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Abstract. A lattice model consisting of two one-dimensional periodic chains with linear links
between elements and nonlinear interaction between the chains is suggested to study nonlinear
dynamics of a bi-layer. The properties of the model are discussed, and the influence of a
delamination zone on the propagation of solitary waves is studied numerically.
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1. INTRODUCTION

Combinations of two materials with different properties are broadly used to
obtain a structure with the properties better than those of the parent constituents.
Integrity of such layered structures is mainly determined by the quality of
their interfaces. A sharp change in material properties at the interface and
different deformation behaviour under loading can result in considerable stress
concentrations near interfaces, leading to delamination and cracking. These
processes not only affect functionality of structures but can also cause their total
failure. The possibility of delamination zone development practically without
any visible signs up to its catastrophic manifestation complicates the interface
quality control and necessitates an elaboration of advanced detection methods for
delamination zones and investigation of conditions for their propagation.

63

https://doi.org/10.3176/phys.math.2003.1.06

https://doi.org/10.3176/phys.math.2003.1.06


The problem of the interface crack growth belongs to the basics of the
mechanics of fracture (see, for example, [1,2]). Usually the possibility of the
crack growth is related to the energy balance between the energy release due to
cracking and crack resistance forces (known as fracture toughness). However, this
purely phenomenological approach becomes rather cumbersome when applied to
heterogeneous materials with different properties.

Another way of crack analysis based on a direct introduction of the atomic
microstructure into consideration, which is now being actively developed [3], is
still limited to relatively small volumes and selected types of materials. Expansion
of this approach to macroscopic volumes of real materials with various relaxation
properties is nowadays hardly possible.

To overcome limitations of both approaches, new ideas have been suggested
both in mechanical and physical communities based on lattice models representing
solids as a lattice of elements larger than atoms and molecules. Here, fracture
is introduced as a vanishing link between respective elements (see [4−6] and
references therein). An additional advantage of lattice models is their suitability
for numerical simulations, with lattice algorithms being developed to solve various
types of equations.

Design of new schemes of delamination diagnostics for bi-materials
necessitates a considerable enhancement of existing methods of nondestructive
evaluation. Recent developments in this area are linked with understanding
nonlinear effects accompanying propagation of waves of finite amplitude in solids.
Nonlinear methods are considerably more sensitive to damage-induced changes
in structures than standard schemes using linear material parameters (wave speed,
damping, etc.) [7].

A mathematical background of this study is rooted in the theory of nonlinear
differential equations and respective numerical algorithms. After the intensive
study of nonlinear wave processes in recent decades, it has become clear that the
same equations such as, for instance, the Korteweg–de Vries equation or nonlinear
Schrödinger equation, appear in many different physical situations (see, e.g., [8,9]
and the references there). Since heterogeneity constitutes an essential feature of
many physical problems, it makes sense to try to find some suitable mathematical
models which will allow us to study features of nonlinear wave processes in
heterogeneous media. A possible way to derive such continuum models is to
consider the long-wave dynamics of lattice models for bi-layers.

2. THE MODEL OF A BI-LAYER

We study one-dimensional nonlinear dynamics of a bi-layer using the model of
coupled chains of particles [10], i.e., two one-dimensional periodic chains aligned
along thex-axis with linear links between elements and nonlinear interaction
between the chains are considered, which is the natural generalization of the
Frenkel–Kontorova model [11]. It is assumed that particles may move only parallel
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to thex-axis. The mass of any particle of the “upper” chain ism1 and that of the
“lower” chain ism2. In equilibrium the distance between adjacent particles in each
chain isa. Interaction between the nearest neighbours in the chains is considered in
terms of the usual harmonic approximation (with different constants of interaction
β1 andβ2). The function determining interaction between the chains is assumed
to depend on displacements of pairwise corresponding particles of the “upper” and
“lower” chains. The choice of this function is determined by the interface type.

Let un andwn be displacements of thenth particle of the “upper” and “lower”
chains, respectively, andH(un, wn) be the energy of interaction between these
particles. Dynamics of the system is described by the following equations:

m1ün = β1(un+1 − 2un + un−1)−Hun(un, wn),

m2ẅn = β2(wn+1 − 2wn + wn−1)−Hwn(un, wn)
(1)

(dots stand for differentiation with respect to time).
Introducing dimensionless variables

t̃ =
c1

a
t, x̃ =

x

a
, ũ =

u

a
, w̃ =

√
m2

m1

w

a
, H̃ =

H

m1c2
1

,

and using the force functionf(ũ, w̃) = −H̃(ũ, w̃), in the long-wave approximation
we obtain from (1) the system of coupled Klein–Gordon equations (the tilde is
omitted)

utt − uxx = fu(u, w), wtt − c2wxx = fw(u, w), (2)

wherec = c2/c1 =
√

β2m1/β1m2 is the ratio of acoustic velocities of non-
interacting components,c2

i = βia
2/mi, i = 1, 2, andf(u, w) describes interaction

between the chains.
Similar two-component models were proposed to describe dynamics of

hydrogen-bonded chains, molecular crystals and polymer chains, etc. (see review
[12]), and also in connection with the crack propagation in solids (e.g., [6,13,14]).
It is also worth noting that similar equations describe some processes in the DNA
double helix [15] (see also [16] and the references therein).

The functionf(u, w) in (2) describing the energy of the glue bond should
be found experimentally, and therefore its analytic form is not unique. It makes
sense to approximate, if possible, the experimental data by a function allowing a
certain analytic study of the properties of equations. It is known that the existence
of a sufficiently large group of symmetries allows such an investigation (see, for
example, [17,18]). Thus, the group classification problem for the coupled Klein–
Gordon equations (2) naturally arises in connection with the above-discussed
model.

Equations of type (2) withc = 1 (and arbitrary functions ofu andw in the right-
hand side) were studied in [19] where cases admitting Lie–Bäcklund symmetries
were found, and completely or partially integrable examples were presented. If
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fuw(u, w) = 0, system (2) splits into two independent Klein–Gordon equations,
whose group classification was given by Lie [20]. The Lie group classification of
Eqs. (2) forc 6= 1, fuw(u, w) 6= 0 was carried out in [10].

It was proven that the admitted algebra of infinitesimal operators can only have
dimension 2, 3, 6, 7 and be infinite-dimensional in the case of linear equations. The
six-dimensional algebra is admitted if the functionf(u, w) has one of the following
forms (up to the equivalence transformations, see [10]):

• f(u, w) = F (z) + Auw + (ε− δA)
u2

2
, F ′′′(z) 6= 0;

• f(u, w) = F (z) + εuw − δε
u2

2
, F ′′′(z) 6= 0;

• f(u, w) = F (z) + Au, F ′′′(z) 6= 0.

Herez = δu − w, A is an arbitrary constant,ε = ±1, δ is an arbitrary positive
constant. The seven-dimensional algebra is admitted in the last case if, additionally,
functionF (z) has one of the following forms:

• F (z) = εzσ + Bz, σ 6= 0, 1, 2;

• F (z) = εez + Bz;

• F (z) = ε ln z + Bz;

• F (z) = εz ln z;

whereB andσ are arbitrary constants. The corresponding infinitesimal operators
of the groups and the complete classification results can be found in [10].

System (2) with an arbitrary functionf(u, w) can be formulated by means of
the Lagrangian principle from the density

L =
1
2
(u2

t + w2
t − u2

x − c2w2
x) + f(u, w).

Therefore, knowing infinitesimal operators of the groups and using the Nöther
theorem, one can find conservation laws (see, for example, [18]). The shifts int
andx are admitted with any functionf(u, w). The corresponding conservation
laws for energy and momentum have the form

Dt

[
1
2
(u2

t + w2
t + u2

x + c2w2
x)− f(u, w)

]
−Dx(utux + c2wtwx) = 0,

Dt(utux + wtwx)−Dx

[
f(u, w) +

1
2
(u2

t + w2
t + u2

x + c2w2
x)
]

= 0.

In the cases with the dimension of the admitted algebra larger than 2, there are
additional conservation laws, which can be easily written down explicitly (e.g.
[18]) and that are useful for the application of various asymptotic methods and in
numerical simulations.
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When the potential function isf(u, w) = cos(δu−w)− 1, system (2) reduces
to the coupled sine-Gordon equations:

utt − uxx = −δ2 sin(u− w), wtt − c2wxx = sin(u− w), (3)

where the variableu replacesδu, compared to system (2). Although this case is not
the most beneficial from the point of view of admitted symmetries (six-dimensional
algebra of operators), it is interesting as a possible generalization of the Frenkel–
Kontorova model [11] (see also [12]). Unlike the latter, where the shear of one
part of a crystal is considered with respect to the rigid base, system (3) is derived
on the assumption that both parts of the crystal are deformable. In model (3) the
dimensionless parameterδ2 = m2/m1 is equal to the ratio of masses of particles
in the “lower” and “upper” parts of the crystal. Forδ2 → 0 andu = 0, system
(3) reduces to the sine-Gordon equation for the variablew. Thus, there is a natural
limit to the Frenkel–Kontorova model. Let us also notice that system (3) withc = 1
was proposed to describe the open states in DNA [15].

Invariant solutions for system (3) and solutions describing its dynamics in the
presence of additional shear forces were constructed in [10]. The particular case of
these solutions is periodic travelling-wave solutions, which have the form

u = U arcsin{k sn [
√

λ(x− vt + x0), k]} = Ww, 0 < k < 1,

U =
2δ2(v2 − c2)

δ2(v2 − c2) + v2 − 1
, W =

δ2(v2 − c2)
1− v2

,

for “fast” waves, propagating with velocitiesv2 ∈]S, M [∪]L,+∞[, whereS =
min{1, c2}, M = 1+δ2c2

1+δ2 , L = max{1, c2}, andx0 is a constant, and the form

u = U arcsin{dn [
√
|λ|(x− vt + x0), k]} = Ww, 0 < k < 1,

for “slow” waves, propagating with velocitiesv2 ∈ [0, S[∪]M,L[. In the limiting
case ofk = 1, “slow” periodic waves become solitary waves (kinks):

u = U arctan[exp
√
|λ|(x− vt + x0)] = Ww. (4)

Using the fact that Eqs. (3) admit reflections

t → −t, x → x; t → t, x → −x; u → −u, w → −w;

one can obtain solutions with other combinations of signs.
If δ → 0 (m1 � m2), solitary waves may propagate with velocitiesv2 ∈

[0, c2[. In that case the displacement of particles is independent of the wave
propagation velocity. If the massesm1 andm2 are comparable, the solitary waves
may propagate with velocitiesv2 ∈ [0, S[∪]M,L[. Therefore, if the acoustic
velocities of non-interacting chains are different (c2 6= 1), a gap appears in the
velocity spectrum of the solitary waves, i.e. the system acts as a filter of solitary
waves. Here the relative displacement (“upper” particles relative to the “lower”
ones) remains the same as in the Frenkel–Kontorova model (per period of the
chain), but the absolute displacement depends on the velocity of the wave.
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Another essential feature of the considered system is a possibility of the energy
exchange between its physical components (see [21]), in particular, in the situation
when one component is initially excited (say,u) with another component (w) being
initially at rest. Periodic and quasi-periodic processes in the wave system (3) are
analogous to the energy exchange in a system of coupled pendulums in classical
mechanics [22] (see also [23]).

The energy exchange between two componentsu andw of the system (3) takes
place since different branches of the dispersion curve coexist for the same wave
numberk. Here we briefly discuss only a particular nonlinear solution of these
equations forc = 1. Consideration of the general case and the analysis details,
such as conditions of the full and partial energy exchange, can be found in [21].

An exact solution describing the energy exchange between two componentsu
andw of system (3) can be constructed ifc = 1, i.e., if the acoustic velocities of
both chains coincide. In this case, by introducing the new variables

p = u− w, q = u + δ2w,

system (3) can be transformed to the form

ptt − pxx = −(1 + δ2) sin p, qtt − qxx = 0.

The system decomposes into the sine-Gordon equation uncoupled from the linear
wave equation. As a result, the explicit two-wave solution describing the energy
exchange between the two componentsu andw can be found in terms of Jacobi
elliptic functions:

u =
2

1 + δ2
(arcsin φ1 + δ2arcsin φ2),

w =
2

1 + δ2
(arcsin φ1 − arcsin φ2), (5)

φ1,2 = κ sn(kx− ω1,2t + θ0, κ).

Hereω1 = k, ω2 =
√

1 + δ2 + k2 are two branches of the dispersion curve,κ is
the modulus (0 < κ < 1), andθ0 is a constant. Whenδ2 = 1, it can be shown that
the nonlinear solution (5) describes a full periodic exchange of energy between the
two components of the system. Indeed, in this case, using the addition theorems
for elliptic functions (e.g., [24]), (5) can be transformed to the form

u = arcsin [2κ cn(γ−t, κ) F1(t, x)/Φ(t, x)] ,
w = arcsin [2κ sn(γ−t, κ) F2(t, x)/Φ(t, x)] ,

(6)

where

F1(t, x) = dn(kx− γ+t + θ0, κ) sn(kx− γ+t + θ0, κ),
F2(t, x) = dn(γ−t, κ) cn(kx− γ+t + θ0, κ),
Φ(t, x) = 1− κ2 sn2(γ−t, κ) sn2(kx− γ+t + θ0, κ).
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Hereγ± = (ω2 ± ω1)/2. Since the Jacobi functiondn(z, κ) has no zeros on the
real axis, zeros of the nonlinear solution (6) coincide with those of the functions
cn(z, κ) andsn(z, κ). Zeros of the functionsn(z, κ) on the real axis are located at
the pointsz = 2mK, while those of the functioncn(z, κ) are located at the points
z = (2n− 1)K, wherem, n ∈ Z, and

K =
∫ π/2

0
(1− κ2 sin2 φ)−1/2dφ

is the complete elliptic integral of the first kind. The real period of these functions
is equal to4K. The time of the energy exchange from one component to another
is T = K/γ−. The nonlinear two-wave solution (6) is shown in Fig. 1 forc = 1,
δ = 1, k = 1.6, andκ2 = 0.99999.

The exact solution of system (3) for the periodic energy exchange is
found only for c = 1. This condition is very restrictive. In general case, it is
possible to construct weakly nonlinear two- and four-wave (for two pairs of
counter-propagating waves) solutions describing the energy exchange between two
componentsu andw. In [21] the weakly nonlinear solutions are found with the
use of asymptotic methods [25] by reduction of the coupled sine-Gordon equations
(3) to the coupled nonlinear Schrödinger equations, which are derived for a slow
spatio-temporal evolution of wave amplitudes.

The situation when the linear dispersion relation has two or more branches
for the same wave number is typical in composites. The energy exchange
between the physical components of the system (the layers) constitutes the essential
feature of dynamics of bi-layered structures. It would be interesting to study the
energy exchange processes in other physical systems admitting a similar dispersion
relation. For example, the attractive candidate is the sine-Gordon–d’Alembert
systems introduced in the study of the propagation of magnetoacoustic domain
walls in elastic ferromagnets [26] and electroacoustic walls in elastic ferroelectrics
[27] (see also [28]).

Fig. 1. Energy exchange in the nonlinear two-wave solution (6).
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3. KINK IN A BI-LAYER WITH DELAMINATION

We now suppose that a bi-layer has a delamination zone and are going to study
the influence of this zone on nonlinear dynamics of a bi-layer. As an example, we
have chosen the propagation of the solitary wave (kink) discussed in Section 2.

It should be noted that many features of the soliton–impurity interaction
have been extensively studied within the framework of such models as the sine-
Gordon equation or the discrete Frenkel–Kontorova model with local or extended
inhomogeneities (see review [12] and the references therein). Soliton scattering by
impurities in hydrogen-bonded chains has been studied in [29]. In recent years there
has been an increasing interest in the behaviour of breathers in the presence of a
defect ([30−32] and references therein) in connection with the processes in DNA.

A major difficulty in the application of lattice models to real physical
or biological processes lies in the derivation of the interaction potentials and
parameters of the model. In the case of bi-layers, this should (and can) be done
experimentally. In this paper, we consider a simple model situation close to the
Frenkel–Kontorova model to study the potential applicability of nonlinear waves to
the problems of the interface control in bi-layers.

Any of the known solutions of (3), appropriately rewritten, yields an
approximate solution of the corresponding discrete equations, which are written
below. In the case of a kink described by (4), such an approximate solution has the
form

un ≈ ũn =
a

π
U arctan

{
exp

[
εα

(
n− v

√
β1

m1
t + n0

)]}
,

wn ≈ w̃n = ũn/W, α =
√
|λ|2πτm1

aβ1m2
, λ =

δ2(v2 − c2) + v2 − 1
(v2 − 1)(v2 − c2)

, ε = ±1,

(7)
whereαa � 1 to provide the condition|un+1 − un| � 1 (the long-wave solution)
and n0 is a constant. Hereτ is the constant of interaction between the chains,
ε = −1 corresponds to the kink, andε = 1 corresponds to the antikink.

Using the solution (7) withε = −1 andn0 = 40 as the initial condition for the
corresponding discrete equations, we study numerically the following problem:

m1ün = β1(un+1 − 2un + un−1)− τ sin
(

2π
un − wn

a

)
,

m2ẅn = β2(wn+1 − 2wn + wn−1) + τ sin
(

2π
un − wn

a

)
,

for −N − 1 ≤ n ≤ −K − 1 and K + 1 ≤ n ≤ N − 1;

m1ün = β1(un+1 − 2un + un−1),
m2ẅn = β2(wn+1 − 2wn + wn−1),
for −K ≤ n ≤ K;
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ü−N = ¨̃u−N (t), üN = ¨̃uN (t),
ẅ−N = ¨̃w−N (t), ẅN = ¨̃wN (t);

un|t=0 = ũn(0), u̇n|t=0 = ˙̃un(0),
wn|t=0 = w̃n(0), ẇn|t=0 = ˙̃wn(0),
for −N ≤ n ≤ N.

HereN andK correspond to half-lengths of a bi-layer and crack (delamination),
respectively. The boundary conditions are chosen in accordance with the
approximate solution (7).

Numerical experiments show the sensitivity of the nonlinear wave to the length
of the delamination zone. Figures 2 and 3 show numerical results foru andw,
respectively, for an ideal bi-layer (no crack), and for a bi-layer with delamination,
whenK = 2, andK = 7 (a longer crack). In all casesN = 400. In each figure we
compare the wave propagating in an ideal bi-layer (without a defect) with the cases
of delamination forc = 1.58114, δ = 2 (m1 = 0.02, m2 = 0.08, β1 = 10, β2 =
100, τ = 0.001, a = 0.05, v = 0.5). Hereαa ≈ 0.00674 � 1.

The figures demonstrate typical distortions of the wave form and the kink
trapping by a sufficiently long delamination zone (at the given wave speed),
accompanied by a strong radiation. Note that for the chosen values of parameters
thew-wave, which is less intensive than theu-wave, is much more sensitive to the
interface crack than theu-wave. However, the kink is able to pass the delamination
zone and to propagate further at higher wave speed, as shown in Figs. 4 and 5 foru
andw, respectively, for the same values of all the parameters but the wave speed:
v = 0.8.

Fig. 2. Theu-wave forv = 0.5 at three consecutive moments of time (t = 4, 7, and 10).
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Fig. 3. Thew-wave forv = 0.5 at three consecutive moments of time (t = 4, 7, and 10).

Fig. 4. Theu-wave forv = 0.8 at three consecutive moments of time (t = 4, 7, and 10).

These results indicate the potential applicability of nonlinear waves to detection
of delamination zones in bi-layers and invite further detailed studies (numerical,
analytical, and experimental). The problem of particular interest is the interaction
of the wave propagating in the material with the separation wave. All this will be
the topic of our further study.
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Fig. 5. Thew-wave forv = 0.8 at three consecutive moments of time (t = 4, 7, and 10).

4. CONCLUSIONS

The lattice model discussed here can be used to study characteristic features of
propagation and interaction of nonlinear waves in bi-layers with delamination. The
model can be modified to take into account other degrees of freedom by considering
the chains of interacting mechanical dipoles [33] instead of chains of point masses.
It can also be two-dimensionalized.

Bi-material structures have been used for decades in various applications that
need a combination of properties, which cannot be found in a single material. Now
their increasing use is mainly due to new developments in aerospace industry and
microelectronics. Composite-metal, polymer-metal, ceramic-metal, composite-
composite bi-layers with various interfaces are hardly appropriate for a routine use
of traditional modelling and diagnostic tools. On the other hand, nonlinear effects
in such systems can provide an additional information on their behaviour under
various loading conditions, thus, forming the basis for new methods of damage
examination which – after their experimental validation – can be used in new
procedures for analysis of structural integrity, safety, and reliability.
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Mittelineaarsete lainete kirjeldamine eralduvate
kihtidega kaksikkihis võre tüüpi mudeliga
Karima R. Khusnutdinova ja Vadim V. Silberschmidt

Kaksikkihi mittelineaarse dünaamika uurimiseks on esitatud võre tüüpi mudel
ja kirjeldatud selle omadusi. Mudel koosneb kahest ühemõõtmelisest omavahel
lineaarsete sidemetega seotud elementide perioodilisest ahelast. Ahelate oma-
vahelist interaktsiooni vaadeldakse mittelineaarsena. Kihtide eraldumispiirkonna
parameetrite mõju üksiklainete levikule selgitatakse numbriliselt.
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