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Abstract. Nonlinear dynamics of the incommensurate surface layer with a spatially periodical 
structure is investigated analytically. In the framework of the Frenkel–Kontorova model the 
nonlinear excitations of the periodic soliton lattice, such as moving additional kinks and gap 
solitons, are discussed. 
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Nonlinear dynamics of real physical systems has always been the focus of 
attention in the theory of nonlinear waves and solitons, particularly periodic 
structures with physical parameters modulated in space (“modulated systems”), 
such as layered crystals. Spatial periodicity leads to a band–gap structure of the 
spectrum of linear waves and to the existence of the so-called gap solitons when 
the nonlinearity of the medium is taken into account [1–3]. In this paper, we 
discuss the existence of other “gap solitons” in systems with spatially 
homogeneous material parameters but spatially periodical ground state, which 
can be investigated exactly in the framework of integrable models. The periodic 
fluxon lattice in a long Josephson junction in an external field is one example of 
such a system [4,5]. The surface atomic layer in an incommensurate state (see, 
e.g., [6–8]) is another important example of similar “self-modulated” structures. In
these cases the spectrum of linear excitations also has a gap structure, but
solitons with frequencies within a gap differ from those in the modulated media.
In the present paper one-parametric topological solitons (“kinks”) [9] in the gap
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of the spectrum of incommensurate surface structures are investigated 
analytically using the Darboux transforms. 

Let us consider, for example, an incommensurate structure of the surface 
layer of atoms. We take into account the interaction between surface atoms in 
the harmonic approximation and assume that, in the absence of substrate, the 
equilibrium distance between these atoms is equal to b  and differs from the 
interatomic distance a  in a bulk. The effect of a substrate on surface atoms can 
be simulated by a periodical potential landscape with period .a  For simplicity, 
we approximate this by a trigonometric function and assume the substrate to be 
absolutely hard. Then the potential energy of the system is given by 
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where ny  is the position of the thn  atom with respect to the surface layer and α  
is the elastic constant in the layer. The dynamical equations for the atomic 
displacements anyv nn −=  in this model (Frenkel–Kontorova model [10]) have 
the following form: 
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In the long-wave approximation for dimensionless variables ,2 avu π=  

,)(2 2
0 aUnx απ=  and )(2 2

0 maUt πτ=  we obtain the well-known sine-

Gordon equation (SGE) [9]: 
 

.0sin =+− uuu xxtt                                          (3) 
 

In the same approximation the total energy of the system (1) takes the form 
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where ,)2( 00 απ UaE =  and the incommensurability of the surface layer and 
substrate is characterized by the dimensionless parameter ).(/ 0 baU −= αξ  
The last term xuξ  in (4) is of divergent type and does not alter the form of 
Eq. (3) but changes the potential energy of the system and can change its ground 
state. In the case ,ab =  the ground state corresponds to the trivial solution of 
Eq. (3), 0≡u  with the energy .0=E  Under the condition ,ab ≠  the problem 
becomes more complicated. 

Let us consider the case ab >  )0( <ξ  where Eq. (3) allows additional 
nontrivial static solutions in the following form [4,5]: 

 

),,(20 kkxamu +=π                                          (5) 
 

where ),( kzam  is the elliptic amplitude with modulus ,k  and .kxz =  The 
solution (5) describes the “extended ” system of a periodical chain of 2π-kinks 
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(“one-dimensional dislocations” in a surface layer or fluxon lattice in a long 
Josephson junction) separated by the distance ),(2 kkKL =  where )(kK  is the full 
elliptic integral of the first kind. The width of the kink expressed in terms of the 
initial  dimensional  variables  is  equal  to .)2( 0

2 Uaa απ=Λ  The  energy 
density of such a periodical structure (per period) LU=ε  depends on the 
parameter of incommensurability .ξ  For small values of this parameter, the 
ground state of the system is homogeneous and the periodical solution (5) can 
exist only under pressure conditions applied at the infinity. But when the 
parameter ξ  exceeds a critical value ,4 πξ =c  where ,)4( 0 απ Uabc +=  
the periodical state (5) with the modulus of elliptic function, derived from the 
equation ,)( ckkE ξξ=  corresponds to the minimum of energy. 

Linear excitations on the background of the incommensurate structure (5) are 
well known [11]. They represent the high-frequency phonon mode in the layer 
(upper band) and the low-frequency Swihart mode of oscillations of kink lattices 
(lower band). Let us consider nonlinear excitations on this background. The 
elementary nonlinear excitation corresponds to an additional kink (surface 
dislocation) which propagates through the kink lattice (5). To obtain the exact 
solution for this excitation, we use the Darboux transform which allows us to use 
the well-known “dressing” procedure for the initial solution (5) to find more 
complicated solutions. This transform is very simple in the case where the initial 
solution depends only on one variable as in our case with ),(00 xuu =  and does 
not depend on time. The Darboux transform for SGE (3) that we consider is well 
known [12]. To render compact this transform, it is convenient to change over 
from the initial field variable ),( txu  to the new variables V  and ,W  connected 
with the initial field u  by the relations: 

 

),(exp),( iuWuuiV tx =+=                                   (6) 
 

for which Eq. (3) reads: 
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The associated linear problem for two complex functions ),(1 txΨ  and 
),(2 txΨ  corresponds to the system (7). For the column function },{ 21 ΨΨ=Ψ  

and an arbitrary solution ),( txu  (or ),( txV  and )),( txW  we have [12]: 
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where λ  is the parameter of the Darboux transform. The initial Eq. (3) is the 
condition of consistency of the system (8), (9). The solution of this system with 
the given “seed” (initial) solution ),(0 txu  (given functions ),(0 txV  and 
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)),(0 txW  and an arbitrary value of λ  allows us to build up the new solution 
).,( txu  Naturally, the parameter λ  must be chosen in such a way that the real 

solution ),( txu  can be obtained. The final relation between these two solutions 
),(0 txu  and ),( txu  reads [12] 

 

.]),(),([ln2),(),( 01020 λλ uuitxutxu ΨΨ−=                        (10) 
 

The main task is to solve the system of linear equations with variable 
coefficients (8), (9). In our case the problem is simplified, as the initial solution 

)(0 xuu =  depends only on ,x  and Eq. (9) becomes an ordinary differential 
equation with constant coefficients. For the ground state (5), the functions 0V  
and 0W  have the form 
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and the system of linear equations (9) can be easily solved. We can use any 
arbitrary real λ  to obtain a new real solution. This parameter characterizes the 
average velocity of the additional moving kink. The solution of Eq. (9) reads 
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with ( ) )()4( 0

2
0 WVA −±=± λλλ  and .44)1( 22 k−+±= λλµ  Positive µ  

corresponds to a )2,0( π  additional kink, negative one to a )0,2( π  kink. 
If we substitute the solution (12) into Eq. (8) and take the coefficients before 

)(exp tµ±  equal to zero, we obtain )(xa  and )(xb  in the form 
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Using (12) we can transform the expression for the ratio 12 ΨΨ  into the 
following form: 
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where ,2),(tan µϕ kkzdn=  ],1),(2[),(),(2tan 22 λρ −−= kzsnkzcnkzsn  
and )]([2 xft += µϑ  with 
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The function )( ρϕ ±  may be rewritten as ±=± ),( kzammρϕ  ),,( kkzam ∆±  
where the phase shift of the solution ∆  depends on the parameters k  and λ  in 
the following implicit form: ).1(2),( 2 +=∆ λλkksnk  
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In all above formulas we considered ,0 ∞<< λλ  where .)1(0 kk ′+=λ  This 
corresponds to a positive value of ,f  i.e. to the kink motion in the negative 
direction. The domain 010 λλ <<  corresponds to the opposite direction of kink 
motion. The function )(xf  can be expressed as ),(xvxf χ+=  where the 
average value of the periodical function )(xχ  is equal to zero. The linear 
growing component of )(xf  determines the average velocity of a kink 
propagating through the incommensurate structure: 
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Consequently, the phase ϑ  in Eq. (13), ),(2)(2 xtx µχυυµϑ ++=  describes 
the kink motion in the negative direction with the average velocity .υ  Such a 
motion is accompanied by periodical oscillations at the moments when the kink 
propagates through each kink from the lattice. After substitution of (12) into the 
formula (10) we obtain the final solution for the motion of an additional kink: 
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where .ϕρκ ±=±  
Although this solution is somewhat complicated, it admits a simple physical 

interpretation. The additional kink propagates through the incommensurate 
surface structure, and this propagation is accompanied by the total deformation 
with the phase shift .2∆  In the limit ∞→λ  the kink velocity tends to its 
maximum value )1( →v  and the phase shift tends to zero :)02( →∆  the singular 
extra-kink moves through the undeformed periodical structure. In the opposite 
limit 0λλ →  the velocity of a kink tends to its minimal value )()(0 kEkKks ′=  
coinciding with Swihard velocity, the width of the kink goes to infinity, and the 
phase shift tends to :L  the perfect incommensurate structure rehabilitates itself. 
The solution (15) develops an evident form in the limit .1→k  In this limit the 
period of the incommensurate structure tends to infinity )( ∞→L  and Eq. (15) 
describes the propagation of a moving kink through another standing kink: the 
last term in (15) transforms into the well-known expression for a moving soliton 

 

,}1)]({[exparctan4),( 2vtvtxtxu −−−±= γδ                  (16) 
 

where )(xγ  is a localized function which describes the deformation of a kink 
during its propagation through the standing kink and depends on functions ϕ  
and .ρ  (The polarity of the kink and the sign of its velocity depend on the sign 
of the parameter µ  and the value of the parameter ).λ  

The knowledge of the one-soliton solution (15) allows us to find the exact 
solution for the envelope two-parametric gap soliton. In addition, we can use the 
Backlund transform for SGE (3). This dressing method establishes a link 
between different solutions of a nonlinear evolution equation. At the second step 
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of the Backlund transform we can link four different solutions by the algebraic 
relation [9]: 
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where the parameters of the Backlund transform iλ  are the same as the 
parameters iλ  in the previous Darboux transform in (8), (9). 

In the simplest case of a trivial ground state 00 =u  we can choose the solu-
tions for a moving kink and anti-kink ]1)([exparctan4)( 2vvtxu i −±= mλ  
with )1()1(1 21 vv +−−== λλ  and opposite velocities as )( iu λ  in (17). 
Then it represents a two-soliton solution with an immobile centre of masses. 
With ωi  replacing v  )),(exp( 21 ωλλ i−−== ∗  the solution ),( txu  from (17) 
transforms into a breather solution with the frequency .ω  In our problem we can 
carry out the same procedure taking the incommensurate structure (5) as the 
initial solution 0u  in (17). Then the solution (15), with 1λλ =  and ,1µµ =  may 
be taken as )( 1λu  in (17). Another solution (15), with 12 1 λλ =  and ,12 µµ −=  
may be taken as ).( 2λu  After the substitution ωiv →  (when )(exp21 ηλλ i== ∗  
and the parameter µ  is purely imaginary) we can obtain the final real solution 
for nonlinear excitations of the incommensurate surface structure. This solution 
has a very complicated form, but admits a simple physical interpretation. The 
frequencies of localized nonlinear excitations of the incommensurate structure 
lie in the gap of the spectrum ,21 ωωω <<  where the frequency kk ′=1ω  
corresponds to the upper boundary of the Swihart band and the frequency 

k12 =ω  to the lower boundary of the phonon band. At the lower boundary of 
the gap this excitation transforms into small-amplitude anti-phase oscillations of 
the kinks, which form the incommensurate structure. In the vicinity of the 
frequency ,1ω  the localized soliton-like small-amplitude excitations have the 
typical form of  gap solitons in modulated systems [1], and kinks play the role of 
point defects in such a system. But transformation of this gap soliton in the 
opposite limit 2ωω →  is unusual. In modulated systems in this limit the 
domains between defects oscillate in opposite directions and a gap soliton 
transforms into an algebraic soliton with nonzero amplitude. In our case of the 
“self-modulated” structure in the limit 2ωω →  the gap soliton transforms into a 
small-amplitude soliton with infinitely increasing spatial size. But like in 
modulated systems, in this limit kinks are unmovable and domains between them 
oscillate in opposite directions. It also followed from the exact solution that, in 
contrast to usual gap solitons in modulated systems as discussed above, solitons 
are accompanied by nonzero shift of the kink structure at infinity. 

The dynamics of gap solitons in the small-amplitude limit 1ωω →  allows  
a simple analysis in the approach of a collective-variable method. In this 
approach the isolated kinks of the incommensurate structure with a large  
period )1(1 <<′>> kL  may be treated as a lattice of weakly interacting quasi-
particles. The coordinates of these particles play the role of collective variables. 
From the well-known expression [9] for the energy of the moving SGE-kink 



 100

22
0 18 cvEE −=  (where mac 2α=  is the limiting velocity of linear 

waves), it is easy to calculate the effective mass of a kink:  
 

=M  .16 22
0 παaUm   

 

An effective potential energy of the interaction of two kinks with the same signs 
can be found from the exact two-kink solution and was calculated in [13]. Two 
kinks repel each other and the energy of this repulsion is ≈)
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 is the distance between the kinks and Λ  is their 
width. If we define the coordinate of the thN  kink as ,NN LNy ζ+=  where L  
is the equilibrium distance between the kinks and Nζ  are their small 
displacements from the equilibrium positions, the total energy of the system 
approximately reads as 
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where the last term appears due to the incommensurability of the structure and is 
connected with the last term in (4). This energy corresponds to the exactly-
integrable Toda model [9]. It is well known that the Toda lattice admits exact 
solutions only for one-parameter nonlinear excitations which correspond to the 
above-discussed kinks propagating through the kink lattice. But it is possible to 
find approximate solutions for small-amplitude periodical (in time) nonlinear 
excitations using an asymptotical procedure. We restrict ourselves to the small-
amplitude approximation in which .1 Λ<<− −NN ζζ  It is then possible to expand 
the exponential function in (18) up to nonlinear term of the fourth power in its 
argument. In this approach the dynamical equations for the effective chain of 
kinks have the form 
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where .4)(exp)32( 2

10
2 ω≈ΛΛ= LEMG  Near the lower boundary of the gap 

)( 1ωω ≈  the neighbouring kinks oscillate in opposite phases, and it is 
convenient to introduce the new variables NN φζ =  for even sites nN 2=  and 

NN χζ =  for .12 += nN  In the long-wave approximation in terms of relative 
displacements of neighbouring kinks ,χφ −=P  displacements of their centres 
of masses χφ +=Q and continuous coordinate ,NLZ =  Eq. (19) may be 
reduced to the following system of equations: 
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Near the lower boundary of the gap where the value of parameter 42 −ωG  is 
small ),1,( 2 <<∝ εε  we have in the main approximation ,~ εP  ,~ εQ  and 

.~ εZL ∂∂  So, in “the rotating phase approximation” )(sin)( tZpP ω≈  it 
follows from Eq. (21) that )2()(2 Λ≈ LZpQZ  and the equation for )(Zp  reads 

 

.2]1)[(4 232
1
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Under the gap, nonlinear excitations have the form of “dark anti-phase 
solitons” 
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which is accompanied with an extension of the kink lattice: →±∞)(Q  
.)1(4 2

1
2 LZ−Λ ωω  These “near-gap solitons” have a structure different from 

that for near-gap solitons in modulated structures. 
In the gap, the soliton solution has another form: 

 

),2(coth4),2(sinh4 1 LZQLZP εεεε Λ−≈Λ≈ −                 (24) 
 

where .1 2
1

2 ωωε −=  As predicted by the exact solution of the problem, the 
soliton-like excitations in the gap of the spectrum are accompanied by the total 
shift of the kinks displacements at infinity. Taking into account the discreteness 
of Eq. (19) and the initial problem for the kink lattice, we must take 

21/ += NLZ   to avoid a singularity in the centre of this gap soliton. 
We hope that the above-discussed nonlinear excitations of incommensurate 

surface structures may be detected experimentally if the wave with frequency in 
the gap of the spectrum is excited near the surface. 
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Ühismõõduta  pinnastruktuuride  mittelineaarsed  
häiritused 

 
Aleksander S. Kovaljov, Igor V. Gerassimtšuk ja Gérard A. Maugin 

 
Analüütiliselt on uuritud ruumiliselt perioodilise struktuuriga ühismõõduta 

pinnakihi dünaamikat. Frenkeli–Kontorova mudeli raamides on kirjeldatud üle-
minekusolitonidest ja vahesolitonidest koosneva solitonvõre mittelineaarseid 
häiritusi. 

 


