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Abstract. Human heart rate fluctuates in a complex and nonstationary manner. Elaborating
efficient and adequate tools for the analysis of such signals has been a great challenge for the
researchers during last decades. Here, an overview of the main research results in this field is
given. The following questions are addressed: What are the intrinsic features of the heart rate
variability signal? What are the most promising nonlinear measures, bearing in mind clinical
diagnostic and prognostic applications?
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1. INTRODUCTION

The heart rate of healthy subjects fluctuates in a complex manner. These non-
stationary and nonlinear fluctuations are related mainly to a nonlinear interaction
between competing neuroautonomic inputs: parasympathetic input decreases and
sympathetic stimulation increases the heart rate. Meanwhile, heart pathologies may
decrease the responsiveness of the heart and lead to a failure to respond to the
external stimuli. Evidently, such pathologies lead to an overall reduction of heart
rate variability (HRV). Understanding the diagnostic and prognostic significance of
the various measures of HRV has great importance for the cardiology as a whole,
because unlike the invasive methods of diagnostics, the required measurements
are low-cost and harmless for patients. A particularly important application is the
prognostics of the patients with increased risk of sudden cardiac death. While
the “linear measures” of HRV are nowadays widely used in clinical practice, the
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importance of more complicated measures has been hotly disputed in the scientific
literature during the recent decades.

The structure of this review is as follows. In Section 2, general aspétie o
heart rate generation, electrocardiogram (ECG) structure, and ciiesiion are
discussed. In Section 3, we give a brief overview of the “linear erghefHRV
analysis. Section 4 is devoted to the early studies of the nonlinearity of HRi i.e
the methods based on the reconstructed phase-space analysis. ldése previde
the modern view on the applicability of these methods. In Section 5, we discuss
the self-affine and multi-affine aspects of HRV (including the wavelet-foams
based techniques). Section 6 deals with the phenomenon which can tredefe
to as “intertwining of low- and high-variability periods”. Section 7 examines the
effect of synchronization between the heart rate and respiratiotioS&grovides
a brief conclusion.

2. HEART RATE GENERATION, ECG, AND DATA ACQUISITION

The quasi-periodic contraction of the cardiac muscle is governed by the
electrical signal, which is generated by the sino-atrial (SA) node — afset o
electrically active cells in a small area of the right atrium. The signal spreads
through the atrial muscle leading to its contraction. It also spreads into & set o
specialized cells — the atrio-ventricular (AV) node. Further the signaasfs via
the His-Purkinje bundle (which is a fractal-like set of electrically condedibres)
to the myocardial cells causing their contraction. The ECG is measured as the
electrical potential between different points at the body surface. €Ttiata of
the SA node by itself is not reflected on the ECG. The electrical activatidimeof
atrial cells leads to the appearance of the P-wave of the ECG. The QaRd S,
waves (see Fig. 1) are caused by the electrical activity of the ventrioulacle.

The heatrt rate is generally measured as the RR-integyat- the time-lag between
two subsequent R-pikes (R-pike itself corresponds to the ventricutdragion).
For the HRV analysis, only the normal heart activity is taken into accounthall
QRS-complexes are labelled as normal or arrhythmic. Note that evendtihjne
patients, some heartbeats can be arrhythmic. Normal-to-normal (NN) ihtgrva

is defined as the value of;r for such heartbeats, which have both starting and
ending R-pikes labelled as normal (see Fig. 1).

Typically, HRV analysis is based on the 24-hour recordings ofHioker-
monitoring. Shorter ECG recordings can be used for this purpose as well; hgweve
in that case it is impossible to observe the long-scale variations and compare th
sleep-awake differences in the heart rhythm. Portable apparatus gter&CG
data as the time-dependent voltaldél) either on a tape or on a PC flash card;
the sampling rate is 125 Hz or higher. The data are later analysed by computer
software. Typical commercial software allows visualization of the ECGrdiag,
automated or semiautomated recognition of arrhythmias and artifacts, and the
calculation of the standard “linear” characteristics of HRV. Most ofteresearch
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Fig. 1. Leftimage: normal ECG recording. Image on the righti sequences of low and high
variability.

devoted to the methods of nonlinear dynamics is based on plain sequences of
NN-intervals and disregards the details of the continuous ECG record®iter
aspects of the ECG, e.g. the clustering of arrhythmic béhtsd dynamics of QT
intervals F] (pp. 13-16) are also of high clinical importance, but remain beyond
the scope of this review.

The experimental data serving as the basis of the original researchimed
by the authors of the review were recorded (a) at the Tallinn Nomme Hospital
(children) and (b) Tallinn Diagnostic Centre (adult subjects). The sclefrdata
acquisition is presented in Fig. 2. For group (a), the recordings of amobyla
Holter-monitoring covered 12 healthy subjects of mean Bgé + 3.3 years, 6
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Fig. 2. The analysis of heart rate variability: the scheme of datmistion and analysis.
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Table 1. Test groups of patients. Abbreviations are as follows: IHD —ischemic heart disease
(stenocardia); SND —sinus node disease; VES — ventricular extrasystole; PCI — post cardiac
infarction; RR — blood pressure disease; FSK — functional disease of sinus node

‘Healthy‘ IHD ‘ SND ‘ VES ‘ PCI ‘ RR ‘ FSK

No. of patients 103 8 11 16 7 11 6
Mean age 45.5 65.4 50.0 55.9 473 55.5 11.7
Std. dev. of age 20.5 114 19.3 14.3 11.6 144 4.6

children with clinically documented sinus node disease (meamhhade-1.9 years),

and 12 subjects with miscellaneous diagnosis. The sampling rate of the ECG was
125 Hz. For group (b), specifics are given in Table 1. These data baen
obtained during regular diagnostical examinations of more than 200 pat&nts u
the Rozinn equipment; the ECG sampling rate has been 180 Hz. It is known that
there can be significant differences between the HRV dynamics of yanohgdult
subjects. The primary goal of including the children groups has beenttthtes
universality (age-independence) of the scaling behaviour of HRVitgtizely. The
diagnostics and data verification have been made by a qualified cardioldgest.
data preprocessing included filtering out falsely detected QRS-comgkaxiéacts

and arrhythmias) using the commerdraizinn software.

3. LINEAR MEASURES OF HRV

The clinical importance of HRV was first noted in 1965 by Hon and %e [
Since then, the statistical properties of the interbeat interval sequeases h
attracted the attention of a wide scientific community. An increased risk of post-
infarction mortality was associated with the reduced HRV by Wolf et 4lir{
1977.

The problem received wider attention in the early 1980s, when Akselrod
et al. P] introduced the spectral methods for the HRV analysis. The spectral
characteristics are generally referred to as “frequency-domaimactesistics” and
are opposed to the “time-domain methods”, which are derived directly frem th
tnN-Sequence. In the late 1980s, the clinical importance of HRV becameatjigner
recognized. Several studies confirmed that HRV was a strong andeindeipt
predictor of mortality following an acute myocardial infarctiéin{]. As a result, a
breakthrough has been achieved: the “linear” measures of HRV baogmeant
tools of clinical practice.

A nonexhaustive list of the parameters currently used in medical practise is
follows: the mean NN-interval, the difference between night and dayt hat,
the longest and shortest NN-intervals, the standard deviation of the téiNh
(SDNN, typically calculated over a 24-hour period), the standard dewiaifo
locally (usually 5 min) averaged NN-intervals (SDANN), the mean of the 5-teinu
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standard deviation of the NN-interval (averaged over 24 h; SDNN indée
square root of the mean squared differences of successive NINailstéRMSSD),
the percentage of interval differences of successive NN-intervedgegy than 50 ms
(PNN50), the spectral power of high- and low-frequency fluctuation$NN-
sequences.

4. RECONSTRUCTED PHASE-SPACE

It is widely accepted that the heart rhythm generation in the complex of
the sinus node and atrio-ventricular node can be well described by eanlin
dynamical models, where the SA node and AV node form a system of nanline
coupled oscillators’f1°]. The model has been proven to be viable and predicts
several experimentally observed phenomena, such as Wenckelghelobitz type
Il arrhythmias and bistable behaviou’]. This deterministic nonlinear model
predicts that the phase trajectories of an healthy heart lie on an attractoe of
coupled system of oscillators. Consequently, one should be able torebsell-
defined patterns on the Poincaré sections of the phase-space. Noie that
case of physiological data, there is no information, what might be the @aion
variables. Therefore, the phase trajectory is reconstructed in time-caginates
U),U(t+r),....,Ut+ (D —1)7] [or tyn(n), t(n + 1), ..., t(n + D — 1)].
Here D is the so-called embedding dimensionality, i.e. the dimensionality of the
reconstructed phase-space. It is expected that the real phasetsajeanapped
to the reconstructed trajectory by a smooth transform.

Exactly such a reasoning has led to the idea that the dynamical characeristic
from the theory of nonlinear dynamics could be used for the diagnostopes.
The early studies by Babloyantz et al!] gave rise to extensive studies in the
1990s [2~1%]. The experimental observations seemingly confirmed the theoretical
expectations. Particularly, the correlation dimension of the continuous ECG
recording (i.e. the recorded voltage as a function of time) has beentedpiar
be between 3.6 and 5.2. The conclusion has been that the dynamics ofthe he
of a healthy person is less regular than that of a person with severgacard
pathologies. Correspondingly, the correlation dimension has often beaghh
to be a measure for the healthiness of the heart. The other tools of theisuodlys
nonlinear dynamical systems (such as Lyapunov exponents; Kolmg@iramnon,
pattern, and approximate entropies; etc.) have been exploited to an el e

The correlation dimension of a data sequence is typically calculated acgordin
to the Grassberger—Procaccia algorithf¥].[ In a reconstructed phase-space of
dimensionality D, the correlation sunC' = mzm O(r — |rs — rj]) is
calculated as a function of the radiusit is expected to behave as a power-law
C x rv@D), Herer; denotes thé)-dimensional radius-vector of thith data-point,
andd(r) stands for the Heaviside function. The correlation dimensdjois found
as the limit ofv at large values oD (in fact, it is expected that fob > d., the
exponent is independent oD, and in that case = d..).

30



However, there are various arguments leading us to the conclusion that the
formally calculated correlation dimension of a heart rhythm does not sporel
to the dimensionality of an intrinsic attractor; similarly, the formally calculated
Lyapunov exponents, entropies, etc. do not describe the respedperts of
underlying nonlinear dynamics. First, it has been pointed out that phgsialo
time-series are typically nonstationary and noisy, and therefore, thelation
dimension cannot be calculated reliably{'°]; this fact is nowadays widely
accepted. In the case of the human heart, the “noise” comes from themdos
nervous system in the form of inputs regulating the heart rate {tf29]): from
the viewpoint of the underlying nonlinear deterministic system, these effgctiv
nondeterministic signals perform the role of high-level noise. It should laés
noted that some inputs of the autonomous nervous system may lead to quasi-
periodic signals — an easy source of false detection of low-dimensioaak@nd
apparent patterns in simple time delay maps (see Figs. 3, 4). Thus, resyiaégs
rise to the signal of a typical period of 4 s; the effect is most pronoundeh the
patientis at rest, and is stronger for young persons. Second, ieBasimphasized
that a reasonable fitting of a correlation sum to a power law does notsaeites
mean that the obtained exponent is the correlation dimension of the underlying
dynamical system; instead, a thorough nonautomatable verification predeais
to be done ?]. Third, the length of the data sequences is often inadequate for
reliable calculation of high values of the correlation dimensipr; 6, cf. [15:23].

tN+1, ms - an<4
e =8>n24
=] =16>n2 8 tan,
tn+2+ T =552ms gi>nz ég ms
= >n2
tN+2 = 512m.s . oS ea
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Fig. 3. A cross-section of the 3-dimensional reconstructed pkpsee for a patient with
pronounced 4:1 mode-locking (see also Section 7); arouadehntral cloud of points, three
major satellite-clouds can be seen; these satellite-sloadtespond to the sequence of interbeat
intervals, shown on the right-hand plot. The observed lagichs with period 4 can be
attributed to the modulation of the heart rate by respiratio
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Fig. 4. The same as in Fig. 3. Mode-locking (4:1 and 5:1) is weaket,the heart rate
modulation by the respiration is significant. One can dgtish two branches of the central
cloud, which are caused by the respiratory modulation.

The above discussed research results can be summarized as follpwéie (1
correlation sums of the human heart rate follow typically a scaling law. (2) In
most cases, the scaling exponents are not the correlation dimensiondeddss
us to a natural question: what is the physical meaning of these formallylaizidu
exponents? Our answer to this question is based on simple observatimh&va
healthy patients: (a) the long-time variability of the interbeat intervals is typically
much higher than the variability on the time-scale of few heartbeats; (b) for
the periods when the mean heart rate is high (when the subject is performing
physical exercise) HRV is low; (c) the heart rate is controlled by effelyti
random nondeterministic inputs arriving from the autonomous nervotssy#\s
a consequence, in time delay coordinates, an HRV time-series generatbalb
bat-shaped cloud of points. Although the theoretical value of the cornelatio
dimension of such a cloud is infinite, the finite resolution of the recordingrapyms
finite length of the time-series, and the linear structure of the cloud result in a
smaller value. This is evident for a very narrow “bat”, which is efficientheo
dimensional.

Our conjecture passes also a quantitative test: the correlation sum adaterr
data-sets constructed using Gaussian random data-series and mimicking the
features (a)—(c) (see Fig. 5) scales almost identically to that of clinicd ta
(see Fig. 6 and?{]).
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Fig. 5. Time-series for real HRV data (a), surrogate data (b), angs&an noise (c); the beat
intervalt,, is plotted versus the beat number
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Fig. 6. The correlation sunt; () (as a function of the radiug of surrogate data scales almost
identically to the real clinical data.

To conclude, the measures based on the reconstructed phase-aibdoe f
describe a deterministic chaos inside the heart, because the deterministidal/na
is suppressed by essentially intermittent signals arriving from the autorsomou
nervous system and regulating the heart rhythm. However, some fiad-tun
measures (e.g. various entropies; &P]) can be useful in describing the level
of short-time variability of the heart rhythm, and complement the linear quantity
PNN50 (which also measures the high-frequency component of HRV).
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5. SCALE-INDEPENDENT MEASURES

Recent studies have shown that scale-invariant characteristics cartdess-
fully applied to the HRV analysis?{=2°]. However, this conclusion has been
disputed, and certain scale-dependent measures (particularly, the ampitu
the wavelet spectra at a specific time-scale) have been claimed to provide
better results ¥]. The scale-independent methods have been believed to be
more universal, subject-independent, and to reflect directly the dynamfics
the underlying system, unlike the scale-dependent methods which mayt reflec
characteristics specific to the subject and/or to the method of anatykisThe
opposing argument has been that certain heart disorders affectatR\$pecific
scale or range of scales; owing to this circumstance, at the properlgrchiose-
scale, scale-dependent measures may provide a useful inform#fion [

The simplest relevant scale-independent measure is the Hurst explinen
which has been introduced to describe statistically self-affine randootidas
f(r) of one or more variables{]. Such a function is referred to asfractional
Brownian function and satisfies the scaling law

([f(r1) = f(ra)]?) o< [ry — rof*.

Note thatH = % is a special case of ordinary Brownian function — the increments
of the function are delta-correlated, afi@) can be thought to be the displacement
of a Brownian particle as a function of time Therefore, in the case df < 1,
there is a negativiong-range correlation between the increments of the function.
Analogously,H > % corresponds to a positive correlation. Note that the early
scale-invariant studies of HRV were based on power speétr&][ an aspect
closely related to the scaling exponét

Many phenomena in nature exhibit this kind of scale-invariance and lead to
fractional Brownian time-series]]. The same is true for HRV: after filtering out
short-scale components with< 30 s (corresponding to the respiratory rhythm, to
the blood-pressure oscillations, and to the pathological Cheyne—Ses@sation),
the fluctuation functiorf'(n), defined as

F(V) = <|tn - tn+u|> (1)

revealed a good scaling behavialifv) o« v [2]. While for healthy patients,
the increments of the heart rhythm were found to be significantly antictecela
resulting inH < % the heart rhythm of the patients with dilated cardiomyopathy
was essentially Brownian witlil = % [26]. In the case of our patient groups,
there was no significant correlation between the diagnosis and the Mpostant,
and there were also ca 7% healthy subjects wtk= 0.5 + 0.05 (cf. Fig. 7 and
Table 2).

Finally, various techniques, such as detrended fluctuation analy§is [
detrended time-series analysi$][ and wavelet amplitude analysi®] have been
proposed to fine-tune the Hurst-exponent-based approach.
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Fig. 7. The fluctuation functior¥'(v) is plotted versus the time lag The almost straight line
indicates a good scaling behavialitv) o v (here withH = 0.50).

Table 2. For the patient groups of Table 1, the diagnosis and the Hurst exponent H values were
effectively uncorrelated

lHealthyl IHD | SND | VES | PCI | RR | FSK

Mean value of H 0.30 0.28 0.32 0.35 0.29 0.29 0.28
Std. dev. of H 0.10 0.09 0.11 0.12 0.12 0.08 0.06

Complex nonstationary time-series cannot be described by a single scaling
exponentH. Indeed, simple scaling behaviour is expected if there is a Gaussian
distribution of increments. However, even in the case of Gaussian fusgction
the scaling exponent is not necessarily constant over the whole rdragales.
Instead, it can be a slow (e.g. logarithmic) function of the scale, so that othe
descriptions (such as stretched exponentials) may be required. Physablime-
series are typically non-Gaussian. For such functions, scale-ingar@an be very
complicated. A nonexhaustive way to describe such a behaviour is tdateltie
multifractal spectrum of Hurst exponent§]l Therefore, it is not surprising that
the human heart rate signal was found to obey a multi-affine structtitg [

Qualitatively, a multifractal time-series behaves as follows. Each point of
the time-series is characterized by its own Hurst exporferfteferred to as
the Lipschitz—Hdlder exponent); this exponent describes the local gcafin
fluctuations. Then, the distribution of points of fixed valueshas self-similar
and is described by a fractal dimensig(h). Technically, the spectrurfi(h) can
be calculated by the means of wavelet transform €)[ This scheme includes
the calculation of the scaling exponents)) (referred to as the mass exponents),
which describe, how thgth moment of the wavelet transform amplitude scales with
the wavelet width. The scaling exponent2) andr(5) have been found to have
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a significant prognostic value (for the post-infarction prognog§) [The wavelet
transform amplitudes, calculated for a specific wavelet widis (min) have been
claimed to be of even higher prognostic vald§.[ However, independent studies
have shown that the scale-invariant measures seem to be superior3tgol# [
should also be noted that the wavelet transform amplitude at a fixed time-scale
is closely related to the linear measure SDANN. Substituting the robust stindar
deviation by a wavelet transform amplitude is a technical fine-tuning whichata

be expected to result in a qualitatively new information.

The multifractal structure of the heart rate signal has several coesegsl.
Thus, thegth-order structure function (a concept borrowed from the theoryef th
fully-developed turbulence) of the heart rate interval has a scalingviialr, with
the scaling exponeng(q) being a function ofg [**]. Note that this spectrum
of exponents is very closely related to the above-mentioneg spectrum
(both describing the same physical phenomenon, differences beintgolical
kind). However, the wavelet-transform-based techniqgue makes a moglete
utilization of the underlying data and therefore, tt{g) spectrum can be expected
to yield somewhat superior prognostic and/or diagnostic results.

Another aspect related to the multifractal nature of the heart rhythm is the multi-
scale entropy (MSE)*f]. While the single-scale entropies (approximate entropy,
Shannon entropy) are related to the short-time dynamics of the heart rlayttim
to the probability distribution function of points in the reconstructed phaaeesp
the MSE extends these concepts to longer time-scales. The MSE is not directly
reducible to the multifractal spectr&(h) [or 7(¢)]; however, both techniques
address the question of how wide is the range of dynamics for the mearrdtear
(averaged over a timg), depending on the time-scdié The clinical usefulness of
the MSE is still unclear (apart from the fact that it has been claimed to dissimgu
between healthy subjects and patients with congestive heart faifijye [

6. INTERMITTENCY OF HRV

A multifractal spectrum addresses only one aspect of the non-Gaitgsitthe
time-series increments by revealing the possible range of scaling laws fontie
range [at time-scale of many{ 1) heartbeat intervals] dynamics of the mean heart
rhythm. While the origin of the multifractal scaling is in the intertwining of periods
of different variability levels (cf. 2] and Fig. 8), the multifractal spectra fail to
reflect all the features of the intertwining phenomena. In particular, tpesp
to the long-term correlations in the dynamics of short-time variability (which, in
effect, does fluctuate in a complex manner). A quantitative scale-invaiahysis
of this aspect is based on the distribution law of the low-variability peri¢t§'],
which will be discussed below. Another aspect of such an intertwining is the
clustering of the periods of a similar mean heart rate: the heart rate signal c
be divided into segments of a different mean heart rate, with distinct laoiesd
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Fig. 8. For healthy patients, the high- and low-variability pesodf the heart rhythm are
intertwined.

between these segments; there is a power-law segment-length distributian of th
segments®f].

In order to analyse quantitatively the intertwining of high- and low-variability
periods, we have studied the distribution of low-variability periods and sdow
that typically, it follows a multiscaling Zipf’s law. Originally, Zipf's law has been
formulated by G. K. Zipf for the frequency of words in natural langwsadé]. For
a given language (e.g. English), the frequency (the number of aowes divided
by the total number of words) of each word is calculated on the basis ofa lar
set of texts. The ranks are determined by arranging the words acgdadtheir
frequencyf: the most frequent word obtains rank= 1, the second frequent —

r = 2, etc. It turns out that for a wide range of ranks (starting witk 1), there

is a power lawp(r) o< r~, wherea =~ 1. This law is universal; it holds for all the
natural languages and for a wide variety of text§.[Furthermore, similar scaling
laws describe the rank-distribution of many other classes of objects asiek,
when cities are arranged according to their populatiotihe population of a city

s o< 77, with o =~ 1 [*3]. Another example is the income-rank relationship for
companies; here we have again~ 1 [**]. In the most general form, the law
can be formulated gs oc (7 + ) =%, anda is not necessarily close to unity].

This more general form of the law can be applied to the distribution of scientists
according to their citation index, to the distribution of internet sites according to
the number of visitors, etc.

Zipf's law is characteristic of such dynamical systems at statistical equilibrium,
which satisfy the following conditions: (a) the system consists of elements of
different size; (b) the element size has upper and lower bounds; €& th no
intermediate intrinsic size for the elements. The human heart rate, whendlivide
into the low-variability periods, satisfies all these requirements. The duration
of these periods varies in a wide range of scales, from few to sevenalrbds
of heartbeats. Thus, one can expect that the rank-length distribt{tigrfollows
Zipf's law,

rocT 7. (2)

First we have to define the local HRV as the deviation of the heart ratetfrem
local average,
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6(n) = [tan(n) — (tnn(n))]/ (Enn(n)) ;

the local average is calculated using a narrewb¢second-wide) Gaussian weight-
function. Then, the low-variability regions are defined as consecutiggences of
intervals with|d(n)| < do; the lengthr of such a region is measured as the number
of beats in the sequence. Further, all the low-variability regions are meahlj
identify them later), and arranged according to their length; regionsuatiéength
are ordered randomly. In such a way, the longest observed regiaimshank
r = 1, second longest = = 2, etc. Typically, the length-rank relationship reveals
multiscaling properties, i.e. within a certain range of scales, the scaling law (2)
observed, the scaling exponenbeing a (nonconstant) function of the threshold
level,v = ~v(dp) (see Fig. 9).

It is not surprising that the scaling behaviour is not perfect. Indeedhdart
rhythm is a nonstationary signal affected by the nonreproducible datilyitaes
of the subjects. The nonstationary pattern of these activities, together with th
time-scales, is directly reflected in the rank-length law. This distribution law can
also have a fingerprint of the characteristic time-scale (10 to 20 s) of ttoel blo
pressure oscillations (which modulate the level of HRV, ét])[ It should be
emphasized that the problem of the nonreproducible daily activities a#flsttshe

2
— . .
N NN
AN
“)
1000\ "")0
.
g
A\Y
o
100 )
10
1 s
3 10 30 I 100 300 1000

Fig. 9. Multiscaling behaviour: the rank of low-variability intervals is plotted against the
length [ of the intervals (measured in the number of heartbeats). sthéng exponenty
depends on the threshold valéie
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reliability of the other scale-invariant measures and is probably the mainctbsta
preventing the clinical application of the seemingly extremely efficient diggnos
and prognostic techniques. Finally, there is a generic reason why Zapi'ss
nonperfect at small rank numbers: while Zipf's law is a statistical law, eack-
length curve is based only on a single measurement. In particular, thedg men
longest low-variability period (likewise, only one most-frequent wordg, lgngth
of which is just as long as it happens to be; there is no averaging whetsdéer
large ranks, the relative statistical uncertainty can be estimatet4as

The distribution function of the low-variability periods as a whole contains a
significant amount of diagnostically valuable information, which is not ceddry
any other (linear or nonlinear) measure of HRV. The most part of thisrmddon
seems to be reflected (according to the Student test analysis using theotgst g
of Table 1) by the parameterg,g (the scale at which the scaling law breaks; for
a precise definition, seé']), rma.x (the maximal observed rank), amgy, (the
rank of the interval withr = 100; the diagnostical performance of this parameter
is similar to that ofr,,,c). These measures allow a clear distinction between the
healthy subjects and the IHD, VES, and PCI groupk fhe p-values are presented
in Table 3 (for a reference, the data of the two best-performing linearuresaare
also provided).

Table 3. p-values of the Student test. Data in the topmost triangeigion (with labeld) are
calculated using the parametferreng (the logarithmic measure is used to achieve a nearly-
Gaussian data distribution). Triangular regB®corresponds to the parametar .., region

C —to the linear measure pnn50, and regidr to the linear measure SDNN. Since multiple
tests were carried out, modified Bonferroni correctitij has to be applied. Grey background
highlights the tests with the adjusted significapée< 10%. The control parameter value
0o = 0.05 has been used

p, % |Healthy] IHD | SND | VES | PCI | RR
Healthy| g~4| 0.06 | 17.21 | 0.02 | 0.07 | 1.59

IHD | 0.36 2.85 | 96.79 | 97.62 | 21.93
SND | 2.99 | 59.10 2.10 | 3.04 | 25.77
VES | 0.08 | 91.60 | 63.79 94.18 | 17.59
PCI | 25.27 | 21.61 | 46.37 | 22.89 22.50

RR | 0.14 | 73.57 | 77.69 | 80.49 | 28.90
Healthy| p~C| 7.01 | 10.01 | 0.01 | 0.98 | 4.34

THD | 3.89 2.70 | 45.88 | 62.20 | 74.98
SND | 0.64 | 0.10 1.44 | 3.40 | 3.23
VES | 8.83 | 64.71 | 0.15 3.46 | 16.26
PCI | 1493 | 0.99 | 3.31 | 1.98 12.63

RR |21.58 | 1.07 | 1.94 | 2.38 | 70.25
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7. MODE-LOCKING BETWEEN THE HEART RHYTHM AND
RESPIRATION

As mentioned above, respiration affects (modulates) the heart rhythm. This
effect is mediated by the blood pressure, and the effect known aseHaro(heart
rhythm depends on the blood pressure). The heart is most respavittivrespect
to the signals of the autonomous nervous system when the heart rate is.elow,
when the patient is at rest. In that case, HRV is driven by weaker siglilas
the signals induced by respiration, which (due to their quasi-periodice)atuay
lead to a mode-locking. In the case of mode-locking, the heart rate is autatyatic
slightly adjusted so that the respiration and heart beat periods relatétotbac as
(small) integers. As a result, the decorrelation time between the heart rhythm a
respiration can be very long. This is the effect which is in most cases tise cd
the patterns (isolated clouds of points) observable in the reconstrucised ppace
(see Fig. 3).

The mode-locking has been studied using bivariate data (simultaneous ECG
and respiration data) and the technique called cardiorespiratory sgmahr ['].
Also, a univariate data analysis method using the angle-of-returntime maedas
elaborated?’]. In that case, the data-set is used to reconstruct the phase offorcin
(breathing) and the phase of oscillator (heart). These phases are pkrtes each
other; in the case of mode-locking, disjoint clouds of points will appear.

Recently, we have developed an independent, intuitive and easy to usaimeth
of mode-locking detection from univariate data (RR-interval sequendayh is
based on analysis of the fluctuation functisifv), defined by Eq. (1)¥]. The
fluctuation function of the patients with mode-locking revealed the presdrane o
oscillatory component, see Fig. 10b. By dividing the entire 24-hour HRrk
into one-hour intervals, and calculating the amplitude of the oscillatory compone
(via a wavelet transform) of the fluctuation function for each interval, vezew
able to locate the periods responsible for the satellite clouds in the recdadtruc
phase-space. These were always the periods before falling aateepd 10 or
11 pm, characterized by a low heart rate and a high respiration-driemt-time
variability. The phase between the heart rate and respiration is lockadjdens
of seconds, confirming the observations of Schéafer et'4l. [Thus, in a certain
sense, the heart and respiratory complex act as a system of couplidatas.
Finally we note that a specific feature of the patients with strong mode-locking
was the presence of well-defined “satellite clouds” in time-delay map (se8)-ig.
Therefore, the time-delay map can be also used to detect mode-lockingvémw
this method is nonquantitative, less sensitive than the fluctuation-functiedba
technique, and does not give a hint which mode-locking modes arevebiserhe
presence of a natural quantitative measure (the wavelet transform atep)itis
also the main advantage of our approach over the alternative method.

As compared with the alternative techniques, our method of mode-locking
detection is very simple and does not require synchronous respiratydnrh
recording (unlike the thorough methott]), and can be conveniently used to find
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Fig. 10. Patient with 3:1 mode-locking between the heart rate anginagn: (a) heartbeat
intervals (in milliseconds) plotted versus the beat num@@re heart rate has a pronounced
oscillatory component; vertical lines mark the period ofeth heartbeats, horizontal lines
indicate the sequences with coherent phase. (b) Fluctuaticction (arbitrary units) is plotted
versus the time lag (in heartbeats); the oscillating component is magnified.

relatively short £ 10 min) locking periods from a 24-hour recording. Besides,
it provides a natural measure to quantify the degree of mode-locking éuthl
method of using the angle-of-returntime magj).

8. CONCLUSIONS

Below is an attempt to classify the measures of heart rate variability.
1. “Classical” linear methods — based on standard statistical measures and o
the Fourier analysis. These are the only methods widely used in clinicaiqerac
2. “New” linear methods: wavelet spectra.
3. Nonlinear methods:
(a) scale-invariant methods:
i. single-scaling analysis (calculation of the Hurst exporféjit
ii. multi-scaling analysis — calculation of the exponent spectra [Lipschitz—
Hdélder spectruny (h), mass exponentsq), or structure function exponent
spectrum((q)]; these seem to be the most promising measures, at least for
prognostic purposes;
iii. calculation of the multiscale entropy;
iv. analysis of the HRV-data segments with a similar mean heart rate;
v. analysis of the distribution law of low-variability periods (performs
well in diagnostic tests, there are no prognostic tests yet);
(b) scale-dependent methods:
i. performing a phase-space analysis (entropy-based measuresiacor
tion dimension, Lyapunov exponents, etc.);
ii. heart rhythm and respiration mode-locking analysis.
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The human heart rate fluctuates in a complex and nonstationary manner.
Elaborating efficient and adequate tools for the analysis of such sigaslbden
a great challenge for the researchers during last decades. The labg list of
nonlinear techniques proves that the research has been sucaass$fubrious
important features of such time-series have been revealed. Nevesthbts is no
consensus of which methods are the most efficient ones from the poigvobf
clinical applications. On the one hand, this is caused by the high nonstétijcarat
irreproducibility of these time-series: the complex measures of HRV depeind n
only on the healthiness of the heart, but also on the daily habits of the s{5ject
and on the random events of the recording day. On the other hand, wkalog
between physicists and doctors seems to be inefficient: physicists pulsiesreh
results based on small test groups; doctors are waiting for follow-ujpestuding
extended and homogeneous test groups. However, the situation idezkpec
start improving, owing to the new projects bringing together medical doctats a
physicists (cf. http://mwww.physionet.org).
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Mittelineaarne ja mastaabi-invariantne stidamerutmi
muutlikkuse analtius

Jaan Kalda, Maksim Sakki, Meelis Vainu ja Mari Laan

Inimese stidameritm fluktueerub keerulisel ja mittestatsionaarsel moel. Efek-
tiivsete ja seda tlUpi ajajadade jaoks adekvaatsete anallilisimeetodite t&ijat6o
mine on viimaste aastakiimnete jooksul olnud teadlastele tdsiseks valjakutseks.
Kéaesolevas Ulevaates kasitletakse selles valdkonnas saavutatud pdhstulemu
Peardhk pannakse kiusimustele, millised on sidameritmi ajajada olulisimad eri-
omased jooned ja millised on diagnostiliste ja prognostiliste rakenduste seistikoha
kdige perspektiivikamad mittelineaarsed riatmimuutlikkuse méédud.
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