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Selection of localized nonlinear seismic waves

Alexey V. Porubova,b, Vitaly V. Gurskya,b, and Gérard A. Mauginc

a The Ioffe Physico-Technical Institute, Russian Academy of Sciences, 26 Politekhniches-
kaya Street, St. Petersburg 194021, Russia; porubov@math.ioffe.rssi.ru

b Institute for High-Performance Computing and Data Bases, Fontanka 6, St. Petersburg
191187, Russia

c Laboratoire de Modélisation en Mécanique, UMR CNRS 7607, Université Pierre et Marie
Curie (Paris 6), Case 162, 4 place Jussieu, 75252 Paris, cedex 05, France

Received 4 October 2002, in revised form 14 November 2002

Abstract. The asymptotic solution is obtained for the nonlinear evolution equation governing
seismic wave propagation in the Earth’s crust. The conditions are found under which the
amplitude and velocity of an initial solitary wave tend to the finite values prescribed by the
equation coefficients. Numerical simulations demonstrate validity of these predictions in case
of an arbitrary localized pulse evolution, and in the presence of the solitary wave interactions.
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1. INTRODUCTION

Phenomena caused by the energy input/output can be explained by the influence
of the microstructure. Thus, recently the phenomenological theory was developed
in [1,2] to account for the seismic wave propagation in a horizontal layer. It
was proposed to describe the longitudinal strain wave evolution by the nonlinear
equation

ut + uux + duxxx = εf(u), (1)

wheref is the body force related to the so-called dilatancy mechanism,

f(u) = −
(
a1u− a2u

2 + a3u
3
)
, (2)

a1, a2, a3 are positive constants, andε is a small parameter. Equation (1)
may describe the appearance of microseisms. The internal energy is stored in a
geophysical medium, while the propagating seismic wave can release the locked-in
internal energy. Additional energy influx causes amplification of the wave.
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The basic idea of the seismic wave modelling originates from the dilation
theory in fracture mechanics [3]. It is assumed there that negative density
fluctuations play an essential role in the strength of solids. These fluctuations
are called dilatons and can be considered as short-lived objects which are able
to absorb energy from the surrounding medium. The energy may accumulate
only up to a certain threshold value, then it is released, and the dilaton breaks,
generating a crack. Qualitatively similar phenomena were recognized in [4] when
seismic energy release was studied to explain the earthquake mechanism. The
necessary condition for the fracturing of the medium under load is the existence
of an inhomogeneity such as a tectonic fault, an inclusion, etc. Hence it was
proposed in [4] to consider a medium as a two-dimensional homogeneous space
containing a linear inhomogeneity compressed uniaxially, which is the structure
that simulates commonly occurring geological faults subjected to tectonic stress
with a predominant orientation. The area, affected by the loading, increases until
the stress field achieves a threshold. Then a seismic-energy-releasing event occurs.
A similar dilatancy model was proposed in [5] to explain the nature of earthquake
precursors. In particular, it was assumed that the mechanism of seismic radiation is
connected with rapid dilatancy variations.

The theory developed in [4,5] is linear. Preliminary results, mainly qualitative,
were obtained in [6] to clarify the role of the simultaneous influence of nonlinearity
and dissipation on the seismic wave evolution. However, [1,2] make the most
important contribution to the nonlinear description of the seismic waves. In order
to govern a medium that may store and release the energy it was proposed in [1,2]
to consider the Earth’s crust as a certain hierarchy of elastic blocks connected by
thin interface layers. The layers are inhomogeneities where the energy is pumped,
stored, and released. Hence the interface layers behave like dilatons. Derivation of
Eq. (1) in [1,2] is based on a model where the basic equations of classic elasticity
are complemented by the inclusion of the body force to account for the dilaton
mechanism, and the phenomenological expression for the body force (2) closes the
basic equations.

In the absence of the body force,f = 0, Eq. (1) is the celebrated Korteweg–
de Vries (KdV) equation [7], whose exact travelling one-parameter solitary wave
solution,

u = 12dk2 cosh−2
[
k(x− 4dk2t)

]
, (3)

arises as a result of a balance between nonlinearity,uux, and dispersion,duxxx.
Here k is a free parameter. The body forcef plays a dissipative/active role,
destroying this balance. When all terms in the expression forf are dissipative,
the solitary wave decays, while there is an infinite growth in a purely active
case. The most interesting scenario happens in the mixed dissipative-active case.
In particular, numerical results of [1,2] demonstrate transformation of an initial
KdV soliton into a new stable localized bell-shaped wave, with the amplitude and
velocity prescribed by the equation coefficients.
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The nature of the terms inf depends upon the values of the coefficientsa1, a2,
a3, but numerical simulations cannot describe the intervals of their values required
for the appearance of the stable localized waves. A procedure for obtaining this
information is developed in the present work. First, theunsteadyprocess of the
transformation of the KdV soliton into the solitary wave with prescribed parameter
values is described analytically. Next it is demonstrated that analytical solution
predictions can be used for the design of numerics even in the presence of solitary
wave interactions or when an initial profile is arbitrary.

2. ASYMPTOTIC SOLUTION

Let us assume thatε << 1. Furthermore, the functionu depends upon a fast
variableξ and a slow timeT , such as

ξx = 1, ξt = −V (T ), T = εt.

Then Eq. (1) becomes

duξξξ − V uξ + uuξ + ε
(
uT + a1u− a2u

2 + a3u
3
)

= 0. (4)

The solutionu of (4) is sought in the form

u(ξ, T ) = u0(ξ, T ) + εu1(ξ, T ) + ... (5)

In the leading order we have

du0,ξξξ − V u0,ξ + u0u0,ξ = 0. (6)

Equation (6) contains the coefficientV = V (T ), hence, its exact solitary wave
solution will have slowly varying parameters,

u0 = 12dk(T )2 cosh−2 (k(T )ξ) , (7)

with V = 4dk2; k(T ) will be defined further.
In the next order an inhomogeneous linear differential equation foru1 appears,

du1,ξξξ − V u1,ξ + (u0u1)ξ = F, (8)

with
F = −

(
u0,T + a1u0 − a2u

2
0 + a3u

3
0

)
. (9)

Due to (7)

u0,T =
2kT

k
u0 +

kT

k
ξ u0,ξ . (10)

The solvability condition for Eq. (8) is [8]
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∞∫
−∞

u0Fdξ = 0. (11)

Then it follows from (11) thatk(T ) obeys the equation

kT = − 2
105

k
(
3456a3d

2k4 − 336a2dk2 + 35a1

)
(12)

that may be rewritten in terms of the solitary wave amplitudeQ = 12dk(T )2 as

QT = − 4
105

Q(24a3Q
2 − 28a2Q + 35a1). (13)

The roots of the equation

24a3Q
2 − 28a2Q + 35a1 = 0 (14)

are

Q1 =
14a2 − 2

√
49a2

2 − 210a3a1

24a3
, Q2 =

14a2 + 2
√

49a2
2 − 210a3a1

24a3
. (15)

The behaviour of the solitary wave amplitudeQ depends on the value of
Q0 ≡ Q(T = 0). Indeed,Q will diverge atQ0 < Q1, grow up toQ2 if Q1 <
Q0 < Q2, and decrease byQ2 if Q0 > Q2. Hence parameters of the solitary wave
tend to the finite values prescribed by the equation coefficientsai. We call this a
selectionof the solitary wave. Selection frombelowis accompanied by the growth
of the initial amplitude, while selection fromaboveis provided by the decrease in
the initial solitary wave amplitude.

A more quantitative description of the variation ofQ can be given in order to
see at what time the selected values are achieved. Equation (13) may be directly
integrated over the range(0, T ), giving the implicit dependence ofQ onT :

T =
35

32a3Q1Q2(Q2 −Q1)

×
[
Q2 log

(Q−Q1)
(Q0 −Q1)

−Q1 log
(Q−Q2)
(Q0 −Q2)

+ (Q2 −Q1) log
Q

Q0

]
. (16)

One can see thatT tends to infinity whenQ → Q2, and the expression (16)
provides ananalyticaldescription of the time-dependent process of the parameter-
value selection of the solitary wave (7).

With Eq. (13) taken into account, the solution foru1 is

u1 =A1[tanh(kξ)− 1] + (3A1 + 2A2ξ) cosh−2(kξ)

+ [C − 3kA1ξ −A2 ξ2 −A3 log(cosh(kξ))] tanh(kξ) cosh−2(kξ), (17)
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whereC = const,

A1 =
1152a3d

2k4 − 168a2dk2 + 35a1

35k
,

A2 =
3456a3d

2k4 − 336a2dk2 + 35a1

35
, (18)

A3 =
1728a3d

2k3

35
.

We see thatu1 does not vanish atξ → −∞, and a plateau appears behind a solitary
wave. It may be of negative or positive amplitude, depending upon the sign ofA1.
A uniformly valid solution vanishing atξ → −∞may be obtained by the standard
procedure described in [8].

We can now draw some important conclusions. If we formally assumea2 = 0,
a3 = 0, both the behaviour of the solitary wave parameters and the sign of the
amplitude of the plateau are defined by the sign ofa1. Indeed, whena1 > 0, the
amplitude and velocity of the wave decrease in time according to Eq. (13) ifA1 > 0
and the plateau is negative. On the contrary, at negativea1 we have an increase in
the wave amplitude and a positive plateau,A1 < 0. In general case,a2 6= 0,
a3 6= 0, the plateau may be negative both in case of an increase and decrease in the
solitary wave as shown in Figs. 1, 2. We also see that the increase in the amplitude
is accompanied by the decrease in the wave width and the other way round, and
some asymmetry in the wave profile occurs.

Fig. 1. Selection of the seismic solitary wave from below. The initial profile is shown by the
dashed line.
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Fig. 2. Selection of the seismic solitary wave from above. The initial profile is shown by the
dashed line.

3. NUMERICAL SIMULATIONS

An asymptotic solution requires specific initial conditions, while an evolution
of an arbitrary initial disturbance as well as interactions between nonlinear
localized waves are of practical interest. It can be described only numerically.
However, it is important to know whether analytical predictions can be used for a
design of numerics, since the behaviour of the waves is sensitive to the values of
the equation coefficients and the initial conditions.

We use for computations a pseudospectral method whose computation code
was designed in [9]. The program computes solutions of 1D scalar PDEs with
periodic boundary conditions. It evaluates spatial derivatives in Fourier space by
means of the Fast Fourier Transform, while the time discretization is performed
using the fourth-order Runge–Kutta method. This scheme appears to have a good
stability with respect to the time step and was already successfully used for the
modelling of the solitary wave selection in a convective fluid [10]. More detailed
information about the code can be found in [9].

We choose the parameter values identical to those used in numerics in [2]:
a1 = 1, a2 = 0.5, a3 = 0.0556, d = 0.5, ε = 0.1. Following the analysis from the
previous section, one obtainsQ1 = 4.11, Q2 = 6.38, and the selection occurs for
single solitary waves with initial amplitudes from the interval4.11 < Q0 < 6.38.
Numerical results for the single wave evolution confirm analytical solutions shown
in Figs. 1, 2 and agree with the numerical results in [2].

Then the initial conditions are changed to the profile containing three different
amplitude solitary waves, each accounting for Eq. (7) atT = 0. To avoid their
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interactions, the lower wave is located behind the higher one. The initial amplitudes
are chosen so that the values of the amplitudes of the first two solitary waves are
brought into the selection interval, while the amplitude of the last one is below
Q1 = 4.11. We have obtained that the amplitudes of the first two solitary waves
tend to the valueQ2 = 6.38, while the last solitary wave decays. Hence each
solitary wave evolves according to the asymptotic solution. Let us re-arrange the
initial positions of the solitary waves in order to include their interactions. For
convenience in Figs. 3 and 4 the thresholds4.11 and6.38 are shown by dashed
lines at each stage. One can see in Fig. 3 that the interaction affects neither the
selection of the larger solitary waves nor the decay of a smaller one. Figure 4
shows that an initial Gaussian pulse produces a train of solitary waves of different
magnitude in agreement with the KdV theory. Then the selection of those solitary
waves occurs whose amplitudes come to the selection interval prescribed by the
theory. Note that two leading solitary waves are selected from below, while other
solitary waves generated from the input vanish.

Finally, the influence of the small parameter value was studied. We found that
the solitary waves continue to evolve according to the asymptotic solution with
growth inε. Surprisingly, even if weformallyassumeε = O(1), the initial solitary
wave amplitudeQ0 still tends to the valueQ2.

Fig. 3.Evolution of three solitary waves in the presence of their interaction.
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Fig. 4.Evolution of an initial Gaussian profile and formation of two selected solitary waves.

4. CONCLUSIONS

We have shown that the single solitary wave asymptotic solution provides an
analytical description of the seismic wave selection. Analytical relationships (13),
(16) are obtained for the evolution of the solitary wave parameters. The analysis
predicts the scenario of the solitary wave selection. However, numerical study
demonstrates that it occurs even when the solitary wave interaction is realized and
at an arbitrary initial profile.
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Lokaliseeritud mittelineaarsete seismiliste lainete valik
Aleksei V. Porubov, Vitali V. Gurski ja Gérard A. Maugin

On uuritud seismiliste lainete levi Maa koores. Mudelvõrrandiks on mitte-
lineaarne Kortewegi–de Vriesi tüüpi evolutsioonivõrrand, mille paremal poolel
olev avaldis modelleerib massijõudude mõju. Võrrandile on leitud asümptootiline
lahend. On määratud tingimused, mille puhul esialgse üksiklaine amplituud
ja kiirus valivad jõuvälja parameetrite poolt määratud lõplikud väärtused. Kui
algse üksiklaine amplituud on teatud piirist väiksem, siis selline laine surutakse
maha. Kui aga amplituud on sellest piirist suurem, siis välise jõuvälja toimel lähe-
neb amplituudi väärtus jõuvälja parameetritega määratud piirile. Sellist lainete
käitumist nimetatakse käesolevas töös üksiklainete valikuks. Numbrilised eksperi-
mendid demonstreerivad nende tingimuste kehtivust suvalise lokaliseeritud impulsi
levikul, kaasa arvatud üksiklainete interaktsiooni korral.
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