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Abstract. Inspired by the original ideas of L. de Broglie on wave mechanics, which were at the 
basis of the wave-like interpretation of quantum mechanics, we tentatively develop possible fruitful 
analogies between the conservation equations of nonlinear continuum mechanics in the canonical 
framework as expressed on the material manifold and the dispersive kinematic wave theory of 
Whitham in order to construct a nonlinear wave mechanics of structured solid continua. The final 
purpose of this approach obviously is not quantization but the relationship between dynamical 
localized concentrations of continuous fields, such as solitary waves of the envelope type, and the 
notion of quasi-particles. 
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1. INTRODUCTORY  REMARK:  THE  NOTION  OF  “ACTION”

In physics the “action” is measured by a momentum multiplied by a distance 
or an energy multiplied by time. In hyperbolic space-time the action S is thus 
written as 

,tES −⋅= XP (1) 

where X  and t  will later refer to material position of a continuum and 
Newtonian time, P  is a momentum vector (later on, the canonical, material 
momentum co-vector of a deformable continuum), and E  is an energy, P  and 
E being evaluated for the same quantity of matter, say an elementary reference 
volume of a continuum. In 1923 L. de Broglie recognized (see [1]) that the action 
 S is a space-time invariant. Considering the Planck–Einstein relation 
E = ,ωh  where π2/h=h  is the Planck reduced constant, the quantum of action, 
and ω  is a circular frequency, he proposed from that remark the now celebrated 

https://doi.org/10.3176/phys.math.2003.1.01

https://doi.org/10.3176/phys.math.2003.1.01


 6

de Broglie’s relation ,KP h=  where P  is the momentum of any particle and K  
is the wave number associated with the wave carrying that particle in the 
framework of wave mechanics. It is also reminded that the phase of a plane wave 
in a continuum is defined by 

 

,),(~),( tt ωωϕϕ −⋅== XKKX                                (2) 
 

where K  is the wave vector and ω  the associated circular frequency. According 
to the above, for a point particle we have 

 

,),( ϕϕ ≈= tS Xh                                                (3) 
 

i.e., the identity of action and phase in appropriate physical units. This property 
makes one think that in wave systems, even for a deformable continuum, there 
exists a possibility that action and phase satisfy similar equations; this is what is 
explored in the sequel of this short paper, first by recalling the structure of 
analytical continuum mechanics in the case of inhomogeneous hyperelasticity, and 
then by comparing to the kinematic wave theory developed in the 1960s–1970s by 
J. Lighthill, G. B. Whitham, and W. D. Hayes in a series of enlightening works. 

 
 

2. CANONICAL  MECHANICS  OF  A  NONLINEAR   
ELASTIC  MATERIAL 

 
A true canonical mechanics of nonlinear elastic materials was only recently 

achieved thanks to the material presentation of continuum mechanics developed 
primarily to account for material inhomogeneities (cf. [2]). In this framework two 
dual presentations of the kinematics of finitely deformable continua are 
considered, that based on the so-called direct motion: 
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where v  is the physical velocity field, F  is the direct motion gradient, or 
deformation gradient, and that based on the so-called inverse motion: 
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where V  is the so-called material velocity and 1−F  is the inverse motion 
gradient, or inverse of the deformation gradient. With 0ρ  being the mass density 
at point X  of the reference configuration RK  of the body, the matter density at 
placement x  in the current configuration ,tK  the physical momentum ,p  and 
the material momentum co-vector P  are given by 
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where FFC ⋅= T  is the deformed metric or Cauchy–Green finite-strain tensor. 
Then we have the following result ([2]). In the absence of body force, for a 
smoothly inhomogeneous hyperelastic solid the equation of motion – so-called 
balance of physical momentum – at any regular point in the body is given by 
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where T  is the first Piola–Kirchhoff stress and W  is the strain energy function 
such that 

 

).(),);,(( 00 XXXF ρρ == tWW                              (8) 
 

Then the balance of material momentum, with components on the material 
manifold, is given per unit reference volume as 

 

,div inhfb
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where the Eshelby material stress ,b  the material inhomogeneity force ,inhf  and 
the Lagrangian density per unit reference volume are given by 
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Kalpakides and Maugin [3,4] have recently shown that the following Hamiltonian 
canonical equations could be established on the basis of the just recalled 
equations: 
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where we have set 
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Furthermore, studying the invariance under the group of space-time scalings for a 
homogeneous material with quadratic strain energy function, they have 



 8

established the following “balance law” for the action per unit current volume, 
:ˆˆˆ tHPS −⋅= X  
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while on account of all canonical equations they have separately shown that the 
following Hamilton–Jacobi equation holds good: 
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This completes the (canonical) analytical mechanics of hyperelasticity. 
 
 

3. KINEMATIC  WAVE  THEORY 
 
The kinematic wave theory is the masterpiece of a small group of scientists 

(see [5–7]). In this theory, for dynamical nonlinear solutions depending only on a 
phase ,ϕ  one writes for homogeneous bodies 

 

).,( tXϕϕ =                                                (17) 
 

Then the wave vector K  and the frequency ω  are defined by 
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from which there follows 
 

,0K =×∇R                                                (19) 
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In particular, Eqs. (18) are trivially satisfied for plane wave solutions for which 
Eq. (2) holds true. 

For an inhomogeneous linear behaviour with dispersion we have the 
dispersion relation 
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Accordingly, the conservation of wave vector (20) becomes 
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and thus the Hamiltonian system 
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where we have set 
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Simultaneously we have the Hamilton–Jacobi equation (compare Eq. (18)2) 
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If we now consider a wave in an inhomogeneous dispersive nonlinear material, 
the frequency will also depend on the amplitude. Let the n-vector of nR  denoted 
by α characterize this amplitude of a complex system (in general with several 
degrees of freedom). Thus, now, 

 

).,,( αω XKΩ=                                              (24) 
 

Accordingly, the second of Hamilton’s equations (22) will now read 
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4. COMPARISON 
 
We can now compare the Hamiltonian systems obtained in Sections 2 and 3. 

It is clear that P̂ and V  of hyperelasticity play the same role as K  and DtDX  
in the kinematic wave theory, and the quantity DtDX  is also a material 
velocity. The Hamilton–Jacobi equations (16) and (23) are obviously analogous 
to one another. The richest comment, however, comes from a comparison of 
Eq. (25)1 and a possible generalization of Eq. (11)2. 

First of all, Eq. (25)1 does not contain in its left-hand side a term analogous to 
the term .ĤRδ  The reason for this is that the dispersion equation (24) is not itself 
dispersive in the language of Newell (cf. [8]). But we know now that a good 
generalization of Whitham’s method should seek such a generalization, as 
demonstrated by Newell [8] and on an example of nonlinear surface waves by 
Maugin and Hadouaj [9] (see also Appendix A6 and Section 9.3 in Maugin [10]). 

Next there is no term equivalent to the “amplitude” contribution of Eq. (25)1 

in the right-hand side of Eq. (11)2. However, if we introduce the possibility of 
having some anelasticity in the continuum system accounted for through an 
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internal variable of state denoted by α  (an n-vector of ),nR  then we shall have 
in the pure Hamiltonian system an additional source term due to this thermo-
dynamically irreversible behaviour. This term, according to the general approach 
of Maugin [11], will necessarily have the form T

R )( α∇⋅A in the equation of 
canonical momentum, hence a generalization of Eq. (11)2 to 
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where the new quantity in Eq. (26)1 is a pseudo-inhomogeneity force due to the 
fact that the dissipative internal state variable α  has not yet reached a spatially 
uniform value. Comparing (25)1 and (26)1, we can draw the conclusion that the 
role of nonlinearity (dependence of the dispersion relation on wave amplitude) in 
the Whitham–Newell kinematic wave theory is played by the dissipation of the 
internal state variable in the dynamical theory of anelasticity. Both make the 
system finally deviate from a pure Hamiltonian one. Whether the present results 
and comparison will help one progress in the theory of nonlinear wave 
propagation in complex media is, for the time being, an open question. However, 
the presented analogies certainly reinforce the common view of wave mechanics 
that we have the following equivalences: 

 

,ˆ,ˆ,ˆ ϕ≈Ω≈≈ SHP K                                      (27) 
 

which hold for point particles in wave mechanics (Section 1) but are likely to 
hold in a much larger framework, thus contributing to an advance toward a 
possible nonlinear duality between the nonlinear dynamics of continua and the 
motion of quasi-particles as is already emphasized in soliton theory [12]. 
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Keerukate  omadustega  materjalide  mittelineaarne  
lainemehaanika 

 
Gérard A. Maugin 

 
Kvantmehaanika lainepõhine interpretatsioon tugineb L. de Broglie ideedele. 

Nendest lähtudes on arendatud analoogilist teooriat, sidumaks mittelineaarse 
pideva keskkonna mehaanika jäävusseadusi nende kanoonilises kujus Whithami 
kinemaatilise laineteooriaga. Eesmärgiks on konstrueerida struktureeritud oma-
dustega materjalides toimiva mittelineaarse lainemehaanika alused. Lõppsihiks ei 
ole mitte üksnes kvantiseerimine, vaid seoste leidmine pidevas väljas tekkivate 
dünaamiliselt lokaliseeritud häirituste – moduleeritud üksiklainete – ja kvaasi-
osakeste formalismi vahel. 

 


