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Waves in solids with vectorial microstructure

Franco Pastrone

Department of Mathematics, University of Torino, Via C. Alberto 10, 10123 Torino, Italy;
franco.pastrone@unito.it

Received 2 October 2002

Abstract. A general model of solids with vectorial microstructures is introduced. Field
equations are obtained via a variational principle, with natural boundary conditions. It is proved
that scalar unidimensional bodies and Cosserat solids are included in this model. Waves and
stability problems are briefly discussed.
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1. INTRODUCTION

A wide class of phenomena can be described by means of microstructural
models of solids and fluids, where the microstructure can be described by vector
fields over the body. In principle, there are no restrictions on the number of vector
fields, which are unknown variables of the problem, but obvious restrictions exist
due to the possible physical meaning of each vector field. In this approach, we
follow the basic paper of Ericksen [1] on shells. The material is supposed to
be “hyperelastic”, in the sense that we admit the existence of an energy density
function and the equations are derived through a variational principle (see also [2]).
The field equations, or equations of motion, are the Euler–Lagrange equations of
an energetic functional. We can find some particular interesting cases, like the one-
dimensional case, where we can derive rigorously the equations variously obtained
and discussed in [3−8] for scalar microstructures, and the Cosserat continua, where
the constraint of a rigid triad of vector fields can be included by removing from
the field equations the constraint reactions, such that the dynamic is described
by six differential equations, as reasonably expected (see also [9]). In Section 2
we formulate the general problem of vectorial microstructures. In Section 3 we
deal with two particular cases (Cosserat continua and scalar microstructures). In
Section 4 we study the equilibrium problem and discuss the possibility of wave
propagation, including the connections between the wave propagation conditions
and the stability of equilibrium.
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2. THE FIELD EQUATIONS

The macrostructure is a three-dimensional bodyB, described by a position
vector, from some fixed origin:

r = r(Xh, t), (2.1)

whereXh are material coordinates andt is time. Commas denote partial derivatives
with respect toXh and superposed dots denote partial derivatives with respect to
time, e.g.:

r,h≡
∂r
∂Xh

, ṙ ≡ ∂r
∂t
.

The microstructure we deal with is described by a “microscale” position vector:

r′ = r′(xi′ , Xh, t), (2.2)

wherexi′ are microscopic material coordinates, in the sense used by Mindlin [10]
and shortly discussed in [11]. Displacements are also defined by introducing a
reference configurationB∗:

u = r−R , u′ = r′ −R′ , (2.3)

where upper-case letters denote position vectors on the reference configuration. A
microscopic natural material basis can be defined by

di ≡
∂r′

∂xi′
= ∂′ir

′(xh′
, Xk, t). (2.4)

The vector fieldsdi are called “directors” in the literature about oriented bodies
and we will maintain this name. In fact, the vector fieldsdi define a metric
tensorψ′ij = di · dj , which can be also interpreted as a microgradient of the
microdeformation. We describe this tensor field at the macrolevel by a suitable
“magnification” process, namely introducing the average field

ψ̄ij = ψ̄ij(Xh, t) ≡ lim
Ω→X

1
Ω

∫
B∗

ψ′ijdx
1′dx2′dx3′ (2.5)

for anyX ∈ B∗ and anyΩ ⊂ B∗ such thatX ∈ Ω. In other words, we assume
that∀X ∈ B∗, ∃ a filter of subbodies{Ω}Ω⊆B∗ andX ∈ Ω, such that (2.5) holds.
Hence, we can define the microdeformation gradient

χij k = ∂iψ̄j k (2.6)

and the relative deformation

γij = ∂iuj − ψ̄ij , (2.7)

whereuj = u · ej , ({ej} being a basis in the Euclidean vector spaceE3).
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Remark. If the microstructure is affine, the position vector field is linear in a
microbasisdi:

r′ = xi′di(Xh, t).

Thendi(Xh, t) = ∂′ir
′ as before, and in terms of displacements we have

u′i = xk′
ψ′ij(X

h, t).

Hence,∂′ku
′
i = ψ′ki(X

h, t) and, by (2.5),ψ̄ij = ψ′ij . Actually, we recover the
Mindlin model as a particular case of our theory, but it requires more restrictive
assumptions on the functionsr′(xi′ , Xh, t).

The kinetic energy density of the microstructured body is defined as a quadratic
form in the velocitieṡr andḋi:

T =
1
2
[ρ(Xh) ṙ · ṙ + 2ρi(Xh) ṙ · ḋi + ρij(Xh) ḋi · ḋj ], (2.8)

whereρ is the usual three-dimensional mass density,ρi andρij are coefficients
including density and inertia terms, which must satisfy the conditions

T ≥ 0 , T = 0 ⇔ ṙ = ḋi ≡ 0. (2.9)

As is well known, it is always possible to diagonalize the form (2.8) by making
linear transformations onr anddi, such thatρi = 0, ρij = ρIij , whereIij are
effective inertia terms of the microstructure. We assign a strain energy density
function

W = W (r,i ;dj ;dj ,h ;Xh), (2.10)

whose existence follows from the assumption that the total power expendedPT is
given byPT = dW/dt and the total energy is representable in the form

E =
∫
B
(W + T )ρdX1dX2dX3 +

∫
B
WbρdX1dX2dX3, (2.11)

whereWb is the potential of the external body forces, which depends onr andXh

only. We avoid internal constraints and leave apart the problem of the boundary
conditions, which will be discussed in the next section. The equations of motion
can be derived as the Euler–Lagrange equations of the functional of action and read

(
∂W

∂r,i

)
,i

− ∂Wb

∂r
=

d
dt
∂T

∂ṙ
,(

∂W

∂dj ,i

)
,i

− ∂W

∂dj
=

d
dt
∂T

∂ḋj

.

(2.12)

A comparison with the equations for vectorial microstructures shown in Capriz
[9] can be easily performed. For instance, the term∂W/∂di must be equated
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to ρ βα − Lα, according to Capriz’s notation, i.e., it includes both microbody
forces and microinternal forces, even if we did not define microbody forces. One
can recover this term, definingWb as the sum of a macrobody forceWM

b =
WM

b (r, Xh) and a microbody forceWm
b = Wm

b (di, X
h), Wb = WM

b + Wm
b ,

such that instead of∂W/∂di we obtain∂W/∂di + ∂Wm
b /∂di. Other similar

remarks can be discussed, but they are of small relevance for our purposes. Since
the microstructure can have a dissipative effect, we can introduce dissipation in
field equations (2.12). The deformation velocities are given by

r,t =
∂r
∂t
, r,i t =

∂r,i
∂t

, di,t =
∂di

∂t
, di,jt =

∂di,j
∂t

. (2.13)

We can evaluate the total power expended as a sum of vector products as
follows:

PT = b · r,t +
∑

i σi · r,it +
∑

i τ i · di,t +
∑

ij ηij · di,jt , (2.14)

where the vectorsb, σi, τ i,ηij are forces, stresses, and generalized stresses.
We can split the “conservative” part from the dissipation by means of the
decomposition:

PT = PW + PD =
dW
dt

+ PD, (2.15)

wherePD = b̂ · r,t +
∑

i σ̂i · r,i t +
∑

i τ̂ i · di,t +
∑

i η̂ij · di,jt, the hat meaning
that we deal with the dissipative part of the stresses, or the so-called nonequilibrium
stresses. Finally, the stresses can be written in the form

b = −∂Wb

∂r
+ b̂,

σi =
∂W

∂r,i
+ σ̂i,

τ i = −∂W
∂di

+ τ̂ i,

ηij =
∂W

∂di,j
+ η̂ij ,

(2.16)

and the field equations can be written in the Eulerian form
σi,i +b =

d
dt
∂T

∂ṙ
,

ηij ,j +τ i =
d
dt
∂T

∂ḋi

,
(2.17)

which obviously includes (2.12). In many cases the body forces are neglected,
henceb = 0 and the microbody force included inτ i (see Section 2) vanishes as
well, butτ i 6= 0.

Natural boundary conditions may be derived through the same variational
principle, by rearranging the energy functional. Initial conditions must be added
as well.
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3. PARTICULAR MODELS

According to different assumptions on the geometry and kinematics of the
microstructures, one can recover many particular cases often discussed in the
literature, usually each one being introduced independently. Among them, we
want to focus briefly our attention on two rather different structures: scalar micro-
structures in one-dimensional bodies and Cosserat continua.

One-dimensional microstructured bodies have been extensively studied in a
series of papers [4,6,7,12] dealing with different particular models. Their common
general features can be easily derived in the present context.

The body is a one-dimensional manifold, with a material coordinatex and a unit
vector basise, such that the vector fieldsr andd can be written asr = u(x, t) e and
d = ψ(x, t) e. Hence we deal with the scalar functionsu = u(x, t), ψ = ψ(x, t)
only.

The strain energy functionW = W (u, ux, ψ, ψx, x) is an assigned smooth
function and the kinetic energy is a quadratic form inu̇, ψ̇:

T =
1
2
(ρ u̇2 + I ψ̇2),

whereρ = ρ(x, t) is one-dimensional mass density andI an inertia term connected
with the microstructure, which can have different explicit forms, according to the
kind of microstructure one can represent with this model (i.e., microcrack density,
dislocation density, voids, etc.). If we assume dissipation, we introduce dissipative
stresses such that the total power expended is given by

PT =
dW
dt

+D (3.1)

and
D = σnequxt + τneqψt + ηneqψxt > 0 (3.2)

for any admissible deformation. For simplicity, we can assume the dissipative
stresses linear on the strain velocity. Hence,

Σi = Dj
i ε̇j , (3.3)

whereΣi ≡ {σneq, τneq, ηneq}, εj ≡ {ux, ψ, ψx}, andDj
i are given constants, such

that (3.2) holds, namely they are the coefficients of a positive definite quadratic
form.

The field equations take the form
ρ utt =

(
∂W

∂ux

)
x

− ∂W

∂u
+Dj

1ε̇j ,

I ψtt =
(
∂W

∂ψx

)
x

− ∂W

∂ψ
−Dj

2ε̇j +Dj
3ε̇j .

(3.4)
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In some cases it is assumedI = 0 (namely, the microstructure has no inertia)
[4,5,11,12], or Dj

3 = D3
i = 0 [6,7], or Dj

i = 0 for i 6= j, and finally allDj
i vanish,

butD2
2 6= 0 [13]. The last case fits with the physical assumption that the dissipative

stresses are coupled (Dj
i = 0 for i 6= j), and the dissipation is due to the interaction

between micro- and macrostructure. The case with no dissipation is studied in [11]
in this volume.

The second case is provided by Cosserat solids and obviously it can encompass
Cosserat shells and rods as well. In Cosserat models the microstructure is described
by a rigid triad{di}, which is attached to each particle of the body. It means that
one must add to our field equations (2.17) the constraint equations

di · dj = δij . (3.5)

Formally we can apply the Lagrange multipliers method and easily derive the
equations of motion as a determined set of partial differential equations, but they are
quite formal. Moreover, they contain the constraint reactions (namely, the Lagrange
multipliers), while the main interest here is to obtain equations of motion free of
reactions, sufficient to determine the motion. This goal can be attained using the
angular velocityω such thaṫdi = ω×di (since we deal with a rigid microstructure)
and a “spatial spin”Ω such thatdi,h = εkij Ωj

hdk, whereεkij is the Levi-Civita
symbol. If we choose suitable measures of rotation in an affine three-dimensional
space (for instance, Euler angles)qi = qi(Xh, t), the angular velocityω and the
“spatial spin”Ω can be expressed in term of such variables:

ω = ω(qi, q̇i, t), Ω = Ω(qi, q,h , t). (3.6)

Henceforth, we can write {
W = W (r,i ,Ω, xh),

T = T (ṙ,ω),
(3.7)

whereT is a quadratic form in the variables. The explicit form of the field equations
is complicated and is not given here. These equations can be compared to the
equations obtained by Capriz [9, pp. 49–66], even if they do not take the same
form, but their study is left to further investigations.

4. WAVES AND STABILITY

Wave propagation in one-dimensional microstructured bodies has been studied
in several papers [3−7,11−13], and a few results have been obtained for vectorial
microstructures with some special features [3,4]. Here a few general results are
obtained for three-dimensional vectorial microstructures, which can be derived
avoiding heavy calculations.

26



We simplify the notation, introducing a twelve-dimensional Euclidean vector
spaceE12, whose elements are given as ordered four-plets:p ∈ E12, p =
{r,d1,d2,d3}.

An inner product can be defined by〈
p1,p2

〉 def= r(1) · r(2) + δijd(1)
i · d(2)

j , (4.1)

∀p1,p2 ∈ E12, p1 ≡ {r(1),d(1)
i }, p2 ≡ {r(2),d(2)

i }.

As the first step, some results can be proved which attain static problems. It is
well known that stability and wave propagation are strictly connected and it will be
shown also in this case.

The equilibrium equations take the form(
∂W

∂p,i

)
,i

− ∂W

∂p
= 0. (4.2)

The boundary conditions given in Section 3 can be rearranged and we must just
pay attention to the loading devices. Following Ericksen [14], to whom we refer for
more general details about boundary conditions and loading devices, we can claim
that a necessary condition for stability is that

E =
∫
WdB (4.3)

attains a minimum at the equilibrium solution. A further necessary condition
for this can be adapted by Ericksen, and proved according to the simple proof
given by Graves [15] in a general framework. This condition reduces to a strong
ellipticity condition, which we will find soon in the context of wave propagation.
Linearization about a static equilibrium configuration can be easily performed as
well as a proper formulation of Betti’s reciprocal theorem, but it is just routine
and we leave it to further steps in the direction of buckling problems, where
linearization can play a more interesting role.

Now we deal briefly with wave propagation, according to the finite
discontinuity surface model [16,17]. A surfaceΣ moving throughB, of equation
ϕ(Xi, t) = 0 is called an acceleration wave if the fieldp and its first derivatives
p,i, ṗ are continuous onΣ, but some second derivative has finite discontinuities
there. We assume some familiarity with the theory of singular surfaces and the
usual kinematic conditions of compatibility yield

[[pij ]] = Aninj , [[p̈]] = Av2, (4.4)

where the twelve-dimensional vector fieldA represents the amplitude vector of the
wave,ni are the components of the unit vector normal toΣ, v is the wave speed. If
we apply the jump condition to the equation of motion(

∂W

∂p,i

)
,i

− ∂W

∂p
= Kp̈, (4.5)
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whereK is the linear transformation naturally induced by the kinetic energy, such
that

Kp = K(r,di) = (ρ r + ρidi , ρ
ir · di + ρijdi · dj), (4.6)

the Hugoniot–Hadamard conditions can be written in the compact form

QA = KAv2, (4.7)

whereQ is the acoustic tensor given by

Q ≡ ∂2W

∂p,i∂p,j
ninj . (4.8)

SinceQ is symmetric, (4.7) represents an eigenvalue problem such that, ifQ is
positive semidefinite, i.e.

{A,QA} ≥ 0, ∀A ∈ E12,A 6= 0, (4.9)

the eigenvalues of (4.7) are twelve and all positive, hence there exist twelve real
velocitiesv(H), H = 1, 2, . . . , 12. If the condition (4.9) is valid for all directions,
we recover the strong ellipticity condition which we referred to previously, in
the static case. Hence we can claim that the stability of equilibrium implies the
acoustic tensor be positive semidefinite and consequently we have exactly twelve
acceleration wave speeds. Conversely, if the body loses the ability to propagate
some acceleration waves, the corresponding equilibrium configuration is unstable.
Through more detailed exploration of the general equations and conditions of this
section one could obtain explicit results valid in many particular cases, some of
which are encompassed in this model. Shock waves can also be investigated by
recovering some expected results. For instance, using this formalism it is easy to
find that in the linear theory the velocities of acceleration and shock waves are the
same. Other results about infinitesimal vibrations and normal modes can be reached
but we choose to stop here.
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Lained vektoriaalse struktuuriga tahkistes
Franco Pastrone

On esitatud vektoriaalse struktuuriga tahkiste üldmudel. Väljavõrrandid on saa-
dud variatsiooniprintsiibil loomulike ääretingimuste korral. On tõestatud, et selles
mudelis sisalduvad skalaarsed ühedimensioonilised kehad ja Cosserat’ tahkised.
On analüüsitud lainelevi ja stabiilsuse probleeme.
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