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Abstract. Human heart rate fluctuates in a complex and nonstationary manner. Elaborating
efficient and adequate tools for the analysis of such signals has been a great challenge for the
researchers during last decades. Here, an overview of the main research results in this field is
given. The following questions are addressed: What are the intrinsic features of the heart rate
variability signal? What are the most promising nonlinear measures, bearing in mind clinical
diagnostic and prognostic applications?

Key words: heart rate variability, nonlinear time-series, intermittency.

1. INTRODUCTION

The heart rate of healthy subjects fluctuates in a complex manner. These non-
stationary and nonlinear fluctuations are related mainly to a nonlinear interaction
between competing neuroautonomic inputs: parasympathetic input decreases and
sympathetic stimulation increases the heart rate. Meanwhile, heart pathologies may
decrease the responsiveness of the heart and lead to a failure to respond to the
external stimuli. Evidently, such pathologies lead to an overall reduction of heart
rate variability (HRV). Understanding the diagnostic and prognostic significance of
the various measures of HRV has great importance for the cardiology as a whole,
because unlike the invasive methods of diagnostics, the required measurements
are low-cost and harmless for patients. A particularly important application is the
prognostics of the patients with increased risk of sudden cardiac death. While
the “linear measures” of HRV are nowadays widely used in clinical practice, the
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importance of more complicated measures has been hotly disputed in the scientific
literature during the recent decades.

The structure of this review is as follows. In Section 2, general aspects of the
heart rate generation, electrocardiogram (ECG) structure, and data acquisition are
discussed. In Section 3, we give a brief overview of the “linear era” ofthe HRV
analysis. Section 4 is devoted to the early studies of the nonlinearity of HRV, i.e. to
the methods based on the reconstructed phase-space analysis. Here wealso provide
the modern view on the applicability of these methods. In Section 5, we discuss
the self-affine and multi-affine aspects of HRV (including the wavelet-transform-
based techniques). Section 6 deals with the phenomenon which can be referred
to as “intertwining of low- and high-variability periods”. Section 7 examines the
effect of synchronization between the heart rate and respiration. Section 8 provides
a brief conclusion.

2. HEART RATE GENERATION, ECG, AND DATA ACQUISITION

The quasi-periodic contraction of the cardiac muscle is governed by the
electrical signal, which is generated by the sino-atrial (SA) node – a set of
electrically active cells in a small area of the right atrium. The signal spreads
through the atrial muscle leading to its contraction. It also spreads into a set of
specialized cells – the atrio-ventricular (AV) node. Further the signal spreads via
the His-Purkinje bundle (which is a fractal-like set of electrically conductive fibres)
to the myocardial cells causing their contraction. The ECG is measured as the
electrical potential between different points at the body surface. The activity of
the SA node by itself is not reflected on the ECG. The electrical activation ofthe
atrial cells leads to the appearance of the P-wave of the ECG. The Q, R, S,and T
waves (see Fig. 1) are caused by the electrical activity of the ventricularmuscle.
The heart rate is generally measured as the RR-intervaltRR – the time-lag between
two subsequent R-pikes (R-pike itself corresponds to the ventricular contraction).
For the HRV analysis, only the normal heart activity is taken into account. Allthe
QRS-complexes are labelled as normal or arrhythmic. Note that even for healthy
patients, some heartbeats can be arrhythmic. Normal-to-normal (NN) interval tNN

is defined as the value oftRR for such heartbeats, which have both starting and
ending R-pikes labelled as normal (see Fig. 1).

Typically, HRV analysis is based on the 24-hour recordings of theHolter-
monitoring. Shorter ECG recordings can be used for this purpose as well; however,
in that case it is impossible to observe the long-scale variations and compare the
sleep-awake differences in the heart rhythm. Portable apparatus stores the ECG
data as the time-dependent voltageU(t) either on a tape or on a PC flash card;
the sampling rate is 125 Hz or higher. The data are later analysed by computer
software. Typical commercial software allows visualization of the ECG recording,
automated or semiautomated recognition of arrhythmias and artifacts, and the
calculation of the standard “linear” characteristics of HRV. Most often, aresearch
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Fig. 1. Left image: normal ECG recording. Image on the right:tNN sequences of low and high
variability.

devoted to the methods of nonlinear dynamics is based on plain sequences of
NN-intervals and disregards the details of the continuous ECG recordings. Other
aspects of the ECG, e.g. the clustering of arrhythmic beats [1] and dynamics of QT
intervals [2] (pp. 13–16) are also of high clinical importance, but remain beyond
the scope of this review.

The experimental data serving as the basis of the original research performed
by the authors of the review were recorded (a) at the Tallinn Nõmme Hospital
(children) and (b) Tallinn Diagnostic Centre (adult subjects). The schemeof data
acquisition is presented in Fig. 2. For group (a), the recordings of ambulatory
Holter-monitoring covered 12 healthy subjects of mean age11.5 ± 3.3 years, 6

-

Fig. 2.The analysis of heart rate variability: the scheme of data acquisition and analysis.
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Table 1. Test groups of patients. Abbreviations are as follows: IHD – ischemic heart disease 

(stenocardia); SND – sinus node disease; VES – ventricular extrasystole; PCI – post cardiac 

infarction; RR – blood pressure disease; FSK – functional disease of sinus node 

 Healthy IHD SND VES PCI RR FSK 

No. of patients 103 8 11 16 7 11 6 

Mean age 45.5 65.4 50.0 55.9 47.3 55.5 11.7 

Std. dev. of age 20.5 11.4 19.3 14.3 11.6 14.4 4.6 

children with clinically documented sinus node disease (mean age11.5±1.9 years),
and 12 subjects with miscellaneous diagnosis. The sampling rate of the ECG was
125 Hz. For group (b), specifics are given in Table 1. These data have been
obtained during regular diagnostical examinations of more than 200 patients using
the Rozinn equipment; the ECG sampling rate has been 180 Hz. It is known that
there can be significant differences between the HRV dynamics of youngand adult
subjects. The primary goal of including the children groups has been to test the
universality (age-independence) of the scaling behaviour of HRV qualitatively. The
diagnostics and data verification have been made by a qualified cardiologist.The
data preprocessing included filtering out falsely detected QRS-complexes(artifacts
and arrhythmias) using the commercialRozinn software.

3. LINEAR MEASURES OF HRV

The clinical importance of HRV was first noted in 1965 by Hon and Lee [3].
Since then, the statistical properties of the interbeat interval sequences have
attracted the attention of a wide scientific community. An increased risk of post-
infarction mortality was associated with the reduced HRV by Wolf et al. [4] in
1977.

The problem received wider attention in the early 1980s, when Akselrod
et al. [5] introduced the spectral methods for the HRV analysis. The spectral
characteristics are generally referred to as “frequency-domain characteristics” and
are opposed to the “time-domain methods”, which are derived directly from the
tNN-sequence. In the late 1980s, the clinical importance of HRV became generally
recognized. Several studies confirmed that HRV was a strong and independent
predictor of mortality following an acute myocardial infarction [6−8]. As a result, a
breakthrough has been achieved: the “linear” measures of HRV becameimportant
tools of clinical practice.

A nonexhaustive list of the parameters currently used in medical practice isas
follows: the mean NN-interval, the difference between night and day heart rate,
the longest and shortest NN-intervals, the standard deviation of the NN-interval
(SDNN, typically calculated over a 24-hour period), the standard deviation of
locally (usually 5 min) averaged NN-intervals (SDANN), the mean of the 5-minute
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standard deviation of the NN-interval (averaged over 24 h; SDNN index), the
square root of the mean squared differences of successive NN-intervals (RMSSD),
the percentage of interval differences of successive NN-intervals greater than 50 ms
(pNN50), the spectral power of high- and low-frequency fluctuationsin NN-
sequences.

4. RECONSTRUCTED PHASE-SPACE

It is widely accepted that the heart rhythm generation in the complex of
the sinus node and atrio-ventricular node can be well described by nonlinear
dynamical models, where the SA node and AV node form a system of nonlinear
coupled oscillators [9−10]. The model has been proven to be viable and predicts
several experimentally observed phenomena, such as Wenckebach and Mobitz type
II arrhythmias and bistable behaviour [10]. This deterministic nonlinear model
predicts that the phase trajectories of an healthy heart lie on an attractor ofthe
coupled system of oscillators. Consequently, one should be able to observe well-
defined patterns on the Poincarè sections of the phase-space. Note thatin the
case of physiological data, there is no information, what might be the canonical
variables. Therefore, the phase trajectory is reconstructed in time-delaycoordinates
U(t), U(t + τ), . . . , U [t + (D − 1)τ ] [or tNN(n), t(n + 1), . . . , t(n + D − 1)].
HereD is the so-called embedding dimensionality, i.e. the dimensionality of the
reconstructed phase-space. It is expected that the real phase trajectory is mapped
to the reconstructed trajectory by a smooth transform.

Exactly such a reasoning has led to the idea that the dynamical characteristics
from the theory of nonlinear dynamics could be used for the diagnostic purposes.
The early studies by Babloyantz et al. [11] gave rise to extensive studies in the
1990s [12−15]. The experimental observations seemingly confirmed the theoretical
expectations. Particularly, the correlation dimension of the continuous ECG
recording (i.e. the recorded voltage as a function of time) has been reported to
be between 3.6 and 5.2. The conclusion has been that the dynamics of the heart
of a healthy person is less regular than that of a person with severe cardiac
pathologies. Correspondingly, the correlation dimension has often been thought
to be a measure for the healthiness of the heart. The other tools of the analysis of
nonlinear dynamical systems (such as Lyapunov exponents; Kolmogorov, Shannon,
pattern, and approximate entropies; etc.) have been exploited to an equal extent.

The correlation dimension of a data sequence is typically calculated according
to the Grassberger–Procaccia algorithm [16]. In a reconstructed phase-space of
dimensionalityD, the correlation sumC = 2

N(N−1)

∑

i,j θ(r − |ri − rj |) is
calculated as a function of the radiusr; it is expected to behave as a power-law
C ∝ rν(D). Hereri denotes theD-dimensional radius-vector of theith data-point,
andθ(r) stands for the Heaviside function. The correlation dimensiondc is found
as the limit ofν at large values ofD (in fact, it is expected that forD > dc, the
exponentν is independent ofD, and in that caseν = dc).
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However, there are various arguments leading us to the conclusion that the
formally calculated correlation dimension of a heart rhythm does not correspond
to the dimensionality of an intrinsic attractor; similarly, the formally calculated
Lyapunov exponents, entropies, etc. do not describe the respectiveaspects of
underlying nonlinear dynamics. First, it has been pointed out that physiological
time-series are typically nonstationary and noisy, and therefore, the correlation
dimension cannot be calculated reliably [17−19]; this fact is nowadays widely
accepted. In the case of the human heart, the “noise” comes from the autonomous
nervous system in the form of inputs regulating the heart rate (cf. [20−22]): from
the viewpoint of the underlying nonlinear deterministic system, these effectively
nondeterministic signals perform the role of high-level noise. It should also be
noted that some inputs of the autonomous nervous system may lead to quasi-
periodic signals – an easy source of false detection of low-dimensional chaos and
apparent patterns in simple time delay maps (see Figs. 3, 4). Thus, respiration gives
rise to the signal of a typical period of 4 s; the effect is most pronouncedwhen the
patient is at rest, and is stronger for young persons. Second, it has been emphasized
that a reasonable fitting of a correlation sum to a power law does not necessarily
mean that the obtained exponent is the correlation dimension of the underlying
dynamical system; instead, a thorough nonautomatable verification procedure has
to be done [23]. Third, the length of the data sequences is often inadequate for
reliable calculation of high values of the correlation dimensiondc

>
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6, cf. [15,23].

400

400

800

800

n < 4
8> n ≥  4 
16> n ≥  8
32> n ≥  16
64> n ≥  32
n ≥  64

tN+2 = 512 ms
tN+2 + τ = 552 ms

tN+1, ms

tN, ms

750

500

250

0

tNN,
ms

Fig. 3. A cross-section of the 3-dimensional reconstructed phase-space for a patient with
pronounced 4:1 mode-locking (see also Section 7); around the central cloud of points, three
major satellite-clouds can be seen; these satellite-clouds correspond to the sequence of interbeat
intervals, shown on the right-hand plot. The observed oscillations with period 4 can be
attributed to the modulation of the heart rate by respiration.
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Fig. 4. The same as in Fig. 3. Mode-locking (4:1 and 5:1) is weaker, but the heart rate
modulation by the respiration is significant. One can distinguish two branches of the central
cloud, which are caused by the respiratory modulation.

The above discussed research results can be summarized as follows: (1) The
correlation sums of the human heart rate follow typically a scaling law. (2) In
most cases, the scaling exponents are not the correlation dimensions. Thisleads
us to a natural question: what is the physical meaning of these formally calculated
exponents? Our answer to this question is based on simple observations, valid for
healthy patients: (a) the long-time variability of the interbeat intervals is typically
much higher than the variability on the time-scale of few heartbeats; (b) for
the periods when the mean heart rate is high (when the subject is performing
physical exercise) HRV is low; (c) the heart rate is controlled by effectively
random nondeterministic inputs arriving from the autonomous nervous system. As
a consequence, in time delay coordinates, an HRV time-series generates a baseball
bat-shaped cloud of points. Although the theoretical value of the correlation
dimension of such a cloud is infinite, the finite resolution of the recording apparatus,
finite length of the time-series, and the linear structure of the cloud result in a
smaller value. This is evident for a very narrow “bat”, which is efficiently one-
dimensional.

Our conjecture passes also a quantitative test: the correlation sum of surrogate
data-sets constructed using Gaussian random data-series and mimicking the
features (a)–(c) (see Fig. 5) scales almost identically to that of clinical HRV data
(see Fig. 6 and [24]).
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Fig. 5. Time-series for real HRV data (a), surrogate data (b), and Gaussian noise (c); the beat
intervaltn is plotted versus the beat numbern.

Fig. 6.The correlation sumC2(r) (as a function of the radiusr) of surrogate data scales almost
identically to the real clinical data.

To conclude, the measures based on the reconstructed phase-space fail to
describe a deterministic chaos inside the heart, because the deterministic dynamics
is suppressed by essentially intermittent signals arriving from the autonomous
nervous system and regulating the heart rhythm. However, some fine-tuned
measures (e.g. various entropies; cf. [25]) can be useful in describing the level
of short-time variability of the heart rhythm, and complement the linear quantity
pNN50 (which also measures the high-frequency component of HRV).
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5. SCALE-INDEPENDENT MEASURES

Recent studies have shown that scale-invariant characteristics can besuccess-
fully applied to the HRV analysis [26−29]. However, this conclusion has been
disputed, and certain scale-dependent measures (particularly, the amplitude of
the wavelet spectra at a specific time-scale) have been claimed to provide
better results [30]. The scale-independent methods have been believed to be
more universal, subject-independent, and to reflect directly the dynamicsof
the underlying system, unlike the scale-dependent methods which may reflect
characteristics specific to the subject and/or to the method of analysis [29]. The
opposing argument has been that certain heart disorders affect HRVat a specific
scale or range of scales; owing to this circumstance, at the properly chosen time-
scale, scale-dependent measures may provide a useful information [30].

The simplest relevant scale-independent measure is the Hurst exponent H,
which has been introduced to describe statistically self-affine random functions
f(r) of one or more variables [31]. Such a function is referred to as afractional
Brownian function and satisfies the scaling law

〈

[f(r1) − f(r2)]
2
〉

∝ |r1 − r2|2H .

Note thatH = 1
2 is a special case of ordinary Brownian function – the increments

of the function are delta-correlated, andf(r) can be thought to be the displacement
of a Brownian particle as a function of timer. Therefore, in the case ofH < 1

2 ,
there is a negativelong-range correlation between the increments of the function.
Analogously,H > 1

2 corresponds to a positive correlation. Note that the early
scale-invariant studies of HRV were based on power spectra [32,33], an aspect
closely related to the scaling exponentH.

Many phenomena in nature exhibit this kind of scale-invariance and lead to
fractional Brownian time-series [31]. The same is true for HRV: after filtering out
short-scale components withτ < 30 s (corresponding to the respiratory rhythm, to
the blood-pressure oscillations, and to the pathological Cheyne–Stokes respiration),
the fluctuation functionF (n), defined as

F (ν) = 〈|tn − tn+ν |〉 (1)

revealed a good scaling behaviourF (ν) ∝ νH [26]. While for healthy patients,
the increments of the heart rhythm were found to be significantly anticorrelated
resulting inH < 1

2 , the heart rhythm of the patients with dilated cardiomyopathy
was essentially Brownian withH ≈ 1

2 [26]. In the case of our patient groups,
there was no significant correlation between the diagnosis and the Hurst exponent,
and there were also ca 7% healthy subjects withH = 0.5 ± 0.05 (cf. Fig. 7 and
Table 2).

Finally, various techniques, such as detrended fluctuation analysis [27],
detrended time-series analysis [34], and wavelet amplitude analysis [35] have been
proposed to fine-tune the Hurst-exponent-based approach.
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Fig. 7. The fluctuation functionF (ν) is plotted versus the time lagν. The almost straight line
indicates a good scaling behaviourF (ν) ∝ νH (here withH = 0.50).

Table 2. For the patient groups of Table 1, the diagnosis and the Hurst exponent H values were 

effectively uncorrelated 

 Healthy IHD SND VES PCI RR FSK 

Mean value of H 0.30 0.28 0.32 0.35 0.29 0.29 0.28 

Std. dev. of H 0.10 0.09 0.11 0.12 0.12 0.08 0.06 

Complex nonstationary time-series cannot be described by a single scaling
exponentH. Indeed, simple scaling behaviour is expected if there is a Gaussian
distribution of increments. However, even in the case of Gaussian functions,
the scaling exponent is not necessarily constant over the whole range of scales.
Instead, it can be a slow (e.g. logarithmic) function of the scale, so that other
descriptions (such as stretched exponentials) may be required. Physiological time-
series are typically non-Gaussian. For such functions, scale-invariance can be very
complicated. A nonexhaustive way to describe such a behaviour is to calculate the
multifractal spectrum of Hurst exponents [36]. Therefore, it is not surprising that
the human heart rate signal was found to obey a multi-affine structure [28,29].

Qualitatively, a multifractal time-series behaves as follows. Each point of
the time-series is characterized by its own Hurst exponenth (referred to as
the Lipschitz–Hölder exponent); this exponent describes the local scaling of
fluctuations. Then, the distribution of points of fixed values ofh is self-similar
and is described by a fractal dimensionf(h). Technically, the spectrumf(h) can
be calculated by the means of wavelet transform (cf. [29]). This scheme includes
the calculation of the scaling exponentsτ(q) (referred to as the mass exponents),
which describe, how theqth moment of the wavelet transform amplitude scales with
the wavelet width. The scaling exponentsτ(2) andτ(5) have been found to have
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a significant prognostic value (for the post-infarction prognosis) [29]. The wavelet
transform amplitudes, calculated for a specific wavelet width (≈ 5 min) have been
claimed to be of even higher prognostic value [30]. However, independent studies
have shown that the scale-invariant measures seem to be superior tools [37]. It
should also be noted that the wavelet transform amplitude at a fixed time-scale
is closely related to the linear measure SDANN. Substituting the robust standard
deviation by a wavelet transform amplitude is a technical fine-tuning which cannot
be expected to result in a qualitatively new information.

The multifractal structure of the heart rate signal has several consequences.
Thus, theqth-order structure function (a concept borrowed from the theory of the
fully-developed turbulence) of the heart rate interval has a scaling behaviour, with
the scaling exponentζ(q) being a function ofq [38]. Note that this spectrum
of exponents is very closely related to the above-mentionedτ(q) spectrum
(both describing the same physical phenomenon, differences being of atechnical
kind). However, the wavelet-transform-based technique makes a more complete
utilization of the underlying data and therefore, theτ(q) spectrum can be expected
to yield somewhat superior prognostic and/or diagnostic results.

Another aspect related to the multifractal nature of the heart rhythm is the multi-
scale entropy (MSE) [39]. While the single-scale entropies (approximate entropy,
Shannon entropy) are related to the short-time dynamics of the heart rhythmand
to the probability distribution function of points in the reconstructed phase-space,
the MSE extends these concepts to longer time-scales. The MSE is not directly
reducible to the multifractal spectraf(h) [or τ(q)]; however, both techniques
address the question of how wide is the range of dynamics for the mean heart rate
(averaged over a timeT ), depending on the time-scaleT . The clinical usefulness of
the MSE is still unclear (apart from the fact that it has been claimed to distinguish
between healthy subjects and patients with congestive heart failure [39]).

6. INTERMITTENCY OF HRV

A multifractal spectrum addresses only one aspect of the non-Gaussianity of the
time-series increments by revealing the possible range of scaling laws for thelong-
range [at time-scale of many (� 1) heartbeat intervals] dynamics of the mean heart
rhythm. While the origin of the multifractal scaling is in the intertwining of periods
of different variability levels (cf. [12] and Fig. 8), the multifractal spectra fail to
reflect all the features of the intertwining phenomena. In particular, this applies
to the long-term correlations in the dynamics of short-time variability (which, in
effect, does fluctuate in a complex manner). A quantitative scale-invariantanalysis
of this aspect is based on the distribution law of the low-variability periods [40,41],
which will be discussed below. Another aspect of such an intertwining is the
clustering of the periods of a similar mean heart rate: the heart rate signal can
be divided into segments of a different mean heart rate, with distinct boundaries
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Fig. 8. For healthy patients, the high- and low-variability periods of the heart rhythm are
intertwined.

between these segments; there is a power-law segment-length distribution of the
segments [42].

In order to analyse quantitatively the intertwining of high- and low-variability
periods, we have studied the distribution of low-variability periods and showed
that typically, it follows a multiscaling Zipf’s law. Originally, Zipf’s law has been
formulated by G. K. Zipf for the frequency of words in natural languages [43]. For
a given language (e.g. English), the frequency (the number of occurrences divided
by the total number of words) of each word is calculated on the basis of a large
set of texts. The ranks are determined by arranging the words according to their
frequencyf : the most frequent word obtains rankr = 1, the second frequent –
r = 2, etc. It turns out that for a wide range of ranks (starting withr = 1), there
is a power lawp(r) ∝ r−α, whereα ≈ 1. This law is universal; it holds for all the
natural languages and for a wide variety of texts [43]. Furthermore, similar scaling
laws describe the rank-distribution of many other classes of objects as well.Thus,
when cities are arranged according to their populations, the population of a city
s ∝ r−α, with α ≈ 1 [43]. Another example is the income-rank relationship for
companies; here we have againα ≈ 1 [43]. In the most general form, the law
can be formulated asp ∝ (r + r0)

−α, andα is not necessarily close to unity [36].
This more general form of the law can be applied to the distribution of scientists
according to their citation index, to the distribution of internet sites according to
the number of visitors, etc.

Zipf’s law is characteristic of such dynamical systems at statistical equilibrium,
which satisfy the following conditions: (a) the system consists of elements of
different size; (b) the element size has upper and lower bounds; (c) there is no
intermediate intrinsic size for the elements. The human heart rate, when divided
into the low-variability periods, satisfies all these requirements. The durationτ
of these periods varies in a wide range of scales, from few to several hundreds
of heartbeats. Thus, one can expect that the rank-length distributionr(τ) follows
Zipf’s law,

r ∝ τ−γ . (2)

First we have to define the local HRV as the deviation of the heart rate fromthe
local average,
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δ(n) = [tNN(n) − 〈tNN(n)〉]/ 〈tNN(n)〉 ;

the local average is calculated using a narrow (≈ 5-second-wide) Gaussian weight-
function. Then, the low-variability regions are defined as consecutive sequences of
intervals with|δ(n)| < δ0; the lengthτ of such a region is measured as the number
of beats in the sequence. Further, all the low-variability regions are numbered (to
identify them later), and arranged according to their length; regions of equal length
are ordered randomly. In such a way, the longest observed region obtains rank
r = 1, second longest –r = 2, etc. Typically, the length-rank relationship reveals
multiscaling properties, i.e. within a certain range of scales, the scaling law (2)is
observed, the scaling exponentγ being a (nonconstant) function of the threshold
level,γ = γ(δ0) (see Fig. 9).

It is not surprising that the scaling behaviour is not perfect. Indeed, the heart
rhythm is a nonstationary signal affected by the nonreproducible daily activities
of the subjects. The nonstationary pattern of these activities, together with their
time-scales, is directly reflected in the rank-length law. This distribution law can
also have a fingerprint of the characteristic time-scale (10 to 20 s) of the blood
pressure oscillations (which modulate the level of HRV, cf. [44]). It should be
emphasized that the problem of the nonreproducible daily activities affectsalso the

Fig. 9. Multiscaling behaviour: the rankr of low-variability intervals is plotted against the
length l of the intervals (measured in the number of heartbeats). Thescaling exponentγ
depends on the threshold valueδ0.

38



reliability of the other scale-invariant measures and is probably the main obstacle
preventing the clinical application of the seemingly extremely efficient diagnostic
and prognostic techniques. Finally, there is a generic reason why Zipf’slaw is
nonperfect at small rank numbers: while Zipf’s law is a statistical law, eachrank-
length curve is based only on a single measurement. In particular, there is only one
longest low-variability period (likewise, only one most-frequent word), the length
of which is just as long as it happens to be; there is no averaging whatsoever. For
large ranks, the relative statistical uncertainty can be estimated as1/

√
r.

The distribution function of the low-variability periods as a whole contains a
significant amount of diagnostically valuable information, which is not covered by
any other (linear or nonlinear) measure of HRV. The most part of this information
seems to be reflected (according to the Student test analysis using the test groups
of Table 1) by the parametersτend (the scale at which the scaling law breaks; for
a precise definition, see [41]), rmax (the maximal observed rank), andr100 (the
rank of the interval withτ = 100; the diagnostical performance of this parameter
is similar to that ofrmax). These measures allow a clear distinction between the
healthy subjects and the IHD, VES, and PCI groups [41]; thep-values are presented
in Table 3 (for a reference, the data of the two best-performing linear measures are
also provided).

Table 3. p-values of the Student test. Data in the topmost triangular region (with labelA) are
calculated using the parameterln τend (the logarithmic measure is used to achieve a nearly-
Gaussian data distribution). Triangular regionB corresponds to the parameterln rmax, region
C – to the linear measure pnn50, and regionD – to the linear measure SDNN. Since multiple
tests were carried out, modified Bonferroni correction [45] has to be applied. Grey background
highlights the tests with the adjusted significancep′ < 10%. The control parameter value
δ0 = 0.05 has been used
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7. MODE-LOCKING BETWEEN THE HEART RHYTHM AND
RESPIRATION

As mentioned above, respiration affects (modulates) the heart rhythm. This
effect is mediated by the blood pressure, and the effect known as baroreflex (heart
rhythm depends on the blood pressure). The heart is most responsive with respect
to the signals of the autonomous nervous system when the heart rate is slow,i.e.
when the patient is at rest. In that case, HRV is driven by weaker signals, like
the signals induced by respiration, which (due to their quasi-periodic nature) may
lead to a mode-locking. In the case of mode-locking, the heart rate is automatically
slightly adjusted so that the respiration and heart beat periods relate to each other as
(small) integers. As a result, the decorrelation time between the heart rhythm and
respiration can be very long. This is the effect which is in most cases the cause of
the patterns (isolated clouds of points) observable in the reconstructed phase space
(see Fig. 3).

The mode-locking has been studied using bivariate data (simultaneous ECG
and respiration data) and the technique called cardiorespiratory synchrogram [44].
Also, a univariate data analysis method using the angle-of-returntime map hasbeen
elaborated [46]. In that case, the data-set is used to reconstruct the phase of forcing
(breathing) and the phase of oscillator (heart). These phases are plotted versus each
other; in the case of mode-locking, disjoint clouds of points will appear.

Recently, we have developed an independent, intuitive and easy to use method
of mode-locking detection from univariate data (RR-interval sequence), which is
based on analysis of the fluctuation functionF (ν), defined by Eq. (1) [24]. The
fluctuation function of the patients with mode-locking revealed the presence of an
oscillatory component, see Fig. 10b. By dividing the entire 24-hour HRV record
into one-hour intervals, and calculating the amplitude of the oscillatory component
(via a wavelet transform) of the fluctuation function for each interval, we were
able to locate the periods responsible for the satellite clouds in the reconstructed
phase-space. These were always the periods before falling asleep,around 10 or
11 pm, characterized by a low heart rate and a high respiration-driven short-time
variability. The phase between the heart rate and respiration is locked during tens
of seconds, confirming the observations of Schäfer et al. [44]. Thus, in a certain
sense, the heart and respiratory complex act as a system of coupled oscillators.
Finally we note that a specific feature of the patients with strong mode-locking
was the presence of well-defined “satellite clouds” in time-delay map (see Fig.3).
Therefore, the time-delay map can be also used to detect mode-locking; however,
this method is nonquantitative, less sensitive than the fluctuation-function-based
technique, and does not give a hint which mode-locking modes are observed. The
presence of a natural quantitative measure (the wavelet transform amplitudes) is
also the main advantage of our approach over the alternative method.

As compared with the alternative techniques, our method of mode-locking
detection is very simple and does not require synchronous respiration rhythm
recording (unlike the thorough method [44]), and can be conveniently used to find
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Fig. 10. Patient with 3:1 mode-locking between the heart rate and respiration: (a) heartbeat
intervals (in milliseconds) plotted versus the beat number. The heart rate has a pronounced
oscillatory component; vertical lines mark the period of three heartbeats, horizontal lines
indicate the sequences with coherent phase. (b) Fluctuation function (arbitrary units) is plotted
versus the time lagν (in heartbeats); the oscillating component is magnified.

relatively short (>
∼

10 min) locking periods from a 24-hour recording. Besides,
it provides a natural measure to quantify the degree of mode-locking (unlike the
method of using the angle-of-returntime map [46]).

8. CONCLUSIONS

Below is an attempt to classify the measures of heart rate variability.
1. “Classical” linear methods – based on standard statistical measures and on

the Fourier analysis. These are the only methods widely used in clinical practice.
2. “New” linear methods: wavelet spectra.
3. Nonlinear methods:

(a) scale-invariant methods:
i. single-scaling analysis (calculation of the Hurst exponentH);
ii. multi-scaling analysis – calculation of the exponent spectra [Lipschitz–

Hölder spectrumf(h), mass exponentsτ(q), or structure function exponent
spectrumζ(q)]; these seem to be the most promising measures, at least for
prognostic purposes;

iii. calculation of the multiscale entropy;
iv. analysis of the HRV-data segments with a similar mean heart rate;
v. analysis of the distribution law of low-variability periods (performs

well in diagnostic tests, there are no prognostic tests yet);
(b) scale-dependent methods:

i. performing a phase-space analysis (entropy-based measures, correla-
tion dimension, Lyapunov exponents, etc.);

ii. heart rhythm and respiration mode-locking analysis.
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The human heart rate fluctuates in a complex and nonstationary manner.
Elaborating efficient and adequate tools for the analysis of such signals has been
a great challenge for the researchers during last decades. The above long list of
nonlinear techniques proves that the research has been successfuland various
important features of such time-series have been revealed. Nevertheless, there is no
consensus of which methods are the most efficient ones from the point ofview of
clinical applications. On the one hand, this is caused by the high nonstationarity and
irreproducibility of these time-series: the complex measures of HRV depend not
only on the healthiness of the heart, but also on the daily habits of the subject[47]
and on the random events of the recording day. On the other hand, dialogue
between physicists and doctors seems to be inefficient: physicists publish research
results based on small test groups; doctors are waiting for follow-up studies using
extended and homogeneous test groups. However, the situation is expected to
start improving, owing to the new projects bringing together medical doctors and
physicists (cf. http://www.physionet.org).
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Mittelineaarne ja mastaabi-invariantne südamerütmi
muutlikkuse analüüs

Jaan Kalda, Maksim Säkki, Meelis Vainu ja Mari Laan

Inimese südamerütm fluktueerub keerulisel ja mittestatsionaarsel moel. Efek-
tiivsete ja seda tüüpi ajajadade jaoks adekvaatsete analüüsimeetodite väljatööta-
mine on viimaste aastakümnete jooksul olnud teadlastele tõsiseks väljakutseks.
Käesolevas ülevaates käsitletakse selles valdkonnas saavutatud põhitulemusi.
Pearõhk pannakse küsimustele, millised on südamerütmi ajajada olulisimad eri-
omased jooned ja millised on diagnostiliste ja prognostiliste rakenduste seisukohast
kõige perspektiivikamad mittelineaarsed rütmimuutlikkuse mõõdud.
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