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Abstract. A thermodynamically consistent form for the finite-volume numerical method
for thermoelastic wave and front propagation is proposed. Such reformulation provides
applicability of the Godunov-type numerical schemes based on averages of field variables
to the description of nonequilibrium situations. The nonequilibrium description uses contact
quantities instead of numerical fluxes. These quantities satisfy the thermodynamic consistency
conditions which generalize the classical equilibrium conditions.
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1. INTRODUCTION

The propagation of waves and phase-transition fronts in thermoelastic solids is
governed by the same field equations and equations of state (at least in the integral
formulation). In linear thermoelastic media these equations can be reduced to the
classical hyperbolic wave equation and to the parabolic heat equation. Problems
arise in the propagation of thermoelastic waves and fronts ininhomogeneousmedia,
such as laminated composites, functionally graded materials, mesoscopic granular
media, and two-phase media, in other words, in media with a microstructure. From
a practical point of view, these problems are reduced to the construction of relevant
numerical algorithms. Possible rapid variations in the properties of considered
materials and the simultaneous presence of compression and shear waves require at
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least a second-order accuracy of the algorithms. Among successful methods with
high accuracy and efficiency are the finite-volume schemes.

Finite-volume numerical methods (cf. [1,2]) are based on the integration of
governing equations over a control volume which includes a grid element and a
time step. This means that the resulting numerical scheme is expressed in terms
of averaged field variables and averaged fluxes at boundaries of the grid elements.
The equations of state determining the properties of a medium are also assumed
to be valid for the averaged quantities. In fact, this is an assumption of the local
equilibrium inside the grid element, where the local equilibrium state is determined
by the averaged values of field variables.

To obtain a high-order accuracy, the stepwise distribution of the field variables
is changed to a piecewise linear (or even nonlinear) distribution over the grid [3].
Such a reconstruction leads to a better approximation from the mathematical point
of view and provides a high-order accuracy together with a certain procedure
for suppressing spurious oscillations during computation. However, from the
thermodynamic point of view, the reconstruction destroys the local equilibrium
inside grid cells. This means that the equations of state are not valid in this case
and even the meaning of thermodynamic variables (e.g. temperature and entropy)
is questionable.

A possible solution of this problem is the description of the nonequilibrium
states inside the grid elements in the framework of the thermodynamics of
discrete systems [4]. The thermodynamic state space is extended in this theory
by accounting for so-calledcontact quantitiesin addition to the usual local
equilibrium variables. These quantities can be introduced into the finite-volume
schemes in a natural way. The crucial hypothesis then is the connection between
the excess energy and contact quantities which describe the nonequilibrium states
of discrete systems. The next step is the extension of the classical equilibrium
conditions to the nonequilibrium case. In the paper, the corresponding procedure is
described on the simple example of a uniaxial motion of a slab.

The results of computations of a test problem for the propagation of
thermoelastic waves in media with rapidly-varying properties (e.g. in functionally
graded materials) are presented. The comparison of the results of computations
with the experimental investigations of the impact-induced martensitic phase
transformation is also given in the one-dimensional case.

2. SIMPLE EXAMPLE: UNIAXIAL MOTION OF A SLAB

In order to explain some of the key ideas with a minimal mathematical
complexity, it is convenient to work in an essentially one-dimensional setting.
Consider a slab, which in an unstressed reference configuration occupies the region
0 < x1 < L, −∞ < x2, x3 <∞, and consider uniaxial motion of the form

ui = ui(x, t), x = x1, (1)
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wheret is time,xi are spatial coordinates,ui are components of the displacement
vector. In this case, we have only three nonvanishing components of the strain
tensor

ε11 =
∂u1

∂x
, ε12 = ε21 =

1
2

∂u2

∂x
, ε13 = ε31 =

1
2

∂u3

∂x
. (2)

Particle velocities associated with (1) are

vi(x, t) =
∂ui

∂t
. (3)

Without loss of generality, we can setε13 = 0, v3 = 0. Then we obtain uncoupled
systems of equations for longitudinal and shear components which express the
balance of linear momentum and the time derivative of the Duhamel–Neumann
thermoelastic constitutive equation, respectively [5,6]:

ρ0(x)
∂v1

∂t
=

∂σ11

∂x
,

∂σ11

∂t
= (λ(x) + 2µ(x))

∂v1

∂x
+ m(x)

∂θ

∂t
, (4)

and

ρ0(x)
∂v2

∂t
=

∂σ12

∂x
,

∂σ12

∂t
= µ(x)

∂v2

∂x
, (5)

which are complemented by the heat conduction equation

C(x)
∂θ

∂t
=

∂

∂x

(
k(x)

∂θ

∂x

)
. (6)

Hereσij is the Cauchy stress tensor,ρ0 is the density,θ is temperature, andC(x) is
the heat capacity per unit volume for a fixed deformation. The dilatation coefficient
α is related to the thermoelastic coefficientm, and the Lamé coefficientsλ andµ
by m = −α(3λ + 2µ). The indicated explicit dependence on the pointx means
that the body is materially inhomogeneous in general. These systems of equations,
(4) and (5), can be solved separately. For simplicity, we focus our attention on the
system of equations (4) for longitudinal components in an isothermal situation.

2.1. Dynamic loading

In a dynamic problem we shall look for piecewise smooth velocity and stress
fieldsv1(x, t), σ11(x, t) for inhomogeneous thermoelastic materials, which obey
the following initial and boundary conditions:

σ11(x, 0) = v1(x, 0) = 0, for 0 < x < L, (7)

v1(0, t) = v0(t), σ11(L, t) = 0, for t > 0, (8)

and satisfy the field equations

∂(ρ0(x)v1)
∂t

− ∂σ11

∂x
= 0,

∂

∂t

(
σ11

λ(x) + 2µ(x)

)
− ∂v1

∂x
= 0. (9)

The system of equations (9) is a system of conservation laws which is suitable for
a numerical solution by a finite-volume scheme. We analyse the recently proposed
wave-propagation algorithm [1,2].
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3. WAVE-PROPAGATION ALGORITHM

The system of equations for one-dimensional elastic waves (5) can be
represented in the conservative form

∂q

∂t
+

∂f(q, x)
∂x

= 0, (10)

where

q(x, t) =
(

ρ0(x)v(x, t)
σ(x, t)/(λ(x) + 2µ(x))

)
, f(q, x) =

(
−σ(x)
−v(x)

)
.

In the standard wave-propagation algorithm [1], a computational grid with
interfacesxn−1/2 = (n − 1)/2∆x, time levelstk = k∆t, and cellsCn =
[xn−1/2, xn+1/2] are defined. For simplicity, the grid size∆x and time step∆t
are assumed to be constant. Then the cell average

Qn
i ≈

1
∆x

∫ xi+1/2

xi−1/2

q(x, tn) dx (11)

is updated at each time step as follows

Qn+1
i = Qn

i −
∆t

∆x

(
A+∆Qi−1/2 +A−∆Qi+1/2

)
, (12)

where

A+∆Qi−1/2 =
m∑

p=1

(sp
i−1/2)

+Wp
i−1/2, (13)

and

A−∆Qi+1/2 =
m∑

p=1

(sp
i+1/2)

−Wp
i+1/2. (14)

Heres+ = max(s, 0), s− = min(s, 0), andsp
i−1/2 are speeds of wavesWp

i−1/2

obtained from the solution of the Riemann problem atxi−1/2 which consists of
Eq. (10) with piecewise constant initial data

q(x, 0) =
{

Qi−1 if x < xi−1/2,
Qi if x > xi−1/2.

(15)

The above-mentioned approach uses so-calledcell-edgeflux functions [7]. The
main assumption here is the satisfaction of the Rankine–Hugoniot conditions at
xi−1/2

Qi −Qi−1 =
m∑

p=1

Wp
i−1/2. (16)
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An alternative approach is to assume that a distinct flux functionfi−1/2(q) is
associated with each cell interfacexi−1/2. In this case the flux functions are called
cell-centred[7]. When cell-centred flux functions are used, a generalized Riemann
problem at cell interfacexi−1/2 takes place. It consists of the equation (compare
to (10))

∂q

∂t
+

∂Fi−1/2(q, x)
∂x

= 0, (17)

together with the initial data (15), where

Fi−1/2(q, x) =
{

fi−1(q) if x < xi−1/2,
fi(q) if x > xi−1/2.

(18)

The solution of the generalized Riemann problem is obtained by using the
decomposition of the flux differencefi(Qi) − fi−1(Qi−1) instead of the
decomposition (16):

fi(Qi)− fi−1(Qi−1) =
m∑

p=1

Zp
i−1/2, (19)

whereZp are calledf -waves [7], as they are analogous to the wavesWp from (16).
Since eachZp

i−1/2 corresponds tosp
i−1/2W

p
i−1/2, the expressions for fluctuations

A+∆Qi−1/2 andA−∆Qi+1/2 (see (13)) are simply replaced by

A+∆Qi−1/2 =
∑

p:sp
i−1/2

<0

Zp
i−1/2, (20)

A−∆Qi+1/2 =
∑

p:sp
i+1/2

>0

Zp
i+1/2. (21)

As is shown in [7], the obtained algorithm is second-order accurate for smooth
solutions.

3.1. Linear elastic waves in heterogeneous media

The Jacobian matrix for the system (5) is

fq(q, x) =
(

0 −1/ρ0(x)
−λ(x)− 2µ(x) 0

)
, (22)

with eigenvalues±c(x), where the sound speed is given by

c(x) =
√

(λ(x) + 2µ(x))/ρ0(x). (23)
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The corresponding eigenvectors are

r(1)(x) =
(

1
Z(x)

)
for s(1)(x) = −c(x), (24)

and

r(2)(x) =
(

1
−Z(x)

)
for s(2)(x) = c(x), (25)

whereZ(x) = ρ0(x)c(x) is the impedance. For the linear problem with variable
coefficients, the Riemann solver is defined by choosing the wave speeds to be the
sound speed in the appropriate cell [7]

s
(1)
i−1/2 = −

√
λi−1 + 2µi−1

ρi−1
, s

(2)
i−1/2 =

√
λi + 2µi

ρi
. (26)

Then the wavesW(1) andW(2) must be of the form

W(1)
i−1/2 = α

(1)
i−1/2r

(1)
i−1/2 = α

(1)
i−1/2

(
1

Zi−1

)
, (27)

W(2)
i−1/2 = α

(2)
i−1/2r

(2)
i−1/2 = α

(2)
i−1/2

(
1
−Zi

)
. (28)

The valuesα(1)
i−1/2 andα

(2)
i−1/2 are determined by the condition [7]

fi(Qi)− fi−1(Qi−1) =
2∑

p=1

α
(p)
i−1/2s

(p)
i−1/2r

(p)
i−1/2. (29)

This leads to the following characteristic property of the algorithm

A+∆Qi−1/2 +A−∆Qi−1/2 = fi(Qi)− fi−1(Qi−1). (30)

As noted above, these modifications may be thermodynamically inconsistent.
Therefore, what we need is to reformulate this well-developed method in a
consistent form for nonequilibrium situations.

4. THERMODYNAMIC REPRESENTATION

4.1. Discrete systems

It is salient to remind the reader of the notion ofdiscrete systemsin
thermodynamics ([4]). In such thermodynamics, the thermodynamic state space
is extended by means of so-calledcontact quantitiesin order to describe
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nonequilibrium states. In this perspective a discrete system is a domainG of R3

that is separated from its environmentG∗ by a contact surface∂G. The interaction
betweenG andG∗ is described bycontact quantities. In a Schottky systemper
se, this interaction consists of heat, work, and mass exchanges. For instance,
considering the rate of heat exchangeQ̇, the so-calledcontact temperature, Θ,
is defined by the following inequality:

Q̇

(
1
Θ
− 1

T ∗

)
≥ 0 (31)

for vanishing work and mass exchange rates. HereT ∗ is the thermostatic
temperature of the equilibrium environment. From (31) it follows thatQ̇ and the
bracket have always the same sign. If we now suppose that there exists exactly
one equilibrium environment for each arbitrary discrete system for which the net
heat exchange between them vanishes, then the defining inequality (31) determines
the contact temperature of the system as the thermostatic temperatureT ∗ of the
system’s environment for which this net exchange vanishes. Thedynamic pressure,
π, and thedynamic chemical potential, ν, are defined analogously

V̇ (π − p∗) ≥ 0, Ṁ (ν∗ − µ) ≥ 0, (32)

where V̇ is the time rate of volume andṀ is the time rate of mass. The
contact quantities so defined provide a complete thermodynamic description of
nonequilibrium states of a separated discrete system. Note, however, that the values
of the defined contact quantities differ from the values of usual bulk parameters of
the case of local equilibrium.

In the required extension of the concepts of the thermodynamics of discrete
systems to thethermoelastic case, in addition toΘ and the defining inequality (31),
which governs heat exchange, we must define acontact dynamic stress tensorΣij

since the state space includes the deformation. Analogously to (31) that holds for
ε̇ij = 0, we have thus

∂εij

∂t
(Σij − σ∗ij) ≥ 0, (Q̇ = 0). (33)

Hereσ∗ij is the Cauchy stress tensor in the environment. Now it remains to establish
the connection between thebulkquantities and thecontactquantities.

4.2. Thermodynamic consistency conditions

Classical equilibrium conditions for any two single-component simple systems
consist in the equality of temperatures, pressures, and chemical potentials in both
systems

T (1) = T (2), p(1) = p(2), µ(1) = µ(2). (34)
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Here temperature,T , pressure,p, and chemical potential,µ, are given by(
∂U

∂S

)
V,N

= T,

(
∂U

∂V

)
S,N

= −p,

(
∂U

∂N

)
S,V

= µ, (35)

whereU is the internal energy,S is the entropy,V is volume, andN is mass of the
system. In general, the internal energy of a discrete system that is not in equilibrium
differs from the local equilibrium value by an excess energy:

U(S, V,N)− Ueq(Seq, Veq, Neq) = Uex. (36)

Assuming that the local equilibrium variables are defined as usual (see (35)), the
contact quantities can be associated with the excess energy:(

∂Uex

∂S

)
V,N

= Θ,

(
∂Uex

∂V

)
S,N

= −π,

(
∂Uex

∂N

)
S,V

= ν. (37)

Therefore, the equilibrium conditions (34) can be generalized to the nonequilibrium
case as follows:

T (1) + Θ(1) = T (2) + Θ(2), p(1) + π(1) = p(2) + π(2), (38)

µ(1) + ν(1) = µ(2) + ν(2). (39)

In the considered elastic case, only the condition (38)2 is relevant. It should be
applied in a tensorial form

σ
(1)
ij + Σ(1)

ij = σ
(2)
ij + Σ(2)

ij . (40)

We will apply the consistency condition (40) to determine the values of the contact
quantities.

4.3. Contact quantities

The finite-volume algorithm (12) can also be represented in terms of contact
quantities [5,6]:

Qn+1
i = Qn

i −
∆t

∆x

(
C+

i (Qn
i )− C−

i (Qn
i )

)
, (41)

whereC± denote corresponding contact quantities,

C±(Qi) =
(

Σ±(Qi)
V±(Qi)

)
. (42)

HereV denotes, by duality, the contact deformation velocity.
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The consistency condition (40) in the uniaxial case

(Σ+
11)i−1 − (Σ−11)i = (σ11)i − (σ11)i−1, (43)

should be complemented by the kinematic condition [8] which can be rewritten in
the small-strain approximation as follows:

(V+
1 )i−1 − (V−1 )i = (v1)i − (v1)i−1. (44)

The relations (43) and (44) can be expressed in vectorial form as follows:

C+
i−1(Q

n
i−1)− C−

i (Qn
i ) = fi(Qi)− fi−1(Qi−1). (45)

It is easy to see that the last expression is nothing else but the characteristic property
(30) for the conservative wave-propagation algorithm.

Thus, the thermodynamic consistency conditions and kinematic conditions at
the cell edge automatically lead to the conservative wave-propagation algorithm.
From another point of view, this means thatthe wave-propagation algorithm is
thermodynamically consistent.

In practice, we note that the contact velocities are connected with contact
stresses by relations along characteristic lines of the system of equations (9)

(V−1 )i = −(Σ−11)i

ρici
, (V+

1 )i−1 =
(Σ+

11)i−1

ρi−1ci−1
. (46)

Therefore, we have a linear system of equations for the determination of contact
stresses

(Σ+
11)i−1 − (Σ−11)i = (σ̄11)i − (σ̄11)i−1, (47)

(Σ+
11)i−1

ρi−1ci−1
+

(Σ−11)i

ρici
= (v̄1)i − (v̄1)i−1. (48)

Solving the system of equations (47), (48), we obtain the values of contact
quantities needed to update the state of each cell to the next time step within the
finite-volume numerical scheme (41).

5. NUMERICAL RESULTS

First we consider the stress wave propagation in the one-dimensional setting.
Our motivation is to draw parallels with a similar problem discussed by Cermelli
and Pastrone [9] who have shown the possible decay of the wave amplitude by a
layer where some microscopic damage has accumulated. Their model was based on
the concept of internal variables (cf. also [10]). The microstructure is then described
by a certain scalar field that depends on the density of the defect and affects the
energy function. It results in a certain additional nonequilibrium stress accounted
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for in governing equations [9]. In our calculation, a layer of functionally graded
material is placed in the interval [300,700] within the dimensionless computational
domain [0,1000] (see Fig. 1). The mechanical properties of the layer are given by
a mixture of randomly embedded particles with a Gaussian distribution function
(Fig. 1). The properties of the metal and ceramic are the following [11,12]: Young’s
modulus 199.5 GPa and 393 GPa, Poisson’s ratio0.3 and 0.25, and density
8900 kg/m3 and3970 kg/m3, respectively. The results of calculations are shown
in Fig. 2. Clearly, we get an expected decrease in the transmitted wave amplitude
after interaction with the layer. It should be noted that a considerable decrease is
observed only in the case of a significant difference in the properties of materials.
In addition, due to the random distribution in the layer, the reflected wave shows
up certain irregularities (small wiggles about the zero line) that can be used for
detecting the properties of the layer. By comparing the results obtained by the
formalism of internal variables [9] and straightforward calculations, one could
determine the properties of the scalar field used to model internal variables.

Fig. 1. Density distribution in a slab with inhomogeneous layer.

Fig. 2. Stress wave propagation inside a medium with inhomogeneous layer: stress profiles for
consecutive time instants.
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Now we will try to characterize the interaction of a shear stress wave with a
phase boundary and to compare our simulations with available experimental data
for a dynamical loading. To our knowledge, the only experimental investigation
concerning impact-induced austenite-martensite phase transformations has been
reported by Escobar and Clifton [13,14]. In their experiments, these authors
used thin plate-like specimens of Cu-14.44Al-4.19Ni shape-memory alloy single
crystal. One face of this austenitic specimen was subjected to an oblique impact
loading, generating both shear and compression. The temperature changes during
Escobar and Clifton’s experiments are thought to be relatively unimportant. The
measurements are taken in the central part of the rear face of the specimen. As
Escobar and Clifton noted, measured velocity profiles provide several indications
of the existence of a propagating phase boundary, in particular, a difference
between the measured particle velocity and the transverse component of the
projectile velocity. This velocity difference, in the absence of any evidence of
plastic deformation, is indicative of a stress-induced phase transformation that
propagates into the crystal from the impact face. To compare the results of our
numerical simulation with the experimental data by Escobar and Clifton [13,14],
we extract the properties of the austenite phase of the Cu-14.44Al-4.19Ni shape-
memory alloy from their paper: the densityρ = 7100 kg/m3, the elastic modulus
E = 120 GPa, the shear wave velocitycs = 1187m/s, the dilatation coefficient
α = 6.75× 10−6 1/K. For the martensitic phase we choose, respectively,E =
60 GPa,cs = 1055m/s, with the same density and dilatation coefficient as above.

To compare the results of the modelling with the experimental data,
the calculations of the particle velocity were performed for different impact
velocities by means of the thermomechanical model of the phase transition front
propagation [15,16] with a Courant number equal to 1. In the homogeneous case
this gives the exact solution of the hyperbolic system of equations (5). The results
of the comparison are given in Fig. 3, where the predictions of a simple model
corresponding to a linear kinetic relation are also shown. It should be noted that
the mobility coefficients in the linear model are calculated by means of the values
of the driving force determined by the present numerical model and experimental
data by Escobar and Clifton. Therefore, two different straight lines are based on
the results of different experiments. As one can see, the linear models cannot
approximate the experimental points related to remaining experiments. At the same
time, the particle velocity computed by means of the present model is practically
independent of the impact velocity, which has better correspondence with the
available experimental data.

6. CONCLUSIONS

A thermodynamically consistent form for the finite-volume numerical method
for thermoelastic wave and front propagation is proposed in the paper. Such a
reformulation provides the applicability of the Godunov-type numerical schemes
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Fig. 3.Particle velocity versus impact velocity. Smooth loading.

based on averages of field variables to the description of nonequilibrium situations.
The nonequilibrium description is fulfilled by using contact quantities instead of
numerical fluxes. The contact quantities satisfy the thermodynamic consistency
conditions which generalize the classical equilibrium conditions.

As is shown, numerical simulations performed by means of the modified finite-
volume method capture both the theoretical predictions of decay of the wave
amplitude by a damaged layer and the experimentally observed difference between
tangential impact velocity and transversal particle velocity, which is indicative of
the existence of phase transformation in a slab.
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Lainete ja frontide numbriline modelleerimine
struktureeritud materjalides: termodünaamiline

lähenemine
Arkadi Berezovski, Jüri Engelbrecht ja Gérard A. Maugin

On esitatud termodünaamilisel kooskõlal põhinev lõplike mahtude numbriline
meetod termoelastsete lainete ja frontide leviku kirjeldamiseks. Selline esitus
lubab väljamuutujate keskmistel baseeruvaid Godunovi tüüpi numbrilisi skeeme
rakendada mittetasakaaluliste pingeseisundite kirjeldamiseks. Mittetasakaaluline
kirjeldus kasutab numbrilise voolu asemel kontaktsuurusi, mis rahuldavad termo-
dünaamilise kooskõla tingimusi ja üldistavad klassikalisi tasakaalutingimusi.
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