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Nonlinear waves guided at a liquid–solid interface
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Abstract. Nonlinear acoustic waves propagating at the interface between a solid and a fluid
with a compressibility much higher than that of the solid are considered. It is shown that their
waveform evolution in the fluid is governed by the two-dimensional Zabolotskaya–Khokhlov
(ZK) equation, with a linear boundary condition determined by the acoustic mismatch between
fluid and solid. Two evolution equations used for the interpretation of recent experiments are
derived as two different limiting cases of the ZK equation, with the corresponding boundary
condition at the interface. The possibility of the formation of solitary waves is discussed for
the case of Scholte waves becoming dispersive due to inhomogeneity of the solid.

Key words: Scholte waves, interface waves, solitons.

1. INTRODUCTION

Scholte waves propagate along the interface between a solid and a fluid. If
this interface is planar and the solid is a homogeneous elastic medium, Scholte
waves are not dispersive. Consequently, all harmonics of a fundamental sinusoidal
Scholte wave are in resonance and strong nonlinear effects like shock formation can
be expected. Recently, nonlinear waveform evolution at a solid–liquid interface
has been investigated experimentally [1]. Acoustic waves of high intensity have
been generated on the liquid side of a solid–liquid interface by laser excitation,
and their evolution has been monitored by measuring wave profiles by laser
deflection from the interface at several positions along the direction of propagation.
Strong intensity-dependent waveform distortions have indeed been found. These
experimental findings were interpreted on the basis of the simple wave equation
(inviscid Burgers equation or Korteweg–de Vries equation without dispersion),
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which constitutes a special case in earlier theoretical treatment of nonlinear Scholte
waves [2] and which neglects variations of the velocity field in the liquid along the
direction normal to the interface. The authors of [1] justify the use of this equation
by the fact that in their system (glass/water) Scholte waves are weakly localized
in the liquid due to strong acoustic mismatch. With the help of a Hamiltonian
approach [3], Meegan et al. [4] have derived an evolution equation for nonlinear
Scholte waves. Like the simple wave equation, it involves a scalar field which
depends on time and the spatial coordinate along the direction of propagation
parallel to the interface. However, even if the nonlinearity in the solid is neglected,
the two evolution equations strongly differ in their nonlinear terms. One goal of
the present paper is to clarify this aspect and identify the two one-dimensional
equations as two limiting cases of the same two-dimensional evolution equation
which correspond to two different physical situations.

In order to do this, we first derive a scalar nonlinear evolution equation for a
component of the velocity field in the fluid and an effective boundary condition
at the interface. The evolution equation is the two-dimensional form of the
Zabolotskaya–Khokhlov (ZK) equation [5] (or the Kadomtsev–Petviashvili (KP)
equation [6] without dispersion term). The material properties of the solid appear
only in the effective boundary condition. The scalar field in this evolution equation
still depends on the spatial coordinate normal to the interface in addition to the
coordinate parallel to the interface, and on time. In the limit of an infinitely hard
solid, there are solutions to this equation and the corresponding boundary condition
that do not vary in the direction normal to the interface and that obey the simple
wave equation. In the opposite limit, when the penetration depth of linear Scholte
waves is much smaller than a characteristic length on which nonlinear waveform
distortions take place, the evolution equation of Meegan et al. [4] is derived from
the ZK equation and effective boundary condition at the interface, by applying
arguments developed by Reutov [7], Lardner [8], and Parker [9] in the context of
surface acoustic waves.

Linear Scholte waves can become dispersive if the solid medium is
inhomogeneous. Specifically, we consider the case of a layered structure. On
the level of the ZK equation, linear dispersion influences nonlinear waveform
evolution via the effective boundary condition at the interface. The existence of
solitary pulses and stationary periodic waves is predicted in this system. Numerical
simulations in two spatial dimensions are carried out to test approximate analytic
expressions for stationary periodic waves that propagate along the solid–liquid
interface. Special attention is given to the depth profiles in the liquid associated
with such stationary waves.

2. PHYSICAL SYSTEM

The system we consider here is a fluid filling the half-spacez > 0 in contact
with an elastic solid occupying the half-spacez < 0. The Lagrangian description
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is used for both the fluid and the solid. The potential energy of the fluid may
conveniently be obtained from that of a solid medium equating to zero those elastic
moduli that would give rise to nonzero off-diagonal components of the Cauchy
stress tensor [4,10]. We define a displacement fieldu(x, t) in the solid and in the
fluid, depending on the positionx of a mass element in the undeformed state of
the corresponding medium, and on timet. In terms of the displacement gradients
uα,β = ∂uα/∂xβ, the potential energiesV of the fluid (indexF ) and the solid
(indexS) are given by

VF =
∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

0
dz ΦF (x, t), (2.1)

VS =
∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ 0

−∞
dz ΦS(x, t), (2.2)

with potential energy densities

ΦF =
1
2
λF

[
uα,αuβ,β − uα,βuβ,αuγ,γ +

1
3

(
1− B

A

)
uα,αuβ,βuγ,γ

]
(2.3)

and

ΦS =
1
2
Cαβ µνuα,βuµ,ν +

1
6
Sαβ µν ζξuα,βuµ,νuζ,ξ (2.4)

up to third order in the displacement gradients. Cartesian indices are denoted by
Greek letters. To keep the notation simple, we do not distinguish between indices
referring to the material and those referring to the spatial frame. Summation
over repeated indices is implied. The Lamé constantλF is related to the sound
velocity vF in the fluid viav2

F = λF /ρF , whereρF is the mass density of the
fluid; A(= λF ) andB are coefficients of an expansion of the pressure in powers
of the density deviation from its equilibrium value [10]; (Cαβ µν) is the tensor of
second-order elastic moduli of the solid; and the coefficientsSαβ µν ζξ are linear
combinations of second-order and third-order elastic moduli [11].

The equations of motion for the displacement field in the fluid and in the solid
are

ρ
∂2

∂t2
uα =

∂

∂xβ
Tαβ , (2.5)

with the Piola–Kirchhoff stress tensorTαβ = ∂Φ/∂uα,β.
In the following, we consider situations where, at least to a good approximation,

the displacement fieldu(x, z, t) is independent of they-coordinate. As boundary
conditions at the fluid–solid interface, we require that

Nβ(x, t)uβ(x, 0−, t) = Nβ(x, t)uβ(x, 0+, t), (2.6)

Nα(x, t)Tα3(x, 0−, t) = Nα(x, t)Tα3(x, 0+, t), (2.7)

and

T (j)
α (x, t)Tα3(x, 0−, t) = T (j)

α (x, t)Tα3(x, 0+, t) = 0, j = 1, 2. (2.8)
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Here,N (x, t) is a vector normal to the interface at the positionx + u(x, t) at time
t, while

{
T (j)(x, t)

}
, j = 1, 2, is a basis of the tangent space of the interface at

that point and instant.

3. TWO-DIMENSIONAL EVOLUTION EQUATION

Considering systems for which the elastic moduli of the solid are much larger
thanλF , we introduce a dimensionless scaling parameter0 < ε � 1 and apply the
scaling

Cαβ µν =
1

ε1/2
Ĉαβ µν , (3.1)

Sαβ µν ζξ =
1

ε1/2
Ŝαβ µν ζξ, (3.2)

while λF = O(ε0). Likewise, we assumeρS = ρ̂S/ε1/2 andρF = O(ε0). The
assumption concerning the size ofρS is not essential for the following results and
may be dropped.

The displacement field in the fluid is now expanded in powers ofε as follows:

u = εu(1) + ε3/2u(3/2) + ε2u(2) + O(ε5/2). (3.3)

Guided by the Scholte wave solution in the linear limit, we expand the displacement
field in the solid as

u = ε3/2u(3/2) + ε2u(2) + O(ε5/2). (3.4)

At first order of ε, the equations of motion in the fluid and the solid and the
boundary conditions at the interface suggest the following form ofu(1) in the fluid:

u(1)
α (x, z, t) = δα1

∫ ∞

0

dq

2π
eiqξAq(η, τ) + c.c., (3.5)

whereδαβ is the Kronecker symbol,ξ = x − vF t, c.c. denotes the complex
conjugate, and we have introduced the stretched coordinatesη = ε1/2z and
τ = εvF t.

In the solid, we allow the elastic moduli to be functions ofz. The fieldu(3/2)

in the solid may then be written as a Fourier integral in the following form:

u(3/2)(x, z, t) =
∫ ∞

0

dq

2π
eiqξW(z; τ |q) + c.c. (3.6)

The quantityW has to satisfy the equation[
ρ̂S(qvF )2δαβ + Dµ(q)Ĉαµ βν(z)Dν(q)

]
Wβ(z; τ |q) = 0 (3.7)

along with the boundary conditions
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[
Ĉα3 βν(z)Dν(q)Wβ(z; τ |q)

]
z=0−

= δα3λF iqAq(0, τ) (3.8)

andW(z|q) → 0 in the limit z → −∞. For convenience, we have introduced the
operatorDα(q) = δα1iq + δα3∂/∂z. In the case of a homogeneous isotropic solid
with longitudinal sound velocityvL and transverse sound velocityvT , W has the
familiar form

W(z; τ |q) =

 i
0

α(L)

 eα(L)qzc(L)
q (τ) +

−α(T )
0
i

 eα(T )qzc(T )
q (τ), (3.9)

whereα(L, T ) =
√

1− (vF /vL,T )2 andc
(L,T )
q (τ) ∝ Aq(0, τ). If ρS = O(ε0),

thenα(L) = α(T ) = 1.
At orderO(ε3/2), the equation of motion in the fluid yields

ρF
∂2

∂t2
u(3/2)

α − λF
∂2

∂xβxα
u

(3/2)
β = δα3λF

∫
dq

2π
eiqξiq

∂

∂η
Aq(η, τ) + c.c. (3.10)

Equation (3.10) implies the form

u
(3/2)
3 (x, z, t) =

∫ ∞

0

dq

2π
eiqξaq(η, τ) + c.c. (3.11)

and

aq = −i
∂

∂qη
Aq (3.12)

for the third component ofu(3/2), while the other two components are independent
of z, too. They are left undetermined otherwise.

The continuity of the normal component of the displacement field at the
interface,u(3/2)

3 (x, 0−, t) = u
(3/2)
3 (x, 0+, t), imposes the conditionaq(0, τ) =

W3(0; τ |q). Since W3(0; τ |q) ∝ Aq(0, τ), this leads with (3.12) to a linear
boundary condition forAq of the form[

∂

∂η
Aq(η, τ)

]
η=0

= |q|b(q)Aq(0, τ), (3.13)

with a functionb(q) that depends on the material parameters of the fluid and the
solid and will be discussed below.

At second order ofε, the equations of motion in the fluid yield(
v−2
F

∂2

∂t2
− ∂2

∂x2

)
u

(2)
1 = 2

∂

∂τ
u

(1)
1,1 +

∂

∂η
u

(3/2)
3,1 − ε

∂

∂x
u

(1)
1,1u

(1)
1,1, (3.14a)

v−2
F

∂2

∂t2
u

(2)
2 = 0, (3.14b)
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v−2
F

∂2

∂t2
u

(2)
3 =

∂

∂η
u

(3/2)
1,1 , (3.14c)

where we have introduced the nonlinearity constantε = 1 + B/(2A) used in [2].

Solvability of (3.14a) foru(2)
1 without secular terms inx or t requires the right-

hand side of (3.14a) to vanish. Accounting for (3.11) and (3.12), this solvability
condition becomes

2
∂

∂ξ

(
∂

∂τ
V + εV

∂

∂ξ
V

)
+

∂2

∂η2
V = 0 (3.15)

in terms of the dimensionless scalar field

V (ξ, η, τ) =
∫ ∞

0

dq

2π
eiqξ(−iq)Aq(η, τ) + c.c. (3.16)

To first order inε, V is the 1-component of the velocity field in the fluid in units of
vF , and may hence be regarded as a local Mach number.

The evolution equation (3.15) is known as the ZK equation [5] reduced to two
dimensions. It may also be regarded as the nondispersive limit of the KP equation
[6], which has first been considered in plasma physics and has also been derived in
the context of solid mechanics [12].

The presence of the solid comes into play via the linear boundary condition
(3.13). In case of a homogeneous solid, the coefficientb is independent of wave
numberq and (3.13) takes the form[

∂

∂η
V (ξ, η, τ)

]
η=0

= −b
∂

∂ξ
Ĥ[V ](ξ, 0, τ), (3.17)

where

Ĥ[V ](ξ) =
p.v.

π

∫ ∞

−∞
dξ′

V (ξ′)
ξ′ − ξ

(3.18)

is the Hilbert transform. If, in addition, the solid is isotropic, the coefficientb
depends on the sound velocities and densities of the two media in the following
way:

b =
(

vF

vT

)4 ρF

ρ̂S

α(L)
[1 + α2(T )]2 − 4α(L)α(T )

. (3.19)

We note that in the evolution equation (3.15) and boundary condition (3.17), the
nonlinearity of the solid does not appear.

If the solid is not homogeneous, the coefficientb becomes a function ofq. As
an example, we consider a solid layer with thicknessd on a semi-infinite solid
substrate. Similar to the case of surface acoustic waves propagating in a coated
substrate [13,14], the layer may be accounted for by effective boundary conditions
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atz = 0 that involve the displacement field of the semi-infinite elastic medium and
the fluid. For isotropic media, these effective boundary conditions are

u3(0+) = u3(0−)+
[

λS − λL

λL + 2µL
u1,1(0−) +

(
λS + 2µS

λL + 2µL
− 1
)

u3,3(0−)
]

d+O(d2),

(3.20)

0 = µS [u1,3(0−) + u3,1(0−)]

−
[
µSu1,33(0−) +

(
µS + λL

λS + 2µS

λL + 2µL

)
u3,13(0−)

+
(

λL + 2µL + λL
λS − λL

λL + 2µL
− ρL

ρF
λF

)
u1,11(0−)

]
d + O(d2), (3.21)

T33(0+) = (λS + 2µS)u3,3(0−) + λSu1,1(0−)

−{(λS + 2µS)u3,33(0−) + (λS + µS)u1,31(0−)

+ [µS − (ρL/ρF )λF ]u3,11} d + O(d2). (3.22)

Here,u(0−) is the displacement field in the semi-infinite elastic medium, continued
to the solid–fluid interface atz = 0; λ andµ are Lamé constants; and the indices
S, L, andF stand for substrate, layer, and fluid, respectively. With these boundary
conditions, one readily obtains the coefficientb(q) as an expansion in powers of
qd: b(q) = b0 + b1qd + O[(qd)2]; b0 equals the right-hand side of (3.19). Figure 1
shows thatb1 can have either sign and vanishes for certain combinations of elastic
constants.

Fig. 1.Dispersion parameterb1 for Scholte waves propagating in a system consisting of water,
glass substrate, and a layer of different material withρL = ρS . ∆λ = λL − λS . Upper to
lower: (µL − µS)/µS = 0.5, 0.4, 0.3, ...,−0.3,−0.4,−0.5.
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An interesting special case is an isotropic elastic layer with thicknessd situated
on an infinitely hard medium. The boundary conditions at the interface between
the elastic and the rigid medium atz = −d areu3 = 0 andT13 = T23 = 0. In this
case, the functionb(q) has the explicit form

1
b(q)

=
ρ̂S

ρF

(
vT

vF

)4 1
α(L)

×
{[

1 + α2(T )
]2 coth[qα(L)d] − 4α(L)α(T )coth[qα(T )d]

}
, (3.23)

and the zero-order term vanishes in an expansion ofb(q) in powers ofqd.

4. ONE-DIMENSIONAL LIMITING CASES

In the limit of an infinitely hard solid, the coefficientb in (3.17) vanishes, and
one may seek solutions of (3.15) that are independent ofη. (This is also the limit
of infinite penetration depth of Scholte waves into the fluid.) If these solutions are
localized in the x-direction, the Fourier amplitudesŨq = −iqAq of the velocity
field satisfy the Fourier transform of the simple wave equation,

∂

∂τ
Ũq = − iqε

2

(∫ q

0
ŨkŨq−k

dk

2π
+ 2

∫ ∞

q
ŨkŨ

∗
k−q

dk

2π

)
. (4.1)

This is the equation used in [1] for analysis of experimental data. It refers to a
regime where the nonlinearity in the fluid dominates over the guiding property of
the fluid–solid interface.

We now consider the opposite regime, where the nonlinearity is sufficiently
weak, so that it may be regarded as a perturbation that influences gradual waveform
evolution of guided waves (Scholte waves). To account for this relative magnitude
of the effects, we introduce another dimensionless scaling parameter0 < ν � 1
and expand the velocity fieldV in powers ofν, V = νV (1) + ν2V (2) + O(ν3).
The first-order term has to satisfy the linearized version of (3.15). Writingb(q) =
b0 + νδb(q), we find thatV (1) also has to satisfy the boundary condition (3.17).
Consequently,

V (1)(ξ, η, τ) =
∫ ∞

0

dq

2π
eiq(ξ−∆0τ)+qb0ηUq(T ) + c.c. (4.2)

The Fourier amplitudesUq depend on a new stretched coordinateT = ντ , and
∆0 = −b2

0/2. With the Fourier transform

V (2)(ξ, η, τ) =
∫ ∞

0

dq

2π
eiq(ξ−∆0τ)fq(η, τ) + c.c. (4.3)

we obtain from the evolution equation (3.15) at second order ofν
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(
2q2∆0 + 2iq

∂

∂τ
+

∂2

∂η2

)
fq(η, τ)

= q2ε

∫ ∞

−∞

dk

2π
e(|k|+|q−k|)b0ηUkUq−k − 2iqeqb0η ∂

∂T
Uq, (4.4)

whereq > 0 andU−q = U∗
q . The boundary condition at the fluid–solid interface

yields [
∂

∂η
fq(η, τ)

]
η=0

− |q|b0fq(0, τ) = |q|δb(q)Uq. (4.5)

Since the right-hand side of (4.4) does not depend onτ and secular terms in this
variable have to be excluded,fq must be independent ofτ , too. Equations (4.4)
and (4.5), with the additional boundary conditionfq(η) → 0 as η → ∞,
constitute a linear inhomogeneous boundary value problem. Its solvability requires
a compatibility condition that is obtained by multiplying (4.4) byexp(qb0η) and
integrating overη from 0 to ∞. On the left-hand side, we integrate by parts and
make use of (4.5) in the following way:∫ ∞

0
dη eqb0η ∂2

∂η2
fq(η) = q2b2

0

∫ ∞

0
dη eqb0ηfq(η)−

[
∂

∂η
fq(η)− qb0fq(η)

]
η=0

= −2q2∆0

∫ ∞

0
dη eqb0ηfq(η)− qδb(q)Uq. (4.6)

Combining this with the other terms on the left-hand side of (4.4), carrying out the
integral on the right-hand side, and rearranging the integrals over wave numberk,
we finally obtain the following equation forUq:

∂

∂T
Uq = ib0qδb(q)Uq −

iqε

2

(∫ q

0
UkUq−k

dk

2π
+ 2

∫ ∞

q

q

k
UkU

∗
k−q

dk

2π

)
. (4.7)

Apart from the first term on its right-hand side, which represents linear dispersion,
(4.7) differs from the Fourier space version (4.1) of the simple wave equation by the
factorq/k in the last term, which causes the nonlinearity to be strongly nonlocal.
In the absence of the dispersion term, (4.7) is the evolution equation derived in [4]
in the limit of vanishing nonlinearity of the solid.

5. SOLITARY SOLUTIONS

5.1. Construction

Although the evolution equation (3.15) does not contain dispersion, solitary
and stationary periodic solutions can be expected to exist if the effective boundary
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condition (3.13) at the solid–liquid interface contains a length scale. Such solutions
may be constructed in the form of a power series in an expansion parameter
0 < ν � 1 which is of the order of the typical Mach number in the liquid. For this
purpose, we employ the Ansatz

V (ξ, η, τ) =
∫ ∞

0
eiq(ξ−κτ)Qq(η)

dq

2π
+ c.c. (5.1)

Inserting this into (3.15), we obtain(
∂2

∂η2
+ 2q2κ

)
Qq = q2ε

(∫ q

0
QkQq−k

dk

2π
+ 2

∫ ∞

q
QkQ

∗
k−q

dk

2π

)
. (5.2)

Likewise, the boundary condition becomes[(
∂

∂η
− qb0

)
Qq(η)

]
η=0

= νδb(q)Qq(0). (5.3)

As in the previous section, we have scaled the dispersive part of the boundary
condition to be of first order inν.

Expanding now

Qq(η) =
∞∑

j=1

νjQ(j)
q (η) (5.4)

and decomposingκ = κ0 + νκ1, we find

Q(1)
q (η) = Q̃(1)

q eqb0η (5.5)

andκ0 = −b2
0/2. The inhomogeneous linear boundary value problem resulting for

Q
(2)
q requires the compatibility condition

0 =
[
δb(q) +

κ1

b0

]
Q̃(1)

q − ε

2b0

[∫ q

0

dk

2π
Q̃

(1)
k Q̃

(1)
q−k + 2

∫ ∞

q

dk

2π

q

k
Q̃

(1)
k Q̃

(1)∗
k−q

]
.

(5.6)
This equation also follows from (4.7) with the AnsatzUq(T ) = Q̃

(1)
q exp(−iqκ1T ).

Once a solution{Q̃(1)
q , κ1} of the nonlinear eigenvalue problem (5.6) is found, the

corresponding higher-order terms in the expansion (5.4) can be determined in a
straightforward way by solving successively inhomogeneous linear equations. For
simplicity, we only consider real solutionsQ(j)

q (η). Let us suppose that at

order O(νj−1), j > 1, we have determinedQ(j−1)
q (η) up to an additive term

Q̃
(j−1)
q exp(qb0η). At orderO(νj) we have to solve
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(
∂2

∂η2
− q2b2

0

)
Q(j)

q = Hq[Q̃(1)](η)− 2q2κ1Q̃
(j−1)
q eqb0η

+2q2ε

[∫ q

0

dk

2π
Q̃

(1)
k Q̃

(j−1)
q−k eqb0η

+
∫ ∞

q

dk

2π

(
Q̃

(1)
k Q̃

(j−1)
k−q + Q̃

(j−1)
k Q̃

(1)
k−q

)
e(2k−q)b0η

]
,

(5.7)

with the boundary condition[(
∂

∂η
− qb0

)
Q(j)

q (η)
]

η=0

= qδb(q)Q(j−1)
q (0). (5.8)

In (5.7),Hq is a functional ofQ̃(1), partly through the lower-order functionsQ(j′),
j′ < j − 1, which we assume to have already been determined. In order to be
able to solve the boundary value problem (5.7), (5.8) forQ

(j)
q (η), the following

compatibility condition has to be satisfied forj > 2:[
δb(q) +

κ1

b0

]
Q̃(j−1)

q − ε

b0

{∫ q

0

dk

2π
Q̃

(j−1)
k Q̃

(1)
q−k

+
∫ ∞

q

dk

2π

q

k

[
Q̃

(j−1)
k Q̃

(1)
k−q + Q̃

(1)
k Q̃

(j−1)
k−q

]}
= Jq[Q̃(1)], (5.9)

whereJq is a functional ofQ̃(1). For j = 2, the corresponding compatibility
condition is (5.6). Equation (5.9) is normally nonsingular and uniquely determines
Q̃(j−1). It may be written in the general form∫ ∞

0

dk

2π
Q̃

(j−1)
k

δ

δQ̃
(1)
k

Gq = Jq, (5.10)

whereGq is the right-hand side of (5.6) with̃Q(1)
q being a real function ofq.

For the special caseδb(q) = b̄2q
2 an analytic solitary solution of (5.6) is known:

Q̃(1)
q = αs|q|e−βs|q|, (5.11)

with parametersαs = 24πb0b̄2/ε and β2
s = 3b0b̄2/κ1. At first order in the

expansion parameterν, the velocity field associated with (5.11) is

V (1)(ξ, η, τ) =
αs

π

(b0η − βs)2 − (ξ − κτ)2

[(ξ − κτ)2 + (b0η − βs)2]2
, (5.12)

53



showing algebraic decay in all spatial directions. It is the limiting case of a family
of stationary solutions that are periodic in the variableζ = ξ−κτ , with periodicity
2π/q0, and have zero average dilatation along the x-direction,

V (1)(ξ, η, τ) = αp

{[
1− 2e−βp+q0b0η cos(q0ζ)

]2 + 1− 2e−2βp+2q0b0η[
1− 2e−βp+q0b0η cos(q0ζ) + e−2βp+2q0b0η

]2
−

2
[
1− e−βp+q0b0η cos(q0ζ)

]
1− 2e−βp+q0b0η cos(q0ζ) + e−2βp+2q0b0η

}
. (5.13)

The parametersαp and βp are related to those occurring in (5.6) viaαp =
12b0b̄2q

2
0/ε, κ1 = b0b̄2q

2
0[3 sinh−2(βp)− 1]. An interesting aspect of this solution

is that forsinh2(βp) = 3, it travels with the same velocity as linear nondispersive
Scholte waves.

Fig. 2. First-order (a) and second-order (b) contribution to a pulse train solution of (3.15) with
boundary condition (3.13) andb(q) = b0+b̄2q

2, localized at the solid–liquid interface. (Period
Λ = 12 in internal units.)
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The analytic expression (5.13) and its limiting case (5.12) have to be regarded
as approximate solutions of the original boundary value problem for the velocity
field V in the limit of small nonlinearity and small dispersion. Corrections
to this approximation may be determined by evaluating higher-order terms in
the expansion (5.4). In Fig. 2a, an example is shown for the depth profile
of solution (5.13), while Fig. 2b shows the first correctionV (2)(ξ, η, τ) =∫∞
0 eiq(ξ−κτ)Q

(2)
q (η) dq

2π + c.c., which has been determined by solving (5.9)
numerically forj = 3. In Fig. 2a, the Mexican hat shape ofV (1) as function ofξ at
the interface (η = 0) is visible. The two minima next to the central maximum are a
consequence of the fact that the integral

∫∞
−∞ V (1)(ξ, η, τ) dξ vanishes. Figure 2b

suggests that this Mexican hat shape becomes even more pronounced whenV (2)

is taken into account, but no long-range tails are visible that would extend in the
z-direction.

5.2. Asymptotic behaviour for large depth

The quantitative determination of higher-order terms in the expansion (5.4) is
a cumbersome procedure which probably cannot be carried out analytically. In
addition, nothing is known about the convergence of the series (5.4). Another
criticism that has been put forward by Lardner [8] in the context of Rayleigh-
type surface waves concerns the nonuniformity of this expansion. A term of the
form νq1η exp(q2b0η), with wave numbersq1, q2 > 0, is of orderO(ν1) near the
solid–liquid interface, but is of orderO(ν0) at depthsη ≈ 1/(q1ν). In fact, we
have not attempted to prove the existence of an exact stationary wave solution
that is localized at the solid–liquid interface. If such a stationary wave exists
that is periodic in the variableζ = ξ − κτ , with periodicity Λ = 2π/q0 and
exponentially localized at the interface, we may deduce from the ZK equation
(3.15) its asymptotic behaviour at large depthsη, since all terms in this evolution
equation are local. We find

V (ξ, τ, η) → const× exp(−q0

√
2|κ|η) cos(q0ζ). (5.14)

The first-order term in the expansion (5.4), namely (5.13), behaves as
V (1)(ξ, τ, η) → const × exp(−q0

√
2|κ0|η) cos(q0ζ). When going through the

cumbersome procedure outlined in the first part of this section to determine the
functionsQ

(j)
q (η) = 2πδ(q − nq0)Q̂

(j)
n (η) for a solution with periodicityΛ along

theξ-axis, one finds that

Q̂(j)
n (η) =

∞∑
`=n

p
(j)
`,n(η)e`q0b0η, (5.15)

wherep
(j)
`,n(η) is a polynomial of degree≤ j. It is then easy to show that
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∞∑
j=1

νjp
(j)
1,1(η)eq0b0η = const e−q0

√
2|κ|η. (5.16)

Consequently, the series (5.4) yields the correct asymptotic behaviour for large
depths, provided that the polynomialsp

(j)
`,n for (`, n) 6= (1, 1) do not sum up to

terms that grow faster than exponentially as function ofνη.
In order to avoid secular terms inη to appear in the second-order term of

the expansion (5.4), one may follow Lardner [8] and allow Q̃
(1)
q to depend on a

stretched depth coordinateZ = νη. It is not difficult to show that atZ = 0,
Q̃

(1)
q has to satisfy (5.6). The absence of secular terms inQ

(2)
q (η) is enforced by

a constraint that governs the dependence ofQ̃
(1)
q on Z. This constraint takes the

form

∂

∂Z
Q̃(1)

q (Z) =
qε

2b0

∫ q

0
Q̃

(1)
k (Z)Q̃(1)

q−k(Z)
dk

2π
− qκ1

b0
Q̃(1)

q (Z). (5.17)

For a stationary periodic wave with fundamental wave numberq0, we may
write Q̃

(1)
q (Z) = 2πδ(q − nq0)P̃n(Z), n = 1, 2, ... If we define Pn(Z) =

exp(nZq0κ1/b0)P̃n, the constraint (5.17) becomes

∂

∂Z
Pn(Z) = n

q0ε

2b0

n−1∑
m=1

Pm(Z)Pn−m(Z). (5.18)

From (5.18) we may deduce the following asymptotic behaviour at large depth for
a periodic stationary solution:

V (ξ, τ, η) → const× exp[−q0|b0|η − q0(κ1/b0)Z]

= const× exp {−q0[|b0|+ (νκ1/b0)]η} . (5.19)

The exponent[|b0| + (νκ1/b0)] in (5.19) agrees with the exact one appearing in
(5.14) up to first order in the expansion parameterν.

When integrating the constraint (5.18), we find thatPn(Z) =
∑n−1

m=0 c
(n)
m Zm

is a polynomial. The coefficients are conveniently determined from the recursion
relation

c
(n)
j =

n

j

q0ε

2b0

n−1∑
m=1

m−1∑
`=0

c
(m)
` c

(n−m)
j−`−1σ(j − `− 1|n−m− 1) (5.20)

for j > 0 andc
(n)
0 = Q̃

(1)
n . (In (5.20) we have introduced the symbolσ(m|n) = 1

for 0 ≤ m ≤ n and 0 otherwise.) SincePn(Z) is a polynomial, the solution
constructed in this way contains secular terms inZ for n > 1. Consequently,
further stretched depth coordinates are needed to construct a periodic solution in the
form of an expansion that is uniformly valid up to depths of the order of1/(ν2q0).
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5.3. Numerical study

In order to assess to what extent (5.13) is a good approximation to a solution of
the boundary value problem forV , we have carried out numerical simulations. The
z-axis has been discretized with equidistant gridpointsηn = n∆z, n = 0, ..., N .
Along the x-direction, we impose periodic boundary conditions with periodΛ =
2π/q0 and expand the velocity field in a Fourier series

V (ξ, ηn, τ) = −
∞∑

m=1

eimq0ξ Bm,n(τ)/[(q0∆z)2ε] + c.c., (5.21)

which we truncate at wave numberqmax = Mq0. After rescaling the variableτ
(τnew = τold/(2q0∆2

z)), the following set of (M×N ) coupled ordinary differential
equations is obtained:

∂

∂τ
Bm,n =

i

m
(Bm,n+1 + Bm,n−1 − 2Bm,n)

+im

(
m−1∑
m′=1

Bm′,nBm−m′,n + 2
M∑

m′=m+1

Bm′,nB∗
m′−m,n

)
(5.22)

for m = 1, ...,M andn = 1, ..., N , from which the variablesBm,0 are eliminated
by the boundary condition

Bm,0 = (1 + p1m + p2m
3)−1Bm,1, (5.23)

while we setBm,N+1 = 0. Of the two parameters entering these equations,
the first, p1 = q0∆zb0, controls the localization of linear Scholte waves at the
interface, and the second,p2 = q3

0∆z b̄2, provides the dispersion. Equations (5.22)
and (5.23) conserve the “momentum”

∑M
m=1

∑N
n=1 |Bm,n|2. This is used as a

check in the numerical integration of (5.22), which was carried out with the help of
an Adams predictor-corrector scheme with adaptive step size. Care has to be taken
that the dispersion introduced by discretizing is negligible compared to the physical
dispersion associated with a nonzerob̄2. When considering the continuum limit of
(5.22) and (5.23) and applying the asymptotic procedure outlined at the beginning
of this section to search for a stationary solution, one obtains the leading-order
equation[

κ̄− p2
1 + mp3

1 + m2

(
−2p1p2 +

1
4
p4
1

)
+ O(m3p5

1)
]

Qm

=

(
m−1∑
m′=1

Qm′Qm−m′ + 2
M∑

m′=m+1

m

m′Qm′Qm′−m

)
, (5.24)

with
Bm,n(τ) = Qm exp(iκ̄mτ + mnp1) (5.25)
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being the approximate form of a stationary solution. The third term on the left-
hand side of (5.24) and the second term in the round bracket are dispersion terms
arising from the discretization. In order to ensure that these undesired terms and
all unphysical higher-order dispersion terms are small in comparison to the term
involving p2, the conditionp2

1 � 2p2 has to be satisfied. This means essentially
that the discretization has to be sufficiently fine.

Figure 3 shows snapshots of the time evolution of the velocity field for initial
conditions (5.13) corresponding to a stationary solution that is periodic inξ.
The parameters have been chosen such that five harmonics are sufficient, and
N = 400. Having run over more than 6 periods, the profile has preserved its
shape. The velocity of propagation in the simulation has slightly shifted compared
to the predicted valuēκ by ≈ 3%. For a comparison, results are shown for
simulations with parameters in a regime where (5.13) is not a good approximation
to a stationary solution. Strong distortions of the depth profile have already built
up after≈2.5 periods.

5.4. Dispersion in the fluid

The solitary and stationary waves discussed in the previous subsection have the
unusual feature of propagating in a nonlinear nondispersive medium (the liquid),
while dispersion is provided by a linear boundary condition that also gives rise
to localization of the waves at the solid–liquid interface. Alternatively, one may
consider the case of dispersion being a volume effect due to internal degrees of
freedom in the liquid, for example. These may be vibrational degrees of freedom
in molecules that couple to the density of the liquid, the radius of bubbles or others.
To construct a simple example, we add to the potential energy densityΦF of the
liquid in (2.3) the contribution

δΦF (x, z, t) =
1
2
ω2

0 w2(x, z, t) + Kuα,α(x, z, t)w(x, z, t) (5.26)

involving the scalar fieldw; K andω0 are parameters. We also require that the
equation of motion

∂2

∂t2
w = −∂ΦF

∂w
(5.27)

holds in addition to (2.5). When eliminatingw to first order in(vF q/ω0)2 in the
regime of wave numbersq wherevF q � ω0, and scaling(

vF q

ω0

)2

= O(ε), (5.28)

one eventually obtains the evolution equation (3.15) with the additional term
+D∂3V/∂ξ3 inside the round bracket on its left-hand side. HereD =
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K2/(2ρF ω4
0), and the phase velocity of sound waves in the fluid is modified

according toρF v2
F = λF − (K/ω0)2. In this way, (3.15) becomes the KP equation.

When applying the scaling (5.28), the boundary condition (3.17) at the interface
between the fluid and a homogeneous solid is still valid with (3.19), apart from the
modification ofvF .

With the travelling wave AnsatzV (ξ, η, τ) = S(ξ − κτ, η), the KP equation is
reduced to

∂2

∂ζ2

(
−κS − 1

2
S2 + D

∂2

∂ζ2
S

)
+

1
2

∂2

∂η2
S = 0. (5.29)

Without loss of generality, we have chosenε = −1. Equation (5.29), together with
the boundary condition (3.17),[

∂

∂η
S(ζ, η)

]
η=0

= −b0
∂

∂ζ
Ĥ[S](ζ, 0), (5.30)

has the following solution that is localized in both spatial directions,

S(ζ, η) = −24D
−ζ2 − 2κ(η + η0)2 + 3D/κ

[ζ2 − 2κ(η + η0)2 + 3D/κ]2
(5.31)

for κ < 0; η0 is determined by the boundary condition (5.30),

η0 =

√
3Db2

0

2κ2(b2
0 + 2κ)

. (5.32)

For D < 0 this is the lump soliton solution of the KP equation [6]. For D > 0,
the case corresponding to our example, the solution (5.31) is singular in the lower
half-space, which is not relevant for our physical situation since the fluid fills the
half-spaceη > 0.

It is worth noting that when applying the procedure outlined at the beginning
of this section to the KP equation, with the boundary condition (3.17), in the
limit of small nonlinearity and dispersion, i.e. when using the expansion (5.4) in
(5.1) and scalingD = O(ν), the same approximate solitary wave and stationary
periodic wave solutions (5.12) and (5.13) are obtained at first order in the expansion
parameterν as in the case of a nondispersive fluid, with dispersion introduced via
the boundary condition. It is only at second and higher order ofν that differences in
the depth profiles of the solutions become manifest, and the asymptotic behaviour
for η →∞ differs, too. InsertingD = νD0 andκ = −(b2

0/2) + νκ1 in (5.31), we
may expand the right-hand side of (5.31) in powers ofν. It is easily verified that
the first-order term is identical to (5.12) when we identifyD0 with b0b̄2. While the
exact solutionV (ξ, η, τ) = S(ξ − κτ, η) has asymptotic behaviour

V (0, η, 0) → 24D

2κη2
, (5.33)
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for η →∞, the first-order termV (1)(ξ, η, τ) behaves like

V (1)(0, η, 0) → 24D

2κ0η2
. (5.34)

6. CONCLUSIONS

The propagation of nonlinear Scholte waves at a solid–fluid interface was
analysed for the case of the fluid being much more compressible than the solid.
This situation is relevant for recent experiments based on laser excitation [1]. It was
shown that the governing evolution equation in this regime is the two-dimensional
ZK equation with a linear boundary condition at the solid–fluid interface. The
experimental data of [1] were interpreted by the authors on the basis of the
one-dimensional simple wave equation. An analysis with the help of the full
two-dimensional ZK equation may perhaps remove the remaining discrepancies
between theory and experiment.

The elastic properties of the solid enter the theory only via a linear boundary
condition. If the solid is an inhomogeneous medium, this boundary condition
introduces linear dispersion, and solitary waves and stationary periodic waves can
form. It was demonstrated how the depth profile of these waves can be calculated
as a series expansion in powers of the characteristic Mach number in the fluid.
For a special type of linear dispersion corresponding to a constraint on the elastic
properties of the inhomogeneous solid, analytic expressions for the first-order terms
in this expansion were given.

Numerical simulations of waveform evolution carried out for initial conditions
corresponding to weakly nonlinear periodic waves demonstrate that this first-order
contribution is a very good approximation to the complete wave field of a stationary
wave solution in a certain parameter range.

The method used to derive an approximate expression for a solitary wave
solution was tested in the case of volume dispersion resulting from the internal
structure of the liquid and a homogeneous solid. Here the velocity field in the
liquid is governed by the KP equation and an exact analytic solution of the solitary
wave propagating along the liquid–solid interface is available.

The considerations concerning the depth profiles of solitary waves and
stationary periodic waves are also meant to yield a better understanding of the
related problem of nonlinear Rayleigh waves, where the existence of solitary pulses
has recently been confirmed experimentally [15]. The scalar nonlinear boundary
value problem investigated here, namely the nonlinear nondispersive ZK equation
in a half-space, supplemented by a linear boundary condition at its surface, may
be regarded as a simpler test case for the more complicated problem of surface
acoustic waves in a solid half-space with a three-component displacement field
involving also effects of anisotropy.
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Suunatud mittelineaarsed lained vedeliku
ja tahkise kokkupuutepinnal

Andreas P. Mayer ja Aleksander S. Kovaljov

On vaadeldud mittelineaarseid akustilisi laineid, mis levivad vedeliku ja tahkise
kokkupuutepinnal. On oletatud, et vedeliku kokkusurutavus on palju suurem kui
tahkisel, ning näidatud, et nende lainete kuju vedelikus kirjeldab vedeliku ja tahkise
vahelisest akustilisest sobimatusest määratud kahemõõtmeliste lineaarsete ääre-
tingimustega Zabolotskaja–Hohlovi võrrand. Hiljutiste eksperimentide interpre-
teerimiseks on kasutatud kahte evolutsioonivõrrandit, mis on tuletatud nagu kaks
erinevat Zabolotskaja–Hohlovi võrrandi piirjuhtu koos vastavate ääretingimustega
kokkupuutepinnal. Üksiklainete formeerumise võimalust on analüüsitud juhul, kui
Scholte lained muutuvad dispergeeruvaiks tahkise mittehomogeensuse tõttu.

62


