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Abstract. Nonlinear acoustic waves propagating at the interface between a solid and a fl
with a compressibility much higher than that of the solid are considered. It is shown that tF
waveform evolution in the fluid is governed by the two-dimensional Zabolotskaya—Khokhli
(ZK) equation, with a linear boundary condition determined by the acoustic mismatch betw:
fluid and solid. Two evolution equations used for the interpretation of recent experiments
derived as two different limiting cases of the ZK equation, with the corresponding bound:
condition at the interface. The possibility of the formation of solitary waves is discussed !
the case of Scholte waves becoming dispersive due to inhomogeneity of the solid.
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1. INTRODUCTION

Scholte waves propagate along the interface between a solid and a fluid.
this interface is planar and the solid is a homogeneous elastic medium, Sch
waves are not dispersive. Consequently, all harmonics of a fundamental sinusc
Scholte wave are in resonance and strong nonlinear effects like shock formation
be expected. Recently, nonlinear waveform evolution at a solid-liquid interfa
has been investigated experimentally. [Acoustic waves of high intensity have
been generated on the liquid side of a solid—liquid interface by laser excitatit
and their evolution has been monitored by measuring wave profiles by la
deflection from the interface at several positions along the direction of propagati
Strong intensity-dependent waveform distortions have indeed been found. TF
experimental findings were interpreted on the basis of the simple wave equa
(inviscid Burgers equation or Korteweg—de Vries equation without dispersiol
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which constitutes a special case in earlier theoretical treatment of nonlinear Sc
waves F] and which neglects variations of the velocity field in the liquid along tt
direction normal to the interface. The authors §fj{istify the use of this equation
by the fact that in their system (glass/water) Scholte waves are weakly local
in the liquid due to strong acoustic mismatch. With the help of a Hamiltoni
approach 1], Meegan et al.4] have derived an evolution equation for nonlinee
Scholte waves. Like the simple wave equation, it involves a scalar field wr
depends on time and the spatial coordinate along the direction of propag:
parallel to the interface. However, even if the nonlinearity in the solid is neglect
the two evolution equations strongly differ in their nonlinear terms. One goal
the present paper is to clarify this aspect and identify the two one-dimensit
equations as two limiting cases of the same two-dimensional evolution eque
which correspond to two different physical situations.

In order to do this, we first derive a scalar nonlinear evolution equation fc
component of the velocity field in the fluid and an effective boundary conditi
at the interface. The evolution equation is the two-dimensional form of -
Zabolotskaya—Khokhlov (ZK) equatior][(or the Kadomtsev—Petviashvili (KP)
equation §] without dispersion term). The material properties of the solid appt
only in the effective boundary condition. The scalar field in this evolution equat
still depends on the spatial coordinate normal to the interface in addition to
coordinate parallel to the interface, and on time. In the limit of an infinitely he
solid, there are solutions to this equation and the corresponding boundary conc
that do not vary in the direction normal to the interface and that obey the sin
wave equation. In the opposite limit, when the penetration depth of linear Sch
waves is much smaller than a characteristic length on which nonlinear wavet
distortions take place, the evolution equation of Meegan etis [derived from
the ZK equation and effective boundary condition at the interface, by apply
arguments developed by Reutd\, [Lardner F], and Parkerq] in the context of
surface acoustic waves.

Linear Scholte waves can become dispersive if the solid medium
inhomogeneous. Specifically, we consider the case of a layered structure.
the level of the ZK equation, linear dispersion influences nonlinear wavefc
evolution via the effective boundary condition at the interface. The existence
solitary pulses and stationary periodic waves is predicted in this system. Nume
simulations in two spatial dimensions are carried out to test approximate ana
expressions for stationary periodic waves that propagate along the solid—li
interface. Special attention is given to the depth profiles in the liquid associ:
with such stationary waves.

2. PHYSICAL SYSTEM

The system we consider here is a fluid filling the half-space 0 in contact
with an elastic solid occupying the half-spacec 0. The Lagrangian description
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is used for both the fluid and the solid. The potential energy of the fluid n
conveniently be obtained from that of a solid medium equating to zero those el
moduli that would give rise to nonzero off-diagonal components of the Cau
stress tensor'{'Y]. We define a displacement fielt(x, ¢) in the solid and in the
fluid, depending on the positiox of a mass element in the undeformed state
the corresponding medium, and on timen terms of the displacement gradient
uq,8 = Ouq/Oxg, the potential energie® of the fluid (index) and the solid

(index.S) are given by

oo o0 oo
Vi —/ dm/ dy/ dz ®p(x,t), (2.1)
—00 —00 0
[e's) 00 0
Vg = / dx / dy / dz ®s(x,1), (2.2)
—00 —00 —00
with potential energy densities
1 1 B
Cr = JAF |Uaalips — Uafupatiyy + 5 | 1= 7 | Uaatipsyy | (23)
and ) )
Cs = 5 Cappuvtla,flpw + 5 Sap u cla,sUurtics (2.4)

up to third order in the displacement gradients. Cartesian indices are denote
Greek letters. To keep the notation simple, we do not distinguish between inc
referring to the material and those referring to the spatial frame. Summa
over repeated indices is implied. The Lamé constantis related to the sound
velocity v in the fluid viav: = Ap/pr, wherepp is the mass density of the
fluid; A(= Ar) and B are coefficients of an expansion of the pressure in pow
of the density deviation from its equilibrium valu&[; (Caps ) is the tensor of
second-order elastic moduli of the solid; and the coefficights,,, ¢c are linear
combinations of second-order and third-order elastic moditili [

The equations of motion for the displacement field in the fluid and in the sc
are o2 5

P e = a—xﬁTag, (2.5)

with the Piola—Kirchhoff stress tens®f,s = 0®/0u, 3.

In the following, we consider situations where, at least to a good approximat
the displacement field(z, z, t) is independent of thg-coordinate. As boundary
conditions at the fluid—solid interface, we require that

Na(z, t)ug(x,0_,t) = Ng(z, t)ug(z,04,1t), (2.6)
No(z, ) Tos(x,0-,t) = No(z, ) Tas (2,04, 1), (2.7)

and
T (2, 8)Taz(x,0_,t) = T (2, 8)Tag(x,04,t) =0, j=1,2. (2.8)



Here,\(z,) is a vector normal to the interface at the position u(z, t) at time
t, while {7 (x,t)}, j = 1,2, is a basis of the tangent space of the interface
that point and instant.

3. TWO-DIMENSIONAL EVOLUTION EQUATION

Considering systems for which the elastic moduli of the solid are much lar
than\r, we introduce a dimensionless scaling parametere < 1 and apply the
scaling

1 -
Caﬁ;w = mcaﬁ;wa (3'1)
1 -
Sapuwce = emSaﬂwc&a (3.2)

while A\ = O(¢°). Likewise, we assumpg = pg/€'/? andpr = O(°). The
assumption concerning the size®f is not essential for the following results anc
may be dropped.

The displacement field in the fluid is now expanded in poweksasf follows:

u=eul) + S2ub? 1 2u® 1 O(S/?). (3.3)

Guided by the Scholte wave solution in the linear limit, we expand the displacen
field in the solid as

u =22 4 2u@ L 0(e?). (3.4)

At first order of ¢, the equations of motion in the fluid and the solid and tt
boundary conditions at the interface suggest the following fore‘bfin the fluid:

u((ll)(x, Z,t) = Oa1 / —qelquq(n, T) + c.c., (3.5)
0 27T

whered,g is the Kronecker symbol = x — vgt, c.c. denotes the complex
conjugate, and we have introduced the stretched coordinates ¢'/2z and
T = evpt.

In the solid, we allow the elastic moduli to be functionszofThe fieldu(3/2)
in the solid may then be written as a Fourier integral in the following form:

u®/2 (z,2,t) = / @eitﬁW(z; Tlq) + c.c. (3.6)

0 2

The quantityW has to satisfy the equation
p5(qur)*0ap + Du(@)Coppn(2)Du(a) | Wa(zi7lg) =0 (3.7)
along with the boundary conditions
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éa3ﬁu(z)Du(Q)Wﬁ(Z§T|Q) 0 = 5a3>\Fiqu(O7T> (3'8)

andW(z|qg) — 0 in the limit = — —oo. For convenience, we have introduced tk
operatorD,,(q) = da1iq + 0430/0z. In the case of a homogeneous isotropic sol
with longitudinal sound velocity;, and transverse sound velocity, W has the
familiar form

! L L _a(T) T T
W(z;7|q) = 0 | e )qzcg ) () + 0 el )qzcé (),  (3.9)

(L) i
wherea(L,T) = 1 ~(op/orr)? andcl ) (1) o A(0,7). If ps = O(eY),
thena(L) = a(T) =
At orderO(e%/?), the equation of motion in the fluid yields

2 2
T WD~ Gp / 99 ige;, O
27

pF8t2 e a$gl‘a 8,,7AQ(777 T)+C'C' (310)

Equation (3.10) implies the form

u§3/2) (x,2,t) = / ;Lq eiq&aq(n, T) + c.c. (3.11)

0 T

and P
aq = —Zaiq’r/Aq (312)

for the third component ofi®/2), while the other two components are independe
of z, too. They are left undetermined otherwise.

The continuity of the normal component of the displacement field at -
interface,ué?’/g)(:e,o_,t) = uéS/z)(x,OJr,t), imposes the condition,(0,7) =
W3(0;7|g). Since W3(0;7|q) o< Aq(0,7), this leads with (3.12) to a linear
boundary condition for, of the form

[§7Aq<m>} — lalbla)Aq(0.7). (3.13)

n=0

with a functionb(q) that depends on the material parameters of the fluid and
solid and will be discussed below.
At second order of, the equations of motion in the fluid yield

0? ok 0 0 0
-2 (2) _ (1) (3/2) (1, (1)
('UF ol 2) 2— uy g+ —nu&1 kG R RE (3.14a)

90?2 _

U 52U 0, (3.14b)
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2 o D
200 = 06

2
Ut = 5 /2), (3.14c)

where we have introduced the nonlinearity constant 1 + B/(2A) used in f].

Solvability of (3.14a) forugz) without secular terms i or ¢ requires the right-
hand side of (3.14a) to vanish. Accounting for (3.11) and (3.12), this solvabi
condition becomes

0 (0 0 H?
(= _ V= Nl
285 <07V+€V8§V>+8n2v 0 (3.15)
in terms of the dimensionless scalar field
(e} dq i )
V(g = o e (—iq)Aq(n, 7) +c.c. (3.16)
0

To first order ine, V' is the 1-component of the velocity field in the fluid in units ¢
vg, and may hence be regarded as a local Mach number.

The evolution equation (3.15) is known as the ZK equatijmgduced to two
dimensions. It may also be regarded as the nondispersive limit of the KP equi
[6], which has first been considered in plasma physics and has also been deri
the context of solid mechanic¥.

The presence of the solid comes into play via the linear boundary condi
(3.13). In case of a homogeneous solid, the coeffidhantindependent of wave
numberqg and (3.13) takes the form

o o .
[anV(g, n,T)L:O = b HIVIE0.7), (3.17)

where
avye) =2 [~ ag V) (3.18)

T S € =€

is the Hilbert transform. If, in addition, the solid is isotropic, the coefficient
depends on the sound velocities and densities of the two media in the follov

way:
(v pr a(L)
"= <T> ps 1+ Q2T — da(L)a(T) (3.19)

We note that in the evolution equation (3.15) and boundary condition (3.17),
nonlinearity of the solid does not appear.

If the solid is not homogeneous, the coefficiéitecomes a function af. As
an example, we consider a solid layer with thicknéssn a semi-infinite solid
substrate. Similar to the case of surface acoustic waves propagating in a c
substrate 1], the layer may be accounted for by effective boundary conditio
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atz = 0 that involve the displacement field of the semi-infinite elastic medium ar
the fluid. For isotropic media, these effective boundary conditions are

As — A As + 2us 2
= _ e ———— _ e = | _
u3(0+) U3(0 )+ [)\L n 2,U/LU171<O ) + ()\L our ) u3,3(0 )] d+0(d )7
(3.20)

0 = ps[u1,3(0-) + u31(0-)]

As + 2#5)
— 0_)+ + A\ —= 0_
[MSU1,33( ) <MS L)\L ¥ 2ur U3,13( )

As — AL  pL 2
+ (/\L +2ur + AL T pr /\F> U1,11(0—)] d+0(d”), (3.21)
T33(04) = (As+2us)usz3(0-) + Aguq,1(0-)
—{(As +2pus)uz33(0-) + (As + ps)ui,31(0-)
+ us = (pr/pr)Aplus i} d + O(d?). (3.22)

Here,u(0_) is the displacement field in the semi-infinite elastic medium, continue
to the solid—fluid interface at = 0; A andu are Lamé constants; and the indices
S, L, andF' stand for substrate, layer, and fluid, respectively. With these bounde
conditions, one readily obtains the coefficiéfy) as an expansion in powers of

qd: b(q) = by + b1qd + O[(qd)?]; by equals the right-hand side of (3.19). Figure 1
shows thab; can have either sign and vanishes for certain combinations of elas
constants.

0027

0.00

-0.02

-0.4 —0.I2 0?0 0.I2 0.4
AN\

Fig. 1. Dispersion parametéy for Scholte waves propagating in a system consisting of wate
glass substrate, and a layer of different material with= ps. AX = A\ — Ag. Upper to
lower: (i, — pus)/pns = 0.5,0.4,0.3, ..., —0.3, —0.4, —0.5.
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An interesting special case is an isotropic elastic layer with thickiisgsated
on an infinitely hard medium. The boundary conditions at the interface betwe
the elastic and the rigid medium at= —d areus = 0 andT3 = T3 = 0. In this
case, the functioh(q) has the explicit form

1 ps (vr\? 1
i~ or (or) wm
X {[1 + aQ(T)]zcoth[qa(L)d] — 4a(L)a(T)coth[qa(T)d]} , (3.23)

and the zero-order term vanishes in an expansidiig@fin powers ofgd.

4. ONE-DIMENSIONAL LIMITING CASES

In the limit of an infinitely hard solid, the coefficiehtin (3.17) vanishes, and
one may seek solutions of (3.15) that are independent ¢This is also the limit
of infinite penetration depth of Scholte waves into the fluid.) If these solutions a

localized in the x-direction, the Fourier amplitud€s = —igA, of the velocity
field satisfy the Fourier transform of the simple wave equation,
0 -~ iqe . - dk . . dk
—U,=—— r— +2 . — - 4.1
87’Uq 2 </0 Urlg— 27 * /q UkUk— 27T> (41)

This is the equation used in][for analysis of experimental data. It refers to a
regime where the nonlinearity in the fluid dominates over the guiding property
the fluid—solid interface.

We now consider the opposite regime, where the nonlinearity is sufficient
weak, so that it may be regarded as a perturbation that influences gradual wavef
evolution of guided waves (Scholte waves). To account for this relative magnitu
of the effects, we introduce another dimensionless scaling paratheter < 1
and expand the velocity fieldl in powers ofv, V = vV 4+ 12V@ 4+ O@3).
The first-order term has to satisfy the linearized version of (3.15). Writing =
bo + v6b(q), we find thatV’ () also has to satisfy the boundary condition (3.17).
Consequently,

V(g n,T) = / %eiQ(&AOTquO"Uq(T) +c.c. (4.2)
0

The Fourier amplitudes/, depend on a new stretched coordindte= v, and
Ao = —b3 /2. With the Fourier transform

o
V(g ) = / %eiq@—ﬁoﬂ fo(n,7) + cec. (4.3)
0

we obtain from the evolution equation (3.15) at second order of
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2?0+ 22+ 2N f )

> dk 0
— 42 & (k| +lg—K[)bon 9500507
q 5/ 5 ¢ UpUqg—i, — 2ige aTUq, (4.4)

whereq > 0 andU_, = U;. The boundary condition at the fluid—solid interfac
yields

—0o0

o hn)] =l fi(07) = o) (4.5)
n=0

Since the right-hand side of (4.4) does not depend @md secular terms in this
variable have to be excluded, must be independent of, too. Equations (4.4)
and (4.5), with the additional boundary conditigig(n) — 0 asn — oo,
constitute a linear inhomogeneous boundary value problem. Its solvability reqt
a compatibility condition that is obtained by multiplying (4.4) &yp(gbyn) and
integrating ovem from 0 to co. On the left-hand side, we integrate by parts ar
make use of (4.5) in the following way:

/Oodneqb‘)"a?f(): 5 [ ane s, - [ 2 olo) ~ atostn)
i g i) = 28 n ™ fy(n) = | 5 Jaln) = dbofa(n

0 n=0

— 2g?A /0 dn €™ £,(n) — qb(q)U,. (4.6)

Combining this with the other terms on the left-hand side of (4.4), carrying out
integral on the right-hand side, and rearranging the integrals over wave némb
we finally obtain the following equation fav,,:

) _ ige [ [1 dk 0 . dk
q

Apart from the first term on its right-hand side, which represents linear dispers
(4.7) differs from the Fourier space version (4.1) of the simple wave equation by
factor ¢/k in the last term, which causes the nonlinearity to be strongly nonloc
In the absence of the dispersion term, (4.7) is the evolution equation derivdd i
in the limit of vanishing nonlinearity of the solid.

5. SOLITARY SOLUTIONS
5.1. Construction

Although the evolution equation (3.15) does not contain dispersion, solit
and stationary periodic solutions can be expected to exist if the effective boun

51



condition (3.13) at the solid-liquid interface contains a length scale. Such solut
may be constructed in the form of a power series in an expansion paran
0 < v < 1 which is of the order of the typical Mach number in the liquid. For th
purpose, we employ the Ansatz

Vi) = [ g, m g +oe (51)

Inserting this into (3.15), we obtain

0 dk o dk
<62+2qﬁ>Qq—q5(/ QrQq- k+2/q Qsz_qzﬂ_>. (5.2)

Likewise, the boundary condition becomes

[((jﬁ - qu> qu)]no — u3b()Q4(0). (5.3)

As in the previous section, we have scaled the dispersive part of the boun
condition to be of first order im.
Expanding now

n) =Y QY (n) (5.4)

j=1

and decomposing = xg + vx1, we find
QY (n) = QY (5.5)

andro = —b3 /2. The inhomogeneous linear boundary value problem resulting
( ) requires the compatibility condition

K1 (1)_i 7 dk qu
[56() b0:|Qq %5 [/0 QkQ k+2/q Qk qu .

(5.6)
This equation also follows from (4.7) with the Ansaiz(T') = le) exp(—igqr1T).

Once a solutior{le), 1} of the nonlinear eigenvalue problem (5.6) is found, tf
corresponding higher-order terms in the expansion (5.4) can be determined
straightforward way by solving successively inhomogeneous linear equations

simplicity, we only consider real solutior@ ' ( ). Let us suppose that at
orderO(v’~1), j > 1, we have determlne@] Y(n) up to an additive term
QY=Y exp(gbon). At orderO(v7) we have to solve
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02 : - e
<an2 - qu%) QY = HylQW)(n) — 27k QY Ve
L9g% [ / Q(l)Q((IJ'_;l)eqbon
1 ] 1) A(1
+ /q = (a1 + QoY ) e qﬂm},
(5.7)

with the boundary condition
0 () G-1o
oy~ ) QP = aib(@)QY V(). (5:8)
n n=0

In (5.7), H, is a functional of"), partly through the lower-order functiodg?"),
j < j- 1 which we assume to have already been determined. In order tc

able to solve the boundary value problem (5.7), (5. S)Qé’r , the following
compatibility condition has to be satisfied fpr> 2:

k1| AG-1) _ £ /qd’f G-1) A1)
a5t o - S [ aray,

T dk g T AG-1) 50 0 -
+/q 27rk[Qk] Q2+ QA ” JalQW, (5.9)

where J, is a functional ofQ(1). Forj = 2, the corresponding compatibility
condition is (5.6). Equation (5.9) is normally nonsingular and uniquely determi
QU=Y . It may be written in the general form

*dk 5G-1) 0
f, e G 510)
k

whereG, is the right-hand side of (5.6) wit@gl) being a real function of.
For the special cas®(q) = bog? an analytic solitary solution of (5.6) is known:

QLM = ay|gle 14, (5.11)

with parametersy, = 24wboby/c and 32 = 3bgby/k1. At first order in the
expansion parametet the velocity field associated with (5.11) is

% (b077 B ﬂs)Q — (6 - 57—)2

D6 = e = e + Gun = B

(5.12)
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showing algebraic decay in all spatial directions. It is the limiting case of a far
of stationary solutions that are periodic in the variapte ¢ — k7, with periodicity
27 /qo, and have zero average dilatation along the x-direction,

1 — 9e—Bp+aobon COS(CIOC)]2 + 1 — 2¢—2Bp+200bon

[1 — 2e~Prtaobon cos(qo() + 6—25p+2qobon]2

V(l)(g,n, T) =y { [

(5.13)

2 [1 — e~ Frtaobon cos(go()]
o 1— 2@*18P+QObO77 COS(QOC) -+ 6725p+2(I0b077 ’

The parametersy, and 3, are related to those occurring in (5.6) wg =
12bobagd /e, k1 = bobagd[3sinh™2(,) — 1]. An interesting aspect of this solutior
is that forsinh?(3,) = 3, it travels with the same velocity as linear nondispersi
Scholte waves.

(@)

Q- NN W\

fr

SRR ARARR )
L AT T

Fig. 2. First-order (a) and second-order (b) contribution to a pulse train solution of (3.15) v
boundary condition (3.13) aridq) = by+b-¢?, localized at the solid-liquid interface. (Perioc
A = 12 ininternal units.)
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The analytic expression (5.13) and its limiting case (5.12) have to be rega
as approximate solutions of the original boundary value problem for the velo
field V' in the limit of small nonlinearity and small dispersion. Correctior
to this approximation may be determined by evaluating higher-order term:
the expansion (5.4). In Fig. 2a, an example is shown for the depth prc
of solution (5.13), while Fig. 2b shows the first correcti®fi?) (¢,n,7) =

I ei‘I(ff"”)Q((f)(n)g—fr + c.c., which has been determined by solving (5.¢
numerically forj = 3. In Fig. 2a, the Mexican hat shapeWf!) as function of at

the interface« = 0) is visible. The two minima next to the central maximum are
consequence of the fact that the integfjﬁoo V(l)(& n,T) d§ vanishes. Figure 2b

suggests that this Mexican hat shape becomes even more pronounced (thei
is taken into account, but no long-range tails are visible that would extend in
z-direction.

5.2. Asymptotic behaviour for large depth

The quantitative determination of higher-order terms in the expansion (5.¢
a cumbersome procedure which probably cannot be carried out analytically
addition, nothing is known about the convergence of the series (5.4). Ano
criticism that has been put forward by Lardnéf jn the context of Rayleigh-
type surface waves concerns the nonuniformity of this expansion. A term of
form vqin exp(qabon), with wave numberg;, g2 > 0, is of orderO(v') near the
solid-liquid interface, but is of orde?(»°) at depthsy) ~ 1/(q1v). In fact, we
have not attempted to prove the existence of an exact stationary wave sol
that is localized at the solid—liquid interface. If such a stationary wave ex
that is periodic in the variablé = ¢ — 7, with periodicity A = 27 /gy and
exponentially localized at the interface, we may deduce from the ZK equa
(3.15) its asymptotic behaviour at large depithsince all terms in this evolution
equation are local. We find

V(§,7,m) — const x exp(—qoy/2||n) cos(go()- (5.14)
The first-order term in the expansion (5.4), namely (5.13), behaves

V(€ 7,m) — const X exp(—qor/2|ro|n) cos(qo¢). When going through the
cumbersome procedure outlined in the first part of this section to determine

functionngj)(n) =2md(q — an)Qg) (n) for a solution with periodicityA along
the¢-axis, one finds that

QY () = pl) (me‘aobom, (5.15)
l=n

wherepgfl(n) is a polynomial of degreg j. It is then easy to show that
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[o¢]
Z Vjp%%(n)eqobon = const e~ V2K (5.16)

Consequently, the series (5.4) yields the correct asymptotic behaviour for I

depths, provided that the polynomlaié7 for (¢,n) # (1,1) do not sum up to
terms that grow faster than exponentially as functiompf
In order to avoid secular terms i to appear in the second-order term c

the expansion (5.4), one may follow Lardnéf and aIIongl) to depend on a
stretched depth coordinaté = vn. It is not difficult to show that atZ = 0,

~§1) has to satisfy (5.6). The absence of secular terrr@f,ﬁ%(n) is enforced by

a constraint that governs the dependencé)g}la on Z. This constraint takes the
form

5702 == ["QP @D - 5@, e

For a stationary periodic wave with fundamental wave numfpgrwe may
write Q(2) = 216(q — ngo)Pu(Z), n = 1,2,... If we define P,(Z) =
exp(nZqok1/bo) Py, the constraint (5.17) becomes

8 _,do¢
AL 2b0 Z P, (2). (5.18)

From (5.18) we may deduce the following asymptotic behaviour at large deptfr
a periodic stationary solution:

V(€,7,m) — const X exp[—qo|bo|n — qo(k1/b0)Z]
= const x exp {—qo[|bo| + (vk1/bo)|n} . (5.19)

The exponent|by| + (vx1/bo)] in (5.19) agrees with the exact one appearing
(5.14) up to first order in the expansion parameter

When integrating the constraint (5.18), we find tha(~2) = Zﬁ:lo c,(ff)Zm
is a polynomial. The coefficients are conveniently determined from the recur:
relation

= 1= MM e — 0= 1n—m—1) (5.20)

forj >0 andcg”) = QS). (In (5.20) we have introduced the symladin|n) = 1
for 0 < m < n and0 otherwise.) SinceP,(Z) is a polynomial, the solution
constructed in this way contains secular term<Zirior n > 1. Consequently,
further stretched depth coordinates are needed to construct a periodic solution
form of an expansion that is uniformly valid up to depths of the order/¢f2qq).
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5.3. Numerical study

In order to assess to what extent (5.13) is a good approximation to a solutic
the boundary value problem fof, we have carried out numerical simulations. TF
z-axis has been discretized with equidistant gridpoipts= nA,, n = 0, ..., N.
Along the x-direction, we impose periodic boundary conditions with peAogd
21 /qo and expand the velocity field in a Fourier series

V(0. T) Z M08 By o (1) /[(@0A:)%e] +cc, (5.21)

which we truncate at wave number.. = Mqq. After rescaling the variable
(Thew = Tola/(2q0A2)), the following set of {4 x N) coupled ordinary differential
equations is obtained:

0

1
9 Bm,n = (Bm,n+1 + Bm,n—l - 2Bm,n)
T m

m—1
—i—zm(Z B n Bt + 2 Z B By mn) (5.22)

'=1 m/'=m+1

form =1,..,M andn = 1, ..., N, from which the variable$,, ;, are eliminated
by the boundary condition

Bpo = (1+pim+pom®) By 1, (5.23)

while we setB,, y+1 = 0. Of the two parameters entering these equatiol
the first,p1 = ¢oA.by, controls the localization of linear Scholte waves at tt
interface, and the secongh = g3 A bo, provides the dispersion. Equations (5.2:
and (5.23) conserve the “momentuy”’’_ "™ |B,,.|2. This is used as a
check in the numerical integration of (5.22), which was carried out with the hely
an Adams predictor-corrector scheme with adaptive step size. Care has to be
that the dispersion introduced by discretizing is negligible compared to the phy:
dispersion associated with a nonzéso When considering the continuum limit of
(5.22) and (5.23) and applying the asymptotic procedure outlined at the begin
of this section to search for a stationary solution, one obtains the leading-c
equation

, 1
[H —pi +mp; +m? (—21911?2 + 4p‘1‘> + O(m%i’)] Qm

(Z Qm’Qm m! + 2 Z @Qm’@m’—m) ) (524)

m'=m+1
with
B (T) = Qu exp(ikmt + mnp) (5.25)
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being the approximate form of a stationary solution. The third term on the |
hand side of (5.24) and the second term in the round bracket are dispersion 1
arising from the discretization. In order to ensure that these undesired terms
all unphysical higher-order dispersion terms are small in comparison to the 1
involving ps, the conditionp? < 2p, has to be satisfied. This means essentia
that the discretization has to be sufficiently fine.

Figure 3 shows snapshots of the time evolution of the velocity field for init
conditions (5.13) corresponding to a stationary solution that is periodi¢. in
The parameters have been chosen such that five harmonics are sufficient
N = 400. Having run over more than 6 periods, the profile has preserved
shape. The velocity of propagation in the simulation has slightly shifted compe
to the predicted valu& by ~ 3%. For a comparison, results are shown fi
simulations with parameters in a regime where (5.13) is not a good approxime
to a stationary solution. Strong distortions of the depth profile have already |t
up after~2.5 periods.

5.4. Dispersion in the fluid

The solitary and stationary waves discussed in the previous subsection hay
unusual feature of propagating in a nonlinear nondispersive medium (the liqt
while dispersion is provided by a linear boundary condition that also gives
to localization of the waves at the solid-liquid interface. Alternatively, one
consider the case of dispersion being a volume effect due to internal degre:
freedom in the liquid, for example. These may be vibrational degrees of free
in molecules that couple to the density of the liquid, the radius of bubbles or ot
To construct a simple example, we add to the potential energy debsityf the
liquid in (2.3) the contribution

1
0Pp(x,z,t) = §w(2) w? (2, 2,t) + Kug oz, 2, )w(z, 2,t) (5.26)

involving the scalar fieldv; K andwg are parameters. We also require that tf
eqguation of motion

9? 0% p

—w=—— 2

8t2w ow (5.27)
holds in addition to (2.5). When eliminating to first order in(vrq/wp)? in the
regime of wave numbergwherevrg < wy, and scaling

<W>2 ~ 0(e), (5.28)

wo

one eventually obtains the evolution equation (3.15) with the additional te
+Do3V/9¢3 inside the round bracket on its left-hand side. Hebe =
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K?/(2prw}), and the phase velocity of sound waves in the fluid is modifi
according tprv = Ap — (K /wp)?. In this way, (3.15) becomes the KP equatior
When applying the scaling (5.28), the boundary condition (3.17) at the interf
between the fluid and a homogeneous solid is still valid with (3.19), apart from
modification ofvg.
With the travelling wave Ansatt (¢, n,7) = S(§ — k7, 1), the KP equation is
reduced to 52 . 52 | o2
2

ac? <—/<cS— 25’ —|—Da<25> + 2 0n?
Without loss of generality, we have chosers —1. Equation (5.29), together with
the boundary condition (3.17),

5=0. (5.29)

0 o -
[%smm} = eSO (5.30)

has the following solution that is localized in both spatial directions,

—¢? = 2k(n+m0)* +3D/k
(€2 = 2k(n +m0)? + 3D/k)?

S(¢,n) = —24D (5.31)

for k < 0; ng is determined by the boundary condition (5.30),

[ 3D
=\ = 5.32
o 2r2(b2 + 2k) (5:32)

For D < 0 this is the lump soliton solution of the KP equatidy.[For D > 0,
the case corresponding to our example, the solution (5.31) is singular in the I¢
half-space, which is not relevant for our physical situation since the fluid fills -
half-space; > 0.

It is worth noting that when applying the procedure outlined at the beginn
of this section to the KP equation, with the boundary condition (3.17), in i
limit of small nonlinearity and dispersion, i.e. when using the expansion (5.4
(5.1) and scalingd = O(v), the same approximate solitary wave and statione
periodic wave solutions (5.12) and (5.13) are obtained at first order in the expar
parameter as in the case of a nondispersive fluid, with dispersion introduced
the boundary condition. Itis only at second and higher ordertbat differences in
the depth profiles of the solutions become manifest, and the asymptotic beha
for n — oo differs, too. InsertingD = vDy andx = —(b3/2) + vk in (5.31), we
may expand the right-hand side of (5.31) in powers oft is easily verified that
the first-order term is identical to (5.12) when we idenfify with bob,. While the
exact solutiorV (¢, n, 7) = S(§ — k7,n) has asymptotic behaviour

24D

V(07 m, O) - W7

(5.33)
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for n — oo, the first-order ternv () (¢, 5, 7) behaves like

24D
— .
2k0n>

vW(0,1,0) (5.34)

6. CONCLUSIONS

The propagation of nonlinear Scholte waves at a solid—fluid interface
analysed for the case of the fluid being much more compressible than the ¢
This situation is relevant for recent experiments based on laser excitdtidngas
shown that the governing evolution equation in this regime is the two-dimensic
ZK equation with a linear boundary condition at the solid—fluid interface. T
experimental data of'] were interpreted by the authors on the basis of tl
one-dimensional simple wave equation. An analysis with the help of the
two-dimensional ZK equation may perhaps remove the remaining discrepar
between theory and experiment.

The elastic properties of the solid enter the theory only via a linear bounc
condition. If the solid is an inhomogeneous medium, this boundary condit
introduces linear dispersion, and solitary waves and stationary periodic wave:
form. It was demonstrated how the depth profile of these waves can be calcu
as a series expansion in powers of the characteristic Mach number in the 1
For a special type of linear dispersion corresponding to a constraint on the el
properties of the inhomogeneous solid, analytic expressions for the first-order ti
in this expansion were given.

Numerical simulations of waveform evolution carried out for initial conditior
corresponding to weakly nonlinear periodic waves demonstrate that this first-c
contribution is a very good approximation to the complete wave field of a statior
wave solution in a certain parameter range.

The method used to derive an approximate expression for a solitary w
solution was tested in the case of volume dispersion resulting from the inte
structure of the liquid and a homogeneous solid. Here the velocity field in
liquid is governed by the KP equation and an exact analytic solution of the soli
wave propagating along the liquid—solid interface is available.

The considerations concerning the depth profiles of solitary waves
stationary periodic waves are also meant to yield a better understanding o
related problem of nonlinear Rayleigh waves, where the existence of solitary pt
has recently been confirmed experimental§].[ The scalar nonlinear boundary
value problem investigated here, namely the nonlinear nondispersive ZK equi
in a half-space, supplemented by a linear boundary condition at its surface,
be regarded as a simpler test case for the more complicated problem of su
acoustic waves in a solid half-space with a three-component displacement
involving also effects of anisotropy.
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Suunatud mittelineaarsed lained vedeliku
ja tahkise kokkupuutepinnal

Andreas P. Mayer ja Aleksander S. Kovaljov

On vaadeldud mittelineaarseid akustilisi laineid, mis levivad vedeliku ja tahk
kokkupuutepinnal. On oletatud, et vedeliku kokkusurutavus on palju suurem
tahkisel, ning naidatud, et nende lainete kuju vedelikus kirjeldab vedeliku ja tah
vahelisest akustilisest sobimatusest maaratud kahem&obtmeliste lineaarsete
tingimustega Zabolotskaja—Hohlovi vérrand. Hiljutiste eksperimentide interg
teerimiseks on kasutatud kahte evolutsioonivérrandit, mis on tuletatud nagu
erinevat Zabolotskaja—Hohlovi v8rrandi piirjuhtu koos vastavate aaretingimusi
kokkupuutepinnal. Uksiklainete formeerumise vdimalust on analiiisitud juhul,
Scholte lained muutuvad dispergeeruvaiks tahkise mittehomogeensuse tottu.
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