)*) A x*™* has to satisfy a certain
very special interpolation property on the subd&tC A. We hope that this result
will help us to describe (locally) affine complete members of the vafigty

2. PRELIMINARIES

A distributive Ockham algebrais an algebra(L;V,A*,0,1), where
(L;V, A,0,1) is a bounded distributive lattice arids a unary operation such that
0*=1,1"=0,and forallx,y € L,

(@AY =2"Vy",
(xVy)* =z" Ny~
We refer to ] as the basic source of information about distributive Ockham

algebras. The varietifs is the subvariety of the variety of all distributive Ockham
algebras defined by the following additional identities:

T S $**,
z Azt =" Na¥,
rANz* <yVy". Q)
Equivalently, s is the variety generated by the four-element chidip =
{0,a,b,1}, where0 < a < b < 1and0* =1, a* = a, b* = 1* = 0. Itis known
thatIN4 and its subalgebraSs = {0,6,1}, K3 = {0,a,1}, andB, = {0,1} are
the only subdirectly irreducible algebras/iiy. Thus, given an algebrA € Ko,
we may write

A Ss.d. H Al )
i€l

whereA; € {B2, K3, Ss, Ny}. Further, we will often say thaA is akC;-algebra.
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The largest proper subvariety &% is the variety/C v S. The varietyC v S is
characterized if'Cy by the identityz Vv y* V y** > z**.

The next lemma will be crucial in the proofs of our main results because it
reduces all problems to Kleene algebras and to functions with range ceshiain
AV defined below.

Lemma 2.1. Every algebra infCo satisfies the identity

x=x"N(xVz¥). 2)

Proof. Itis easy to check that the identity holdsINy. O

For every algebra\ € K, we denote
AY={zva*|zecAy={zecA|lz>2*}.

It is not difficult to see thatd" is a filter of the latticeA.

An elementu € A is calleda Kleene elemenif »** =wu. The set of all
Kleene elements ofA is a subuniverse ofA; in fact it is a Kleene algebra,
which we will denote byA**. It is easy to observe that the operatithis an
idempotent endomorphism &f with rangeA**. We shall call the kerneb of this
homomorphism th&livenko congruencef A.

Given an element € A, we denote byu|s the ®-block containingu. Note
that[u]s is a distributive lattice with the greatest elemefit which obviously is a
Kleene element.

Throughout the paper we assume that K, and there is an embedding

A <N,/ 3)

for some index sef. We denote byr; : A — A; the projection map to théh
subdirect factor oA. We write the elements ok in the forma = (z;);c;. Itis not
difficult to see that iff : A™ — A is a compatible function oA andx,y € A",
thenx; =y, implies f(x); = f(y);.- This means that every compatible function
f of A determines the coordinate functiofisof 7;(A) such thatf;(x;) = f(x);
for all x € A™. Obviously, the family( f;);c; completely determineg, so we may
identify f with this family.

Theuncertainty ordeiof the K,-algebraA is a binary relatioric, defined by

zCy & x/\sgygx\/s*forsomeseAv.

This relation generalizes one which for Kleene algebras was introduged b
Haviar et al. in f]. It is always a partial order relation of,-algebras. In the
algebraN4 we have) C a and1 C b C a.

We say that functiory’ on an algebraA € s is uncertainty preservingf it
preserves the uncertainty order relationAaf

The next two lemmas list some properties of the uncertainty order relation.
Originally similar results were proved and usedihfpr Kleene algebras, but one
can easily generalize them to algebras from the vakigty



Lemma 2.2. The restriction of the uncertainty order td¥ coincides with the
reverse order relation of the latticA".

Lemma 2.3. If A <.q ][]
;€ 1.

ierAiandz,y € A, thenz C y iff z; E y; for every

For distributive lattices we have the following description of local polynomial
functions.

Theorem 2.4. (['°]) A function on a distributive lattice is a local polynomial
function iff it is compatible and order preserving.

The next theorem gives a description of local polynomial functionslfmtaas
in the varietyIC v S.

Theorem 2.5. ([®]) A function onA € K v S is a local polynomial function iff it
preserves the congruencesAfand the uncertainty order.

Remark 2.6. Let A € £ vV S and assume thak <, 4. [[;c; A;. Using Lemma
2.3, we can reformulate Theorem 2.5 as follows.

A function onA is a local polynomial function iff it is compatible and for every
i € I the coordinate functiorf; is a polynomial function oA ;.

The following example shows that in general this does not hold for algebra
in ]Cg.

Example 1. Consider algebrad; andA,, As < A; < Ny x S3 as shown in
Fig. 1 and define a unary polynomial functipron A

p(z) = ((1,b) V) A x™.

It is easy to see thak, is closed with respect to. Since the variety of distributive
Ockham algebras has the congruence extension property, the restficti| 4,
is a compatible function oA.

Fig. 1. AlgebrasA; andA..



Note that the coordinate function$s and f, of f are polynomial functions,
namely fi(x) = 2™ and fy(z) = =z. But, using the canonical form (6) of
polynomials inCs, one can show that is not a polynomial function of\,. O

Our main motivation to study unary polynomial functiongignis the following
recent result.

Theorem 2.7. ([’]) Every compatiblg uncertainty preserving function on
A e KVv S is a composition of polynomial functions and unary compatible
uncertainty preserving functions.

3. COMPATIBLE, UNCERTAINTY PRESERVING FUNCTIONS

In this section we present some properties of compatible, uncertaintyyirgse
functions.

Lemma 3.1. ([?]) Any lattice congruence € Cony,(A) such thaty < ® is a
congruence oA.

Corollary 3.1.1. Let f be a compatible function on an algebfa € KCo. Assume
that for some: € A the functionf preservegu]s. Then the restrictiory|,, is a
compatible function of the latticle]s.

Proof. If p is a congruence of the lattide]s, then it can be extended to some
congruencer of the lattice A (since the variety of distributive lattices has the
congruence extension property). Now Lemma 3.1 implies that o A ® is a
congruence of the algebry, and it is easy to see thaly,, = p. O

Let f be a compatible function on an algelkac Ks. By (2) we have

fx) = FE)T A (Fx) V(%))

The next lemma shows that the functif(x)** can be considered as a compatible
function of the Kleene algebrA**.

Lemma 3.2. Let f be a compatibleuncertainty preserving function ocA. Then
the restrictiong = f**|4+« is @ compatible function of the Kleene algebAs™
which preserves the uncertainty order relationfdof*.

Proof. Since A** is a subalgebra oA and the variety of distributive Ockham
algebras has the congruence extension property, any congruerce @an be
extended to a congruence Af Thus, sincef** preservesA**, we have thay is a
compatible function oA **.

SinceA** is a subalgebra oA, it follows from Lemma 2.3 that the uncertainty
order onA** is the restriction of the uncertainty order @an Thusg preserves the
uncertainty order relation oh**. O



4. UNARY LOCAL POLYNOMIAL FUNCTIONS

In this section we will describe unary local polynomials of algelkas K.

Lemma 4.1. A unary compatiblguncertainty preserving functiofion A is a local
polynomial function iff the functiotf Vv f* can be interpolated by a polynomial
function on any finite subset df".

Proof. Obviously we only have to prove the sufficiency. By (2) we know that

f(@) = fla)™ A(f(z)V f(2)).

Since f preserves the Glivenko congruence, we have the iderftity)* =
f(z*)**. By Lemma 3.2 and Theorem 2.5 this implies thfdt:)** is a local
polynomial function ofA. Hence it remains to prove thatx) = f(z)V f(z)*isa
local polynomial function, too. Lek' be a finite subset of andp be a polynomial
function of A which coincides withy on F¥ = {z v 2* | # € F'}. We shall show
that thery coincides with the polynomial(z) = (p(x) vV z*) A (g(0) V2**) on .
In view of the embedding (3) this means that we must prove the equality

gi(xi) = (pi(xi) V 27) A (9:(0) V 277) 4)

for everyi € [ andx € F. Itis easy to see that if; = 0, then (4) holds.
Assume thats; € {a,b,1}. Thenz; = x; V z and sincer V z* € FY, we
haveg;(x;) = pi(z;). The identity (1) impliesp;(z;) > z}. Thus, in order to
prove (4), we only have to show thai(z;) < ¢;(0) V }*. The latter is obvious
if z; € {b,1}. If x; = q, thenz; = z; A x}. Since0 T a, Lemma 2.3 implies
0 C z A z*. Sinceg preserves the uncertainty order, we haye) > g(z A z*).
Thusg;(z;) < gi(0) V ;™. u

Lemma 4.2. Let g be a unary compatibleuncertainty preserving function oA
such that the range of is contained inAY. Then the following are equivalent

(i) g is a local polynomial function

(i) h(x) = g(x) A 2™ is a local polynomial function

(iii) A(z) can be interpolated by a polynomial on any finite subset of the set
{ze Az <g(1)}

Proof. The implications(i) = (ii) = (iii) are obvious. In order to prove that (iii)
implies (i), we first prove the equality

g9(x) = g(u) V h(z), (5)
for anyu € AY and everyr > u. In view of the embedding (3) this is equivalent
t0 gi(zi) = gi(ws) V (gi(xi) A x}*) for everyi € I. If z; € {b, 1}, then the latter is
obvious. Assume that; = a. Thenu; = z; andg;(z;) = g;(u;).
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Now we show thay(z) = g(z A g(1)) for everyz € AY. We again use the
embedding (3). Obviously;(x;) = gi(z; A gi(1)) holds if g;(1) € {a,1}, or
gi(1) = bandz; € {a,b}. It remains to prove thaj;(1) = b implies g;(b) = b.
Since g preserves the uncertainty ordet(1) = b implies g;(b) € {a,b} but
g:(b) = a is impossible becausgpreserves the Glivenko congruence.

Let F' be a finite subset ofi¥ and F; = {z A g(1) |z € F}. By condition
(iii) there exists a polynomigh(x) that interpolates: at ;. Then obviously the
polynomialp(xz A g(1)) interpolatesh at F'. By formula (5), ifu = A{z |z € F'},
theng(z) = g(u) V h(z) holds for everyz € F. This yields that the polynomial
g(u) Vp(z Ag(1)) interpolateg; at F'. We have proved that if condition (iii) holds,
then the functiory can be interpolated by polynomials at all finite subsetsl 6f
By Lemma 4.1 this proves the implicatigiii) = (i). O

Now we are ready to prove our main result.

Theorem 4.3. A unary functionf on ak,-algebraA is a local polynomial function
iff it satisfies the following conditions

(i) f preserves congruences

(i) f preserves the uncertainty order

(iii) the functionh(z) = (f(z) V f(x)*) A ™ can be interpolated by a
polynomial on every two-element st,v} C AY such thatu** < v < h(1)**;
moreoverthere existsv € A such that

h(u) = ((wVu)Ah(l))Au™,
h(v) = ((wVwv)Ah(l))Av*™.

Proof. Let f be a local polynomial function oA. Clearly, f/ preserves the
congruences and the uncertainty ordeAofSincef is a local polynomial function,
alsoh(x) is a local polynomial function. Thus there exist constants A such
thath(z) coincides with the polynomial

p(x) = (k1 V) A (ko V) A (ks V™)
A(kaVaVaz®)A (ks Va*Va™)Akg (6)

on the sef{u,v,1}. Choosingz = 1, we getks A k¢ = h(1). However, since
R(AY) C |h(1) ={y € A |y < h(1)}, we may replace(z) by the polynomial
p(z) A h(1) and then it is easy to see that we may take= kg = h(1). Similarly,
sinceh(x) < z** for everyz € AV, we may replacer(z) by the polynomial
p(x) A z** which means that we are free to take= 0. Since{u,v,1} C AV, we
may also assume thai = k5 = 1. Thus we have

p(z) = (k1 Vo) ANz™ Ah(1).

Hence the condition (iii) holds withy = k.



Now suppose thaf is a unary compatible, uncertainty preserving function on
A which satisfies condition (iii) of the theorem. We have to prove thas a
local polynomial function. By Lemmas 4.1 and 4.2 we only need to prove that the
function h(z) can be interpolated by a polynomial function on every finite subset
F C AV N | h(1). SinceA admits the majority terniiz A y) V (y A z) V (z A z), it
follows from the well-known Baker—Pixley Lemma (sé€@ [Theorem 3.2.2) that it
is sufficient to consider only two-element séts

First consider the casE = {u,v}, whereu < v < h(1). Letz = v vV u**.
Thenz < h(1)** and by condition (iii) there exist® € A such that

h(u) = ((wVu) AR(1)) Au™ and h(z) = ((wV z) Ah(1)) A 2™

Using the embedding (3), we note thate {u;, z; }, for everyi € I. Thus we also
have

h(v) = ((w Vo) AR(L)) A V™.

To conclude the proof, we consider the general case, witdmd v possibly
incomparable. Let = u A v. By the above proof, there exist polynomialsand
p2 such thap; meetsh at{z,u} andps at{z,v}. Now we define

p(z) = pi(x Au) V pa(z Av).

Sinceh preserves the uncertainty order, it is easy to checkjtlzgjrees with at
{u,v}. O

We must say that we are not completely satisfied with Theorem 4.3. We hoped
that local polynomial functions df»-algebras could be characterized using some
preservation properties, that is, there were one or more relationsdlefifermly
for all KC»-algebras such thgtwas a local polynomial function iff it preserved the
congruences and these relations. Example 1 constructed in Section & wtaw
if such relations exist, they cannot be defined first for subdirectly ucitdes and
then extended componentwise to arbitrary algebras. It is still possibleubhat s
relation(s) exist, but so far we do not know how to construct them.

In some sense the characterization given by Theorem 4.3 is not much better
than what we already know by Lemma 4.2. The advantage of Theorem 4.3 is
that it reduces general polynomial interpolation to the interpolation on yegial
subsets by very special polynomials. That this is of some use is illustratee by th
following example.

Example 2. An algebraA € Ky \ £ V S such that every unary compatible,
uncertainty preserving function & is a local polynomial.

Let A; = (41;V,A,°,0,1) be a non-Boolean Stone algebra such {bat =
{0} and[1]¢ = AY are the only blocks of the Glivenko congruencefof. (For
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example, we may takd; = S3.) Let Ay = (As;V,A,*,0,1) be an arbitrary
Kleene algebra. Pul = A; U Ay with 04, < 2 < y foranyz € A, andy € AY.
Clearly, A is a bounded distributive lattice with= 04,, 1 = 14,. Define a unary
operation* on A by
. x° ifx e Ay,
xr =
x® ifzreAs.
Then straightforward calculations show that= (A; Vv, A,*, 0, 1) belongs toCs.
Now, if we take anyr € AY andy € Ay \ {04,,14,}, thenz™ =z <y < y** =
1. By [?], Lemma 1.2, this implies thah ¢ K V S.
Let f be a unary compatible, uncertainty preserving functiodofConsider
h(z) = (f(z) V f(x)*) A 2**. Takeu,v € A such that** < v < h(1)**. We
are going to show that the polynomial

p(x) = (h(v) Va) Ah(1) A x™

coincides withh on the set{u,v}. Sinceu*™ =1 if u € A;, we may assume
u € Ay. Henceu** = u, implying p(u) = h(1) A u, and we have to provi(u) =
h(1) A w. In view of the embedding (3) this is equivalentiig(u;) = h;(1) A u;,
for everyi € I. The latter holds obviously ifi; = 1. Sincewu is a Kleene
element, the only remaining possibility is = a. By definition of h we have
hi(a) < a** = a. On the other hand, sindg A) C A, we also havé;(a) > a.
Henceh;(a) = a = hi(1) A a.

We proved the equalitit(u) = p(u). Similarly one can prové(v) = p(v) if
v € AY. Thus we only have to provie(v) = p(v) if v € AY. In this case** = 1,
hence

p(v) = (h(v) Vo) A (L) = (h(v) A R(1) V (v A h(1)) = h(v) V (0 A h(1)).

Now we shall be done if we prove the inequality) > v A k(1), which due to the
embedding (3) is equivalent to

for everyi € I. Sincev™ = 1, we havev; € {b, 1}, for everyi € I. The formula
(7) obviously holds ifv; = 1 orv; = b < hi(v;). If v; = bandh;(v;) = a, then

we also havé;(1) = a becausé preserves the Glivenko congruence. Hence (7)
is valid also in this case. O
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ICo-algebrate unaarsed lokaalsed poliinoomfunktsioonid

Vladimir KutSmei

Ko-algebrate klass on distributiivsete Ockhami algebrate muutkonna alam-

muutkond, mis sisaldab Kleene ja Stone'’i algebrate muutkondi. Klkagdiuu-
luvate algebrate poliinoomfunktsioone uuris esimesena M. Haviar oma 1993.
aastal ilmunud artiklis. Hiljem on (lokaalseid) polinoomfunktsioone kirjeldatud
muutkonna IC, koigis parisalammuutkondades. Kaesolevas artiklis kirjeldatakse
Ko-algebrate unaarseid lokaalseid polinoomfunktsioone.
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