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Selection of localized nonlinear seismic waves
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Abstract. The asymptotic solution is obtained for the nonlinear evolution equation goverr
seismic wave propagation in the Earth’s crust. The conditions are found under whick
amplitude and velocity of an initial solitary wave tend to the finite values prescribed by
equation coefficients. Numerical simulations demonstrate validity of these predictions in
of an arbitrary localized pulse evolution, and in the presence of the solitary wave interacti
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1. INTRODUCTION

Phenomena caused by the energy input/output can be explained by the inflt
of the microstructure. Thus, recently the phenomenological theory was devel
in [*?] to account for the seismic wave propagation in a horizontal layer.
was proposed to describe the longitudinal strain wave evolution by the nonlii
equation

up + uty + diugy, = f(u), D)

wheref is the body force related to the so-called dilatancy mechanism,
flu) = = (a1u — agu® + azu?), (2

a1, a9, ag are positive constants, andis a small parameter. Equation (1
may describe the appearance of microseisms. The internal energy is storec
geophysical medium, while the propagating seismic wave can release the lock
internal energy. Additional energy influx causes amplification of the wave.
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The basic idea of the seismic wave modelling originates from the dilat
theory in fracture mechanics’][ It is assumed there that negative densit
fluctuations play an essential role in the strength of solids. These fluctuat
are called dilatons and can be considered as short-lived objects which are
to absorb energy from the surrounding medium. The energy may accumt
only up to a certain threshold value, then it is released, and the dilaton bre
generating a crack. Qualitatively similar phenomena were recognizéfiwhgn
seismic energy release was studied to explain the earthquake mechanism.
necessary condition for the fracturing of the medium under load is the existe
of an inhomogeneity such as a tectonic fault, an inclusion, etc. Hence it"
proposed in{] to consider a medium as a two-dimensional homogeneous sg
containing a linear inhomogeneity compressed uniaxially, which is the struc
that simulates commonly occurring geological faults subjected to tectonic st
with a predominant orientation. The area, affected by the loading, increases
the stress field achieves a threshold. Then a seismic-energy-releasing event o
A similar dilatancy model was proposed it] fo explain the nature of earthquake
precursors. In particular, it was assumed that the mechanism of seismic radiati
connected with rapid dilatancy variations.

The theory developed irtf] is linear. Preliminary results, mainly qualitative
were obtained in9] to clarify the role of the simultaneous influence of nonlinearit
and dissipation on the seismic wave evolution. Howevkf] pnake the most
important contribution to the nonlinear description of the seismic waves. In or
to govern a medium that may store and release the energy it was propo$édl ir
to consider the Earth’s crust as a certain hierarchy of elastic blocks connecte
thin interface layers. The layers are inhomogeneities where the energy is pun
stored, and released. Hence the interface layers behave like dilatons. Derivati
Eqg. (1) in [?] is based on a model where the basic equations of classic elast
are complemented by the inclusion of the body force to account for the dile
mechanism, and the phenomenological expression for the body force (2) close
basic equations.

In the absence of the body forcg,= 0, Eq. (1) is the celebrated Korteweg-
de Vries (KdV) equation], whose exact travelling one-parameter solitary wa
solution,

u = 12dk* cosh™? [k(z — 4dk*t)] , ®3)

arises as a result of a balance between nonlinearity, and dispersiondu,.,.
Here k is a free parameter. The body forgeplays a dissipative/active role,
destroying this balance. When all terms in the expressiory fare dissipative,
the solitary wave decays, while there is an infinite growth in a purely act
case. The most interesting scenario happens in the mixed dissipative-active
In particular, numerical results of-}] demonstrate transformation of an initia
KdV soliton into a new stable localized bell-shaped wave, with the amplitude
velocity prescribed by the equation coefficients.

86



The nature of the terms ifidepends upon the values of the coefficientsas,
as, but numerical simulations cannot describe the intervals of their values reqt
for the appearance of the stable localized waves. A procedure for obtaining
information is developed in the present work. First, tmsteadyprocess of the
transformation of the KdV soliton into the solitary wave with prescribed parame
values is described analytically. Next it is demonstrated that analytical solu
predictions can be used for the design of numerics even in the presence of s
wave interactions or when an initial profile is arbitrary.

2. ASYMPTOTIC SOLUTION

Let us assume that << 1. Furthermore, the function depends upon a fast
variableé and a slow timel’, such as

&L=1, &=-V(T), T=et.
Then Eqg. (1) becomes
dugee — Vue + uug + € (ur + aju — agu® + a3u3) =0. (4)
The solutionu of (4) is sought in the form
w(@T) =uo(§,T) +eur(§,T) + ... ®)
In the leading order we have
dug,gee — Vuge + uguge = 0. (6)

Equation (6) contains the coefficieht = V(T'), hence, its exact solitary wave
solution will have slowly varying parameters,

uo = 12dk(T)% cosh =2 (k(T)¢), (7

with V' = 4dk?; k(T) will be defined further.
In the next order an inhomogeneous linear differential equationfappears,

duygee — Vur e + (uour)e = F, (8)
with
F=— (uQT + ajug — agug + a;»,u%) . (9)
Due to (7)
2k k
Uy, T = TT uo + ?T §upe . (10)

The solvability condition for Eq. (8) is’]
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/ ugFd¢ = 0. (11)
Then it follows from (11) that:(7") obeys the equation
2
T (3456a3d°k* — 336a2dk” + 35a1) (12)

that may be rewritten in terms of the solitary wave amplitqie- 12dk(T)? as

Qr = —%‘5 Q(24a3Q? — 28a2Q + 35a;). (13)

The roots of the equation
24a30Q% — 28a2Q + 35a; = 0 (14)

are

l4ay — 2\/49a% — 210azaq 0 l4as + 2\/49a§ — 210asaq (15)
= 2 = .

24a3 ’ 24a3

@1

The behaviour of the solitary wave amplitudg depends on the value of
Qo = Q(T =0). Indeed,@ will diverge atQy < Q1, grow up toQ: if Q; <
Qo < Q2, and decrease hy- if Qo > Q2. Hence parameters of the solitary wav
tend to the finite values prescribed by the equation coefficignt§Ve call this a
selectionof the solitary wave. Selection frobelowis accompanied by the growth
of the initial amplitude, while selection fromboveis provided by the decrease ir
the initial solitary wave amplitude.

A more quantitative description of the variation@fcan be given in order to
see at what time the selected values are achieved. Equation (13) may be di
integrated over the randé, T'), giving the implicit dependence ¢ onT":

- 35
- 32a3Q1Q2(Q2 — Q1)
(@-Q1) (@ —Q2) _ Q
x| Qelos (Qo — Q1) Qrlog (Qo — Q2) @2 —C)log Qo] (16)

One can see thaf tends to infinity whern) — @2, and the expression (16)
provides aranalyticaldescription of the time-dependent process of the parame
value selection of the solitary wave (7).

With Eq. (13) taken into account, the solution foris

uy =A;[tanh(k€) — 1] + (341 + 245€) cosh™?(k¢)
+ [C = 3kA1€ — Ay €2 — Agzlog(cosh(k€))] tanh(kE) cosh™2(k€), (17)
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whereC = const,

_ 1152a3d®k* — 168asdk? + 35a;

A
! 35k ’
4 214 2
= 3 56a3d k 336a2dk + 35&1, (18)
35
1728asd%k?
Ay = “L.
35

We see that;; does not vanish & — —oo, and a plateau appears behind a solita
wave. It may be of negative or positive amplitude, depending upon the sign. of
A uniformly valid solution vanishing a§ — —oc may be obtained by the standari
procedure described ifi][

We can now draw some important conclusions. If we formally assume 0,
az = 0, both the behaviour of the solitary wave parameters and the sign of
amplitude of the plateau are defined by the sigaof Indeed, whem; > 0, the
amplitude and velocity of the wave decrease in time according to Eq. (3)3 0
and the plateau is negative. On the contrary, at negatiwee have an increase in
the wave amplitude and a positive platealy, < 0. In general caseg, # 0,
az # 0, the plateau may be negative both in case of an increase and decrease
solitary wave as shown in Figs. 1, 2. We also see that the increase in the ampl
is accompanied by the decrease in the wave width and the other way round
some asymmetry in the wave profile occurs.

Fig. 1. Selection of the seismic solitary wave from below. The initial profile is shown by t
dashed line.

89



Fig. 2. Selection of the seismic solitary wave from above. The initial profile is shown by 1
dashed line.

3. NUMERICAL SIMULATIONS

An asymptotic solution requires specific initial conditions, while an evoluti
of an arbitrary initial disturbance as well as interactions between nonlin
localized waves are of practical interest. It can be described only numeric
However, it is important to know whether analytical predictions can be used f
design of numerics, since the behaviour of the waves is sensitive to the valus
the equation coefficients and the initial conditions.

We use for computations a pseudospectral method whose computation
was designed in’]. The program computes solutions of 1D scalar PDEs wi
periodic boundary conditions. It evaluates spatial derivatives in Fourier spac:
means of the Fast Fourier Transform, while the time discretization is perforr
using the fourth-order Runge—Kutta method. This scheme appears to have a
stability with respect to the time step and was already successfully used fol
modelling of the solitary wave selection in a convective flui¢].[ More detailed
information about the code can be foundh [

We choose the parameter values identical to those used in numerigfs in
a1 =1, a9 = 0.5, a3 = 0.0556, d = 0.5, ¢ = 0.1. Following the analysis from the
previous section, one obtaidk = 4.11, Q2 = 6.38, and the selection occurs for
single solitary waves with initial amplitudes from the interdall < Qo < 6.38.
Numerical results for the single wave evolution confirm analytical solutions shc
in Figs. 1, 2 and agree with the numerical results’in [

Then the initial conditions are changed to the profile containing three differ
amplitude solitary waves, each accounting for Eq. (7J'aE 0. To avoid their
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interactions, the lower wave is located behind the higher one. The initial amplitt
are chosen so that the values of the amplitudes of the first two solitary wave:
brought into the selection interval, while the amplitude of the last one is be
Q1 = 4.11. We have obtained that the amplitudes of the first two solitary wa
tend to the valug)s = 6.38, while the last solitary wave decays. Hence ea
solitary wave evolves according to the asymptotic solution. Let us re-arrange
initial positions of the solitary waves in order to include their interactions. F
convenience in Figs. 3 and 4 the thresholdsl and6.38 are shown by dashed
lines at each stage. One can see in Fig. 3 that the interaction affects neithe
selection of the larger solitary waves nor the decay of a smaller one. Figu
shows that an initial Gaussian pulse produces a train of solitary waves of diffe
magnitude in agreement with the KdV theory. Then the selection of those soli
waves occurs whose amplitudes come to the selection interval prescribed b
theory. Note that two leading solitary waves are selected from below, while o
solitary waves generated from the input vanish.

Finally, the influence of the small parameter value was studied. We found
the solitary waves continue to evolve according to the asymptotic solution v
growth ine. Surprisingly, even if wéormally assume = O(1), the initial solitary
wave amplitude), still tends to the valu€),.

50 100 150 200 250 300

Fig. 3. Evolution of three solitary waves in the presence of their interaction.
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Fig. 4. Evolution of an initial Gaussian profile and formation of two selected solitary wave

4. CONCLUSIONS

We have shown that the single solitary wave asymptotic solution provides
analytical description of the seismic wave selection. Analytical relationships (:
(16) are obtained for the evolution of the solitary wave parameters. The ana
predicts the scenario of the solitary wave selection. However, numerical sl
demonstrates that it occurs even when the solitary wave interaction is realizec
at an arbitrary initial profile.
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Lokaliseeritud mittelineaarsete seismiliste lainete valik
Aleksei V. Poruboy, Vitali V. Gurski ja Gérard A. Maugin

On uuritud seismiliste lainete levi Maa koores. Mudelvdrrandiks on mit
lineaarne Kortewegi—de Vriesi tutpi evolutsioonivérrand, mille paremal poc
olev avaldis modelleerib massijdudude mdju. Vérrandile on leitud asiimptooti
lahend. On mé&éaratud tingimused, mille puhul esialgse uksiklaine amplit
ja kiirus valivad jouvélja parameetrite poolt maaratud [6plikud vaartused. |
algse Uksiklaine amplituud on teatud piirist vaiksem, siis selline laine surute
maha. Kui aga amplituud on sellest piirist suurem, siis vélise jduvalja toimel 18
neb amplituudi vaartus jouvalja parameetritega maaratud piirile. Sellist lair
kaitumist nimetatakse kaesolevas t66s uksiklainete valikuks. Numbrilised eksj
mendid demonstreerivad nende tingimuste kehtivust suvalise lokaliseeritud im|
levikul, kaasa arvatud Uksiklainete interaktsiooni korral.
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