Proc. Estonian Acad. Sci. Phys. Math., 2083, 1, 30—42
https://doi.org/10.3176/phys.math.2003.1.04

Numerical simulation of waves and fronts in
structured materials: a thermodynamic approach

Arkadi BerezovsHi, Jiiri Engelbrectit and Gérard A. Maugh

a Department of Mechanics and Applied Mathematics, Institute of Cybernetics at Tall
Technical  University, Akadeemia tee 21, 12618 Tallinn, Estoni:
Arkadi.Berezovski@cs.ioc.ee

b Laboratoire de Modélisation en Mécanique, UMR CNRS 7607, Université Pierre
Marie Curie (Paris 6), Case 162, 4 place Jussieu, 75252 Paris, cedex 05, Fre
gam@ccr.jussieu.fr

Received 8 October 2002

Abstract. A thermodynamically consistent form for the finite-volume numerical methc
for thermoelastic wave and front propagation is proposed. Such reformulation provi
applicability of the Godunov-type numerical schemes based on averages of field varie
to the description of nonequilibrium situations. The nonequilibrium description uses con
quantities instead of numerical fluxes. These quantities satisfy the thermodynamic consis!
conditions which generalize the classical equilibrium conditions.
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1. INTRODUCTION

The propagation of waves and phase-transition fronts in thermoelastic solic
governed by the same field equations and equations of state (at least in the int
formulation). In linear thermoelastic media these equations can be reduced tc
classical hyperbolic wave equation and to the parabolic heat equation. Probl
arise in the propagation of thermoelastic waves and frontgimmogeneousedia,
such as laminated composites, functionally graded materials, mesoscopic gra
media, and two-phase media, in other words, in media with a microstructure. F
a practical point of view, these problems are reduced to the construction of rele
numerical algorithms. Possible rapid variations in the properties of conside
materials and the simultaneous presence of compression and shear waves req
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least a second-order accuracy of the algorithms. Among successful methods
high accuracy and efficiency are the finite-volume schemes.

Finite-volume numerical methods (cf]]) are based on the integration o
governing equations over a control volume which includes a grid element al
time step. This means that the resulting numerical scheme is expressed in 1
of averaged field variables and averaged fluxes at boundaries of the grid elen
The equations of state determining the properties of a medium are also ass
to be valid for the averaged quantities. In fact, this is an assumption of the I
equilibrium inside the grid element, where the local equilibrium state is determi
by the averaged values of field variables.

To obtain a high-order accuracy, the stepwise distribution of the field varial
is changed to a piecewise linear (or even nonlinear) distribution over the*grid
Such a reconstruction leads to a better approximation from the mathematical |
of view and provides a high-order accuracy together with a certain procec
for suppressing spurious oscillations during computation. However, from
thermodynamic point of view, the reconstruction destroys the local equilibri
inside grid cells. This means that the equations of state are not valid in this
and even the meaning of thermodynamic variables (e.g. temperature and ent
is questionable.

A possible solution of this problem is the description of the nonequilibrit
states inside the grid elements in the framework of the thermodynamics
discrete systems']. The thermodynamic state space is extended in this the
by accounting for so-calledcontact quantitiesn addition to the usual local
equilibrium variables. These quantities can be introduced into the finite-volt
schemes in a natural way. The crucial hypothesis then is the connection bet
the excess energy and contact quantities which describe the nonequilibrium ¢
of discrete systems. The next step is the extension of the classical equilib
conditions to the nonequilibrium case. In the paper, the corresponding procedt
described on the simple example of a uniaxial motion of a slab.

The results of computations of a test problem for the propagation
thermoelastic waves in media with rapidly-varying properties (e.g. in functione
graded materials) are presented. The comparison of the results of compute
with the experimental investigations of the impact-induced martensitic ph
transformation is also given in the one-dimensional case.

2. SIMPLE EXAMPLE: UNIAXIAL MOTION OF A SLAB
In order to explain some of the key ideas with a minimal mathemati
complexity, it is convenient to work in an essentially one-dimensional setti
Consider a slab, which in an unstressed reference configuration occupies the r
0<x <L, —0 < 9,23 < 00, and consider uniaxial motion of the form

w; = ui(z,t), ==, Q)
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wheret is time, z; are spatial coordinates,; are components of the displacemer
vector. In this case, we have only three nonvanishing components of the s

tensor
8U1 1 8UQ 1 8U3

—_ = — — e — = = = 2
€11 oz’ €12 = €21 29z’ €13 = €31 2 Oz (2)
Particle velocities associated with (1) are
ou;
Ui(xat) = 87?; (3)

Without loss of generality, we can safs = 0,v3 = 0. Then we obtain uncoupled
systems of equations for longitudinal and shear components which expres:
balance of linear momentum and the time derivative of the Duhamel-Neum
thermoelastic constitutive equation, respectivéfj{

81}1 o 80’11 80’11 81}1 89

P 5=t = () 2(x) g mx) T (@)
and 0 0 0 0
V2 _ 0012 o12 _ ov
)5 = o ot MG ®)
which are complemented by the heat conduction equation
00 0 00

Hereo;; is the Cauchy stress tensp, is the densityg is temperature, and(x) is
the heat capacity per unit volume for a fixed deformation. The dilatation coeffici
« is related to the thermoelastic coefficient and the Lamé coefficients and
by m = —a(3X + 2u). The indicated explicit dependence on the peimheans
that the body is materially inhomogeneous in general. These systems of equa
(4) and (5), can be solved separately. For simplicity, we focus our attention or
system of equations (4) for longitudinal components in an isothermal situation

2.1. Dynamic loading
In a dynamic problem we shall look for piecewise smooth velocity and str

fields vy (z,t), o11(z,t) for inhomogeneous thermoelastic materials, which ob
the following initial and boundary conditions:

o11(x,0) = vi(z,0) = 0, for 0<z<L, (7)
Ul(o,t) = Uo(t), Uu(L,t) =0, for ¢ > 0, (8)
and satisfy the field equations
Apo(x)v1) o _ 0, 9 o1 _ou_ )
ot Ox ot \ \(z) +2u(x) Ox

The system of equations (9) is a system of conservation laws which is suitabl
a numerical solution by a finite-volume scheme. We analyse the recently prop
wave-propagation algorithr-f].
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3. WAVE-PROPAGATION ALGORITHM

The system of equations for one-dimensional elastic waves (5) can
represented in the conservative form

dq  O0f(q,x)
ot T on

=0, (10)

where

00 = (o ey ) 100 =( )

In the standard wave-propagation algorithrii, [a computational grid with
interfacesz,,_,» = (n — 1)/2Ax, time levelst, = kAt, and cellsC,, =
[Tn—1/2; Tnt1/2) are defined. For simplicity, the grid sizez and time stepAt
are assumed to be constant. Then the cell average

1 Tit1/2

QY / q(z,t,) dz (12)

g
Az i—1/2

is updated at each time step as follows

At

Q?H =Q7 — Ar (A+AQ1‘—1/2 + A_AQz’+1/2) ) (12)

where m
A+AQ@'*1/2 = Z(Sf—1/2)+wf—1/2v (13)

p=1

and .
ATAQit1)2 = Z;(Sf—o—l/Q)Wf—i-l/T (14)

=
Herest = max(s,0), s~ = min(s,0), andsf_l/2 are speeds of wavéaﬁf’_l/2

obtained from the solution of the Riemann problemrat, , which consists of
Eq. (10) with piecewise constant initial data

_J Qi if T < Ti_1/2,
q(r,0) = { Q; if T > T . (15)

The above-mentioned approach uses so-calldtedgeflux functions []. The
main assumption here is the satisfaction of the Rankine—Hugoniot condition

Li—1/2

Qi — Qi1 = Z Wi 1)y (16)
p=1
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An alternative approach is to assume that a distinct flux funcfion »(q) is
associated with each cell interfacg ; /5. In this case the flux functions are calle
cell-centred”]. When cell-centred flux functions are used, a generalized Riem:
problem at cell interface;_, /, takes place. It consists of the equation (compa
to (10))

dq  OFi_1)(q, )

= 17
ot Ox 0, (17
together with the initial data (15), where
fi—1(q) if T < Tj1/2,
F;,_ ,x) = . 18
-1/2(4,@) { fi(q) itz >a . (18)

The solution of the generalized Riemann problem is obtained by using
decomposition of the flux difference;(Q;) — fi—1(Qi—1) instead of the
decomposition (16):

[i(Qi) — fim1(Qi—1) = Z Z7 1 (19)
p=1

whereZ? are calledf-waves [], as they are analogous to the wav&é from (16).

. » » - i :
Since eacfffFU2 corresponds t@ifl/QWFl/z, the expressions for fluctuations

A*AQi_l/Q and A~ AQ;11/, (see (13)) are simply replaced by

AYAQiapp= ) 2, (20)
p:sf71/2<0

ATAQi 12 = Z 21 (21)
p:sf+1/2>0

As is shown in [], the obtained algorithm is second-order accurate for smo
solutions.

3.1. Linear elastic waves in heterogeneous media

The Jacobian matrix for the system (5) is

folg7) = ( e “po@ > (22)
with eigenvaluestc(x), where the sound speed is given by
c(z) = /(A=) + 2u(x))/ po(). (23)
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The corresponding eigenvectors are

r(l)(:p) = ( Z(lm) > for 3(1)(x) = —c(x), (24)
and
r®(z) = < —Zl(x) > for s (z) = c(x), (25)

whereZ(z) = po(x)c(x) is the impedance. For the linear problem with variab
coefficients, the Riemann solver is defined by choosing the wave speeds to b
sound speed in the appropriate cé]l [

e Ni1 + 2451 (2) Ai 4 244
Y R R O M ik LY (26)
Si— 1/2 Di1 i—1/2 i

Then the wavesV() andW ) must be of the form

@ _ @ 1) (1) 1
Wilije = Q19T 12 = Y1y < Zi 1 > , (27)

@ __ @ 2 2) 1
Wilie = & 027 02 = 40 < — 7 ) : (28)

The values)zz@1 /2 andag)1 /o are determined by the conditiof] [

2
fZ(Q) Ql 1 Zaz 1/2 i— 1/2 zp)l/2 (29)

This leads to the following characteristic property of the algorithm

ATAQi_10+ ATAQ; 19 = fi(Q:i) — fi-1(Qi-1). (30)
As noted above, these modifications may be thermodynamically inconsis
Therefore, what we need is to reformulate this well-developed method i
consistent form for nonequilibrium situations.
4. THERMODYNAMIC REPRESENTATION
4.1. Discrete systems
It is salient to remind the reader of the notion discrete systemsn
thermodynamics {]). In such thermodynamics, the thermodynamic state sp:

is extended by means of so-callambntact quantitiesin order to describe
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nonequilibrium states. In this perspective a discrete system is a damafrR3
that is separated from its environmeiit by a contact surfaceG. The interaction
betweenGG and G* is described byontact quantities In a Schottky systerper
se this interaction consists of heat, work, and mass exchanges. For inste
considering the rate of heat exchan@e the so-calleccontact temperatute®,
is defined by the following inequality:

Q(—)zo (31)

for vanishing work and mass exchange rates. Hgfeis the thermostatic
temperature of the equilibrium environment. From (31) it follows thaand the
bracket have always the same sign. If we now suppose that there exists ex
one equilibrium environment for each arbitrary discrete system for which the
heat exchange between them vanishes, then the defining inequality (31) deter!
the contact temperature of the system as the thermostatic tempéerétafethe
system’s environment for which this net exchange vanishesdyhamic pressure
m, and thedynamic chemical potential, are defined analogously

V(W_p*)zoa M(V*_M>ZO> (32)

where V is the time rate of volume and/ is the time rate of mass. The
contact quantities so defined provide a complete thermodynamic descriptio
nonequilibrium states of a separated discrete system. Note, however, that the \
of the defined contact quantities differ from the values of usual bulk parametel
the case of local equilibrium.

In the required extension of the concepts of the thermodynamics of disc
systems to théhermoelastic casén addition to© and the defining inequality (31),
which governs heat exchange, we must defigerstact dynamic stress tenshy;
since the state space includes the deformation. Analogously to (31) that hold
¢i; = 0, we have thus

86@‘
ot

(Zij—03) =20,  (Q=0). (33)

Hereo; is the Cauchy stress tensor in the environment. Now it remains to estat
the connection between tiellk quantities and theeontactquantities.
4.2. Thermodynamic consistency conditions
Classical equilibrium conditions for any two single-component simple syste
consist in the equality of temperatures, pressures, and chemical potentials in
systems

TO 7@, 0 2@ 0 = @) (34)
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Here temperaturd;, pressurep, and chemical potential;, are given by

oU oU oU
(as)m—f“ (avL,f‘p’ (aN)s,v‘“’ (35)

whereU is the internal energy; is the entropy) is volume, andV is mass of the
system. In general, the internal energy of a discrete system that is not in equilib
differs from the local equilibrium value by an excess energy:

U(57 V7 N) - Ueq(Seqa V;aqa Neq) = Uex- (36)

Assuming that the local equilibrium variables are defined as usual (see (35))
contact quantities can be associated with the excess energy:

OUecx OUex OUgx
= = — - . 7
(aS)V,N © (aV>S,N g <8N>S,v v @7

Therefore, the equilibrium conditions (34) can be generalized to the nonequilibr
case as follows:

T(l) + @(1) — T(Q) + @(2)7 p(l) + 7T(1) — p(Q) + 71-(2)’ (38)

In the considered elastic case, only the condition {38)elevant. It should be
applied in a tensorial form

o) +30) =6 + £ (40)

T2 =0y ij

We will apply the consistency condition (40) to determine the values of the con
guantities.
4.3. Contact quantities

The finite-volume algorithm (12) can also be represented in terms of con
quantities 9]

Q= Q1 - R (CH@D - € QD). (@1)

x

whereC* denote corresponding contact quantities,
2H(Qi) >
CE(Qi) = 2. 42
Here) denotes, by duality, the contact deformation velocity.
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The consistency condition (40) in the uniaxial case

(ET)ic1 — (B0)i = (o11)i — (o11)i-1, (43)

should be complemented by the kinematic conditirmhich can be rewritten in
the small-strain approximation as follows:

(Vi)ic1 — (V1 )i = (01)i — (v1)im1. (44)

The relations (43) and (44) can be expressed in vectorial form as follows:

C 1 (@Q11) — O (Q1) = fi(Qi) — fim1(Qi-1). (45)

Itis easy to see that the last expression is nothing else but the characteristic prc
(30) for the conservative wave-propagation algorithm.

Thus, the thermodynamic consistency conditions and kinematic condition
the cell edge automatically lead to the conservative wave-propagation algori
From another point of view, this means tlthe wave-propagation algorithm is
thermodynamically consistent

In practice, we note that the contact velocities are connected with con
stresses by relations along characteristic lines of the system of equations (9)

_ Y1) Y )i
V)= —(pg7 Vi i1 = (p_lllz_i (46)

Therefore, we have a linear system of equations for the determination of cor
stresses
(Ei)i-1 = (Zn)i = (@11)i — (F11)i-1, (47)

SH)i- Y1)
( 11) 1 + ( 11) _ (al)i . (@1)7;_1' (48)
Pi—1Ci—1 PiCi

Solving the system of equations (47), (48), we obtain the values of con
gquantities needed to update the state of each cell to the next time step withi
finite-volume numerical scheme (41).

5. NUMERICAL RESULTS

First we consider the stress wave propagation in the one-dimensional se!
Our motivation is to draw parallels with a similar problem discussed by Cerm
and Pastrone’] who have shown the possible decay of the wave amplitude b
layer where some microscopic damage has accumulated. Their model was bas
the concept of internal variables (cf. al$8]). The microstructure is then describe
by a certain scalar field that depends on the density of the defect and affect
energy function. It results in a certain additional nonequilibrium stress accoui

38



for in governing equations’]. In our calculation, a layer of functionally gradec
material is placed in the interval [300,700] within the dimensionless computatic
domain [0,1000] (see Fig. 1). The mechanical properties of the layer are give
a mixture of randomly embedded particles with a Gaussian distribution func
(Fig. 1). The properties of the metal and ceramic are the followih¢?]: Young’s
modulus 199.5 GPa and 393 GPa, Poisson’s ratbband 0.25, and density
8900 kg/m® and3970 kg/m?, respectively. The results of calculations are shov
in Fig. 2. Clearly, we get an expected decrease in the transmitted wave ampl
after interaction with the layer. It should be noted that a considerable decrea
observed only in the case of a significant difference in the properties of mater
In addition, due to the random distribution in the layer, the reflected wave sh
up certain irregularities (small wiggles about the zero line) that can be usec
detecting the properties of the layer. By comparing the results obtained by
formalism of internal variables’] and straightforward calculations, one couls
determine the properties of the scalar field used to model internal variables.

Density, kg/m3

4000 R——— : R —
0 100 200 300 400 500 600 700 800 900 1000

Dimensionless distance

Fig. 1. Density distribution in a slab with inhomogeneous layer.
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Fig. 2. Stress wave propagation inside a medium with inhomogeneous layer: stress profile
consecutive time instants.
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Now we will try to characterize the interaction of a shear stress wave wit
phase boundary and to compare our simulations with available experimental
for a dynamical loading. To our knowledge, the only experimental investigat
concerning impact-induced austenite-martensite phase transformations has
reported by Escobar and Cliftont3['*]. In their experiments, these author:
used thin plate-like specimens of Cu-14.44Al-4.19Ni shape-memory alloy sir
crystal. One face of this austenitic specimen was subjected to an oblique i
loading, generating both shear and compression. The temperature changes
Escobar and Clifton’s experiments are thought to be relatively unimportant.
measurements are taken in the central part of the rear face of the specimer
Escobar and Clifton noted, measured velocity profiles provide several indicat
of the existence of a propagating phase boundary, in particular, a differe
between the measured particle velocity and the transverse component o
projectile velocity. This velocity difference, in the absence of any evidence
plastic deformation, is indicative of a stress-induced phase transformation
propagates into the crystal from the impact face. To compare the results of
numerical simulation with the experimental data by Escobar and CliftoH],
we extract the properties of the austenite phase of the Cu-14.44AI-4.19Ni sh
memory alloy from their paper: the densjty= 7100 kg/m?, the elastic modulus
E =120 GPa, the shear wave velocity = 1187 m/s, the dilatation coefficient
a=6.75 x 107 1/K. For the martensitic phase we choose, respectivély;
60 GPacs = 1055 m/s, with the same density and dilatation coefficient as abov

To compare the results of the modelling with the experimental de
the calculations of the particle velocity were performed for different imps
velocities by means of the thermomechanical model of the phase transition 1
propagation [°16] with a Courant number equal to 1. In the homogeneous c:
this gives the exact solution of the hyperbolic system of equations (5). The re:
of the comparison are given in Fig. 3, where the predictions of a simple mc
corresponding to a linear kinetic relation are also shown. It should be noted
the mobility coefficients in the linear model are calculated by means of the val
of the driving force determined by the present numerical model and experime
data by Escobar and Clifton. Therefore, two different straight lines are basei
the results of different experiments. As one can see, the linear models ca
approximate the experimental points related to remaining experiments. Atthe ¢
time, the particle velocity computed by means of the present model is practic
independent of the impact velocity, which has better correspondence with
available experimental data.

6. CONCLUSIONS
A thermodynamically consistent form for the finite-volume numerical meth
for thermoelastic wave and front propagation is proposed in the paper. Su

reformulation provides the applicability of the Godunov-type numerical scher
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Fig. 3. Particle velocity versus impact velocity. Smooth loading.

based on averages of field variables to the description of nonequilibrium situati
The nonequilibrium description is fulfilled by using contact quantities instead
numerical fluxes. The contact quantities satisfy the thermodynamic consistt
conditions which generalize the classical equilibrium conditions.

As is shown, numerical simulations performed by means of the modified fin
volume method capture both the theoretical predictions of decay of the w
amplitude by a damaged layer and the experimentally observed difference bet
tangential impact velocity and transversal particle velocity, which is indicative
the existence of phase transformation in a slab.
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Lainete ja frontide numbriline modelleerimine
struktureeritud materjalides: termodiinaamiline
lahenemine

Arkadi Berezovski, Juri Engelbrecht ja Gérard A. Maugin

On esitatud termodinaamilisel kooskdlal p&hinev 16plike mahtude numbril

meetod termoelastsete lainete ja frontide leviku kirjeldamiseks. Selline es
lubab véljamuutujate keskmistel baseeruvaid Godunovi tltpi numbrilisi skes
rakendada mittetasakaaluliste pingeseisundite kirjeldamiseks. Mittetasakaal
kirjeldus kasutab numbrilise voolu asemel kontaktsuurusi, mis rahuldavad ter
dinaamilise kooskdla tingimusi ja Uldistavad klassikalisi tasakaalutingimusi.
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