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Abstract. A lattice model consisting of two one-dimensional periodic chains with linear lin
between elements and nonlinear interaction between the chains is suggested to study no
dynamics of a bi-layer. The properties of the model are discussed, and the influence
delamination zone on the propagation of solitary waves is studied numerically.
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1. INTRODUCTION

Combinations of two materials with different properties are broadly usec
obtain a structure with the properties better than those of the parent constitu
Integrity of such layered structures is mainly determined by the quality
their interfaces. A sharp change in material properties at the interface
different deformation behaviour under loading can result in considerable st
concentrations near interfaces, leading to delamination and cracking. T
processes not only affect functionality of structures but can also cause their
failure. The possibility of delamination zone development practically withc
any visible signs up to its catastrophic manifestation complicates the inter
quality control and necessitates an elaboration of advanced detection methot
delamination zones and investigation of conditions for their propagation.
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The problem of the interface crack growth belongs to the basics of
mechanics of fracture (see, for examplé?]). Usually the possibility of the
crack growth is related to the energy balance between the energy release ¢
cracking and crack resistance forces (known as fracture toughness). Howeve!
purely phenomenological approach becomes rather cumbersome when appl
heterogeneous materials with different properties.

Another way of crack analysis based on a direct introduction of the atol
microstructure into consideration, which is now being actively developgds
still limited to relatively small volumes and selected types of materials. Expans
of this approach to macroscopic volumes of real materials with various relaxa
properties is nowadays hardly possible.

To overcome limitations of both approaches, new ideas have been sugg:
both in mechanical and physical communities based on lattice models represe
solids as a lattice of elements larger than atoms and molecules. Here, fra
is introduced as a vanishing link between respective elements {sép gnd
references therein). An additional advantage of lattice models is their suitab
for numerical simulations, with lattice algorithms being developed to solve vari
types of equations.

Design of new schemes of delamination diagnostics for bi-materi
necessitates a considerable enhancement of existing methods of nondestr
evaluation. Recent developments in this area are linked with understan
nonlinear effects accompanying propagation of waves of finite amplitude in sol
Nonlinear methods are considerably more sensitive to damage-induced chz
in structures than standard schemes using linear material parameters (wave ¢
damping, etc.) 7.

A mathematical background of this study is rooted in the theory of nonlin
differential equations and respective numerical algorithms. After the inten:
study of nonlinear wave processes in recent decades, it has become clear th
same equations such as, for instance, the Korteweg—de Vries equation or non
Schrodinger equation, appear in many different physical situations (seef€]g.,
and the references there). Since heterogeneity constitutes an essential feat
many physical problems, it makes sense to try to find some suitable mathem:
models which will allow us to study features of nonlinear wave processes
heterogeneous media. A possible way to derive such continuum models
consider the long-wave dynamics of lattice models for bi-layers.

2. THE MODEL OF A BI-LAYER

We study one-dimensional nonlinear dynamics of a bi-layer using the mode
coupled chains of particled], i.e., two one-dimensional periodic chains aligne
along thezx-axis with linear links between elements and nonlinear interacti
between the chains are considered, which is the natural generalization o
Frenkel-Kontorova model{]. It is assumed that particles may move only parall
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to thez-axis. The mass of any particle of the “upper” chaimis and that of the
“lower” chain isms. In equilibrium the distance between adjacent particles in e¢
chainisa. Interaction between the nearest neighbours in the chains is consider
terms of the usual harmonic approximation (with different constants of interac
£y and32). The function determining interaction between the chains is assur
to depend on displacements of pairwise corresponding particles of the “upper”
“lower” chains. The choice of this function is determined by the interface type.
Let u,, andw,, be displacements of theth particle of the “upper” and “lower”
chains, respectively, anff (u,,w,) be the energy of interaction between thes
particles. Dynamics of the system is described by the following equations:

my i, = (1 (Un+1 — 2up + un—l) - Hun (Un7 wn)7 (1)

Moty = 52(wn+1 — 2wy, + wn—l) - Hwn (uru wn)

(dots stand for differentiation with respect to time).
Introducing dimensionless variables

1 T .U 5 Mo W ~ H
D U= —, w = ) H= 29
a a mi a micy

and using the force functiof(, @) = —H (@, ), in the long-wave approximation
we obtain from (1) the system of coupled Klein—Gordon equations (the tilde
omitted)

Ut — Ugy = fu(u7 w)7 Wit — C2wzx = fw(u7w)u (2)

wherec = c3/c1 = +/fami/Bimse is the ratio of acoustic velocities of non-
interacting components? = 3;a?/m;, i = 1,2, andf (u, w) describes interaction
between the chains.

Similar two-component models were proposed to describe dynamics
hydrogen-bonded chains, molecular crystals and polymer chains, etc. (see re
['2]), and also in connection with the crack propagation in solids (€2g%'F]).

It is also worth noting that similar equations describe some processes in the |
double helix [°] (see also [] and the references therein).

The function f(u,w) in (2) describing the energy of the glue bond shou
be found experimentally, and therefore its analytic form is not unique. It ma
sense to approximate, if possible, the experimental data by a function allowil
certain analytic study of the properties of equations. It is known that the existe
of a sufficiently large group of symmetries allows such an investigation (see,
example, [""!%]). Thus, the group classification problem for the coupled Kleir
Gordon equations (2) naturally arises in connection with the above-discu:
model.

Equations of type (2) with = 1 (and arbitrary functions af andw in the right-
hand side) were studied if’] where cases admitting Lie—Backlund symmetrie
were found, and completely or partially integrable examples were presentec
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fuw(u, w) = 0, system (2) splits into two independent Klein—~Gordon equatiol
whose group classification was given by L#][ The Lie group classification of
Egs. (2) fore # 1, fuw(u, w) # 0 was carried out in'f].

It was proven that the admitted algebra of infinitesimal operators can only t
dimension 2, 3, 6, 7 and be infinite-dimensional in the case of linear equations.
six-dimensional algebra is admitted if the functipfu, w) has one of the following
forms (up to the equivalence transformations, S&p:[

2
o flu,w)=F(2)+ Auw + (¢ — 5A)%, F"(2) # 0;

o f(u,w)=F(z2)+ecuw — 561;2, F"(2) #0;

o f(u,w)=F(z)+ Au, F"(z)#0.

Herez = du — w, A is an arbitrary constant, = +1, ¢ is an arbitrary positive
constant. The seven-dimensional algebra is admitted in the last case if, additiol
function F'(z) has one of the following forms:

o F(2)=¢e2?+ Bz, o+#0,1,2;
o F(z) =ee® + Bz;

e F(z) =eclnz+ Bz

o F(z)=cezlnz

where B ando are arbitrary constants. The corresponding infinitesimal operai
of the groups and the complete classification results can be foud®].in [

System (2) with an arbitrary functiofi(u, w) can be formulated by means o
the Lagrangian principle from the density

1
L= i(uf + w? —u2 — Aw?) + f(u,w).
Therefore, knowing infinitesimal operators of the groups and using the Noi
theorem, one can find conservation laws (see, for exam3iB, [The shifts int
and z are admitted with any functiorf(u, w). The corresponding conservatior
laws for energy and momentum have the form

1
Dy §(u? + w? + ui + c2w§) — f(u, w)] — Dy (upuy + czwth) =0,

1
Dt(utum + wth) - Da: |:f(u7w) + i(u% + wtz + u?z + 62w§) =0.

In the cases with the dimension of the admitted algebra larger than 2, there
additional conservation laws, which can be easily written down explicitly (e
['8]) and that are useful for the application of various asymptotic methods an
numerical simulations.
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When the potential function i§(u, w) = cos(du — w) — 1, system (2) reduces
to the coupled sine-Gordon equations:

U — Ugy = —0° sin(u —w),  wy — g, = sin(u — w), 3)

where the variable replacesu, compared to system (2). Although this case is n
the most beneficial from the point of view of admitted symmetries (six-dimensio
algebra of operators), it is interesting as a possible generalization of the Frer
Kontorova model ['] (see also 1?]). Unlike the latter, where the shear of one
part of a crystal is considered with respect to the rigid base, system (3) is der
on the assumption that both parts of the crystal are deformable. In model (3]
dimensionless paramet&t = my/m is equal to the ratio of masses of particle
in the “lower” and “upper” parts of the crystal. F6f — 0 andu = 0, system
(3) reduces to the sine-Gordon equation for the variabl@hus, there is a natural
limit to the Frenkel-Kontorova model. Let us also notice that system (3)awith
was proposed to describe the open states in DNRA [

Invariant solutions for system (3) and solutions describing its dynamics in
presence of additional shear forces were constructed]inThe particular case of
these solutions is periodic travelling-wave solutions, which have the form

u = U arcsin{k sn [V \(z — vt +x0),k]} = Ww, 0<k<1,
U— 262 (v? — c?) (vt =)
22 =)+ -1’ 102
for “fast” waves, propagating with velocities €]S, M[U]L, +oc[, whereS =

min{1,c?}, M = lszf, L = max{1, ¢?}, andz is a constant, and the form

u = U arcsin{dn [\/|\|(x — vt + z9),k]} = Ww, 0<k<]1,

for “slow” waves, propagating with velocitieg < [0, S[U]M, L[. In the limiting
case ofk = 1, “slow” periodic waves become solitary waves (kinks):

u = U arctan[exp /|| (z — vt + zg)] = Ww. 4
Using the fact that Egs. (3) admit reflections
t— —t, T — x; t—1t, x— —ux; uU— —u, W — —W;

one can obtain solutions with other combinations of signs.

If § — 0 (m1 > my), solitary waves may propagate with velocities €
[0,c%[. In that case the displacement of particles is independent of the w
propagation velocity. If the masses, andms are comparable, the solitary wave:
may propagate with velocities? € [0, S[U]M, L[. Therefore, if the acoustic
velocities of non-interacting chains are different ¢¢ 1), a gap appears in the
velocity spectrum of the solitary waves, i.e. the system acts as a filter of soli
waves. Here the relative displacement (“upper” particles relative to the “low
ones) remains the same as in the Frenkel-Kontorova model (per period of
chain), but the absolute displacement depends on the velocity of the wave.
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Another essential feature of the considered system is a possibility of the en
exchange between its physical components (84§ [n particular, in the situation
when one component is initially excited (say,with another componenty) being
initially at rest. Periodic and quasi-periodic processes in the wave system (3
analogous to the energy exchange in a system of coupled pendulums in cla:
mechanics??] (see also7?]).

The energy exchange between two componetisdw of the system (3) takes
place since different branches of the dispersion curve coexist for the same \
numberk. Here we briefly discuss only a particular nonlinear solution of the
equations fore = 1. Consideration of the general case and the analysis det:
such as conditions of the full and partial energy exchange, can be foufid.in [

An exact solution describing the energy exchange between two companel
andw of system (3) can be constructedcit= 1, i.e., if the acoustic velocities of
both chains coincide. In this case, by introducing the new variables

p=u—w, ¢=u+ 6w,
system (3) can be transformed to the form
Ptt — Pxx = _(1 + 62) Sinp7 qtt — Qex = 0.

The system decomposes into the sine-Gordon equation uncoupled from the |
wave equation. As a result, the explicit two-wave solution describing the ene
exchange between the two componentsndw can be found in terms of Jacobi
elliptic functions:

2
u = m(arcsin ¢1 + 6%arcsin ¢o),
2
w = m(arcsin ¢1 — arcsin ¢9), (5)

¢1,2 = Kk sn(kx — wy ot + o, K).

Herew; = k, ws = v/1+ 62 + k2 are two branches of the dispersion curvés
the modulus@ < x < 1), andé, is a constant. Wheé? = 1, it can be shown that
the nonlinear solution (5) describes a full periodic exchange of energy betweel
two components of the system. Indeed, in this case, using the addition theo
for elliptic functions (e.g.,7*]), (5) can be transformed to the form

u = arcsin 2k cn(y-_t, k) Fi(t,z)/®(t, z)], (6)
w = arcsin [2k sn(vy_t, k) Fa(t,z)/P(t, z)],

where

Fi(t,x) = dn(kx — vt + 0g, k) sn(kz — vt + Oy, K),
Fy(t,z) = dn(y_t, k) ecn(kx — v+t + 0y, k),
O(t,x) =1 — rZsn’(y_t, k) sn?(kx — vt + 0, k).
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Herevy = (w2 £+ w1)/2. Since the Jacobi functiodn(z, <) has no zeros on the
real axis, zeros of the nonlinear solution (6) coincide with those of the functi
cn(z, k) andsn(z, k). Zeros of the functiosn(z, x) on the real axis are located a
the pointsz = 2m K, while those of the functionn(z, ) are located at the points
z=(2n— 1)K, wherem,n € Z, and

w/2
K :/ (1 — K2sin? ¢) "V 2dg
0

is the complete elliptic integral of the first kind. The real period of these functic
is equal to4 K. The time of the energy exchange from one component to anol
isT = K/~v_. The nonlinear two-wave solution (6) is shown in Fig. 1 for 1,

§ =1,k = 1.6, andx? = 0.99999.

The exact solution of system (3) for the periodic energy exchange
found only for ¢ = 1. This condition is very restrictive. In general case, it |
possible to construct weakly nonlinear two- and four-wave (for two pairs
counter-propagating waves) solutions describing the energy exchange betwee
components: andw. In [?!] the weakly nonlinear solutions are found with th
use of asymptotic method®’] by reduction of the coupled sine-Gordon equatior
(3) to the coupled nonlinear Schrédinger equations, which are derived for a ¢
spatio-temporal evolution of wave amplitudes.

The situation when the linear dispersion relation has two or more branc
for the same wave number is typical in composites. The energy exche
between the physical components of the system (the layers) constitutes the es¢
feature of dynamics of bi-layered structures. It would be interesting to study
energy exchange processes in other physical systems admitting a similar dispe
relation. For example, the attractive candidate is the sine-Gordon-d’Alem
systems introduced in the study of the propagation of magnetoacoustic doi
walls in elastic ferromagnet$q] and electroacoustic walls in elastic ferroelectric
[27] (see also ).

TR

UCOURINI VN
W

Fig. 1. Energy exchange in the nonlinear two-wave solution (6).
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3. KINK IN A BI-LAYER WITH DELAMINATION

We now suppose that a bi-layer has a delamination zone and are going to ¢
the influence of this zone on nonlinear dynamics of a bi-layer. As an example
have chosen the propagation of the solitary wave (kink) discussed in Section z

It should be noted that many features of the soliton—impurity interact
have been extensively studied within the framework of such models as the
Gordon equation or the discrete Frenkel-Kontorova model with local or exten
inhomogeneities (see revieW’] and the references therein). Soliton scattering |
impurities in hydrogen-bonded chains has been studiedinip recent years there
has been an increasing interest in the behaviour of breathers in the presenc
defect (P°~32] and references therein) in connection with the processes in DN/

A major difficulty in the application of lattice models to real physice
or biological processes lies in the derivation of the interaction potentials .
parameters of the model. In the case of bi-layers, this should (and can) be
experimentally. In this paper, we consider a simple model situation close to
Frenkel-Kontorova model to study the potential applicability of nonlinear wave:
the problems of the interface control in bi-layers.

Any of the known solutions of (3), appropriately rewritten, yields &
approximate solution of the corresponding discrete equations, which are wr
below. In the case of a kink described by (4), such an approximate solution ha

form
Up & Uy = gUaurctaun {exp [»soz (n — v/ &t + n0> } ,
T mq

2rTmy =)+t -1
afimg’ T (02— 1)(0? —c2)

e==1,

(7)
whereaa < 1 to provide the conditiofw,+1 — u,| < 1 (the long-wave solution)
andng is a constant. Here is the constant of interaction between the chair
¢ = —1 corresponds to the kink, ard= 1 corresponds to the antikink.

Using the solution (7) witlk = —1 andny = 40 as the initial condition for the
corresponding discrete equations, we study numerically the following problem

wn%ﬁ)n:ﬂn/W, o = ’|

mytin = B1(tn+1 — 2up + Un-1) — 7sin <27r“n_wn> ;
a
Moty = IBQ(wn-‘rl — 2wy + wn—l) + 7sin (27T’LLn—U)n> )
a
for —N-1<n<-K-1 and K+1<n<N-1;

miiy, = 51(“71—}—1 — 2up, + Un—l)v
MWy, = ﬁQ(wnJrl — 2wy, + wnfl)a
for — K <n<K;
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iy =u_n(t), iy =1un(t),
Wy = U~}_N(t), wWN = lI)N(t);

un|t:0 = ﬂn<0)’ un|t:0 = ﬂn(O),
wn‘t:O = ﬁin(()), wn|t:0 = wn(0>7
for — N <n<N\.

Here N and K correspond to half-lengths of a bi-layer and crack (delaminatio
respectively. The boundary conditions are chosen in accordance with
approximate solution (7).

Numerical experiments show the sensitivity of the nonlinear wave to the len
of the delamination zone. Figures 2 and 3 show numerical resultg &rd w,
respectively, for an ideal bi-layer (no crack), and for a bi-layer with delaminatic
whenK = 2, andK = 7 (alonger crack). In all cas€§ = 400. In each figure we
compare the wave propagating in an ideal bi-layer (without a defect) with the c:
of delamination for: = 1.58114, § = 2 (m1 = 0.02, my = 0.08, 51 = 10, B =
100, 7 = 0.001, a = 0.05, v = 0.5). Hereaa ~ 0.00674 < 1.

The figures demonstrate typical distortions of the wave form and the k
trapping by a sufficiently long delamination zone (at the given wave spet¢
accompanied by a strong radiation. Note that for the chosen values of param
thew-wave, which is less intensive than thevave, is much more sensitive to the
interface crack than the-wave. However, the kink is able to pass the delaminatic
zone and to propagate further at higher wave speed, as shown in Figs. 4 and 5
andw, respectively, for the same values of all the parameters but the wave sp
v = 0.8.

u no crack u K=2 u K=7
u u u
u u u

Fig. 2. Theu-wave forv = 0.5 at three consecutive moments of tinte<{ 4, 7, and 10).
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w no crack Y K=2 w =7
j 2N — 2N — 2N
w w w
j 2N j 2N )

] 2N
w w w
] 2N jAT 2N /\/\
j | -

Fig. 3. Thew-wave forv = 0.5 at three consecutive moments of tinte<{ 4, 7, and 10).

u no crack u K=2 u =7
u u u
u u u

Fig. 4. Theu-wave forv = (.8 at three consecutive moments of tinte<{ 4, 7, and 10).

These results indicate the potential applicability of nonlinear waves to detec
of delamination zones in bi-layers and invite further detailed studies (numeri
analytical, and experimental). The problem of particular interest is the interac
of the wave propagating in the material with the separation wave. All this will
the topic of our further study.
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w no crack w K=2 \ K=7

2N 2N 2N
w w w

2N 2N oN
w w w
1 2N 2N oN

Fig. 5. Thew-wave forv = 0.8 at three consecutive moments of tinte<{ 4, 7, and 10).

4. CONCLUSIONS

The lattice model discussed here can be used to study characteristic featu
propagation and interaction of nonlinear waves in bi-layers with delamination.
model can be modified to take into account other degrees of freedom by consid
the chains of interacting mechanical dipol&§ [nstead of chains of point masses
It can also be two-dimensionalized.

Bi-material structures have been used for decades in various applications
need a combination of properties, which cannot be found in a single material. |
their increasing use is mainly due to new developments in aerospace industn
microelectronics. Composite-metal, polymer-metal, ceramic-metal, compo:
composite bi-layers with various interfaces are hardly appropriate for a routine
of traditional modelling and diagnostic tools. On the other hand, nonlinear effe
in such systems can provide an additional information on their behaviour ur
various loading conditions, thus, forming the basis for new methods of dam
examination which — after their experimental validation — can be used in r
procedures for analysis of structural integrity, safety, and reliability.
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Mittelineaarsete lainete kirjeldamine eralduvate
kihtidega kaksikkihis vore tutpi mudeliga

Karima R. Khusnutdinova ja Vadim V. Silberschmidt

Kaksikkihi mittelineaarse diinaamika uurimiseks on esitatud vére ttdpi mt

ja kirjeldatud selle omadusi. Mudel koosneb kahest ihem@&tmelisest omay
lineaarsete sidemetega seotud elementide perioodilisest ahelast. Ahelate
vahelist interaktsiooni vaadeldakse mittelineaarsena. Kihtide eraldumispiirkc
parameetrite mdju Uksiklainete levikule selgitatakse numbriliselt.
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