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Abstract. A relatively simple method for nondestructive evaluation of weak and smooth
variation of the physical properties of the material from their constant values is proposed. The
method is based on the analysis of nonlinear effects of simultaneous propagation, reflection,
and interaction of two ultrasonic waves in the material. The results of the analysis enable
one to solve several problems of material parameter evaluation provided some preliminary
information about the material is available.
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1. INTRODUCTION

Application of ultrasonic waves in nondestructive detection of the micro-
structure or defects in the form of discontinuities (flaws, cracks, inclusions, etc.)
is not new [1,2]. Most conventional ultrasonic testing techniques [3] seek to
locate and size the defects, but this is inappropriate for many advanced materials
(ceramics, ceramics matrix composites, etc.) due to the presence of a large number
of dispersed defects of relatively small size. Small well-distributed defects can be
described by the continuous model interpreting them as a variation of the physical
properties of the material.

In this paper a relatively simple method for nondestructive determination of
the variation of the physical properties of the material in the form of continuous
deviation of basic parameters of nonlinear elastic material from their constant
values is proposed and the theoretical basis of the method is presented. The
method is based on the analysis of nonlinear effects of simultaneous propagation,
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reflection, and interaction of two ultrasonic waves in the material. The peculiarity
of the approach is that due to the progress in the symbolic computation software
(Maple V) the wave interaction problem is described by the analytical solution to
the nonlinear wave equation. This enables one to follow the whole process of two-
wave nonlinear interaction in the material analytically and to study the evolution of
nonlinear effects in detail.

The analysis of the numerical experiment data leads to the conclusion that the
ultrasound response has strong sensitivity to the deviation of material properties
from their constant values. On the basis of these data it is easy to pose qualitative
and quantitative NDT problems. For example, it is possible to distinguish
homogeneous and inhomogeneous material qualitatively and determine the sign
of the properties variation. The results of the analysis enable one to solve several
problems of material parameter evaluation provided some preliminary information
about the material is available.

2. INHOMOGENEOUS MATERIAL

A specimen of nonlinear physically inhomogeneous elastic material with
two parallel surfaces is considered. The material is described on the basis of
the nonlinear theory of elasticity [4]. It is characterized along the Lagrangian
coordinateX by variable densityρo(X), the second-order elastic coefficients
λ(X), µ(X), and the third-order elastic coefficientsν1(X), ν2(X), ν3(X).
One-dimensional dynamics of the specimen is governed in terms of particles
displacementU in time t by the equation of motion

[1 + k1(X)U,X(X, t)]U,XX(X, t) + k2(X)U,X(X, t)

+k3(X) [U,X(X, t)]2 − k4(X)U,tt(X, t) = 0. (1)

Here the indices after the comma indicate differentiation with respect to the
corresponding variables.

The coefficientski(X) (i = 1, . . . , 4) in (1)

k0(X) = [λ(X) + 2µ(X)]−1 ,

k1(X) = 3 {1 + 2k0(X)[ν1(X) + ν2(X) + ν3(X)]} ,
k2(X) = k0(X) [λ,X(X) + 2µ,X(X)] , (2)

k3(X) =
3
2
k0(X) {λ,X(X) + 2µ,X(X) + 2 [ν1,X(X) + ν2,X(X) + ν3,X(X)]} ,

k4(X) = ρo(X)k0(X)

are functions of inhomogeneous physical properties of the material.
It is interesting that in the one-dimensional case the second- and third-order

elastic coefficients in (2) are grouped as follows:

α(X) = λ(X) + 2µ(X),

β(X) = 2 [ν1(X) + ν1(2) + ν3(X)] .
(3)
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Henceforth,α(X) is called the linear andβ(X) the nonlinear elastic coefficient.
Consequently, in the one-dimensional case the inhomogeneous material is
characterized by three parameters:ρo(X), α(X), andβ(X).

The weak spatial variation of the physical properties of the material (physical
inhomogeneity) is described by the polynomials

γ(X) = γ(1) + ε γ(2)(X) , 0 < ε� 1 , γ = ρ0, α, β, (4)

γ(2)(X) = γ1ξX + γ2ξX
2 + γ3ξX

3 , ξ = ρ, α, β. (5)

Hereγ(1) denotes the constant part and the functionε γ(2)(X) the weak variation
of material properties.

3. HARMONIC WAVE INTERACTION

Two longitudinal waves are excited simultaneously on two parallel surfaces
X = 0 andX = L of the specimen according to the initial and boundary conditions
to (1):

U(X, 0) = U,t(X, 0) = 0,

U,t(0, t) = ε a0 ϕ(t)H(t), (6)

U,t(L, t) = ε aL ψ(t)H(t) .

Here ϕ(t) and ψ(t) (max | ϕ(t) |= 1, max | ψ(t) |= 1, limt→0 U,t(0, t) =
limt→0 U,t(L, t) = 0) are smooth and arbitrary functions,H(t) denotes the
Heaviside step function, andε a0 andε aL determine the excitation amplitudes on
different boundaries.

Wave propagation in the material is described analytically on the basis of the
equation of motion (1) under the initial and boundary conditions (6), by using
the perturbation method. The solution to (1) is sought in a series with a small
parameterε:

U(X, t) =
∞∑

n=1

εn U (n)(X, t) , 0 < ε� 1. (7)

Following the standard perturbation procedure, the first three terms in the
solution (7) are determined. The first term is a solution to the linear wave equation

U
(1)
,XX(X, t)− c−2(X)U (1)

,tt (X, t) = 0, (8)

and it has the form

U (1)(X, t) = a0H(ξ)
∫ ξ

0
ϕ(τ)dτ + aLH(η)

∫ η

0
ψ(τ)dτ

− a0H(θ)
∫ θ

0
ϕ(τ)dτ − aLH(ζ)

∫ ζ

0
ψ(τ)dτ. (9)
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The functionsξ, η, θ, andζ are determined by the expressions

ξ = t− X

c
, η = t− L−X

c
, θ = t− 2L−X

c
, ζ = t− X + L

c
. (10)

Herec denotes the velocity of the linear wave in a homogeneous material [5].
Simultaneous linear propagation, reflection, and interaction of two longitudinal

harmonic waves in a homogeneous material is illustrated in Fig. 1 in terms of the
functionU (1)

,X (X, t) that characterizes qualitatively linear stress distribution in the
material, induced by the wave motion. Harmonic wave profiles are specified in
Fig. 1 as sine functions

ϕ(t) = ψ(t) = sin(ωt), (11)

with the frequencyω = 1.4510× 106 rad/s and amplitudeA(1)
0 = ε a0 wherea0 =

−aL = −c m/s,ε = 1 × 10−4. The material properties are chosen close to those
of duralumin:ρ(1)

o = 3000 kg/m3, α(1) = 100 GPa,β(1) = −750 GPa. The linear
dimension of the specimen isL = 0.1 m.

The wave process in Fig. 1 is described analytically in the time interval
0 ≤ t c/L < 2. During this period two sine waves of the same initial amplitude
and frequency propagate simultaneously into the depth of the material, meet each
other, interact, reach the opposite surfaces, reflect, and come back to the surface
of excitation. The first termU (1)

,X (X, t) in the solution (7) describes the linear
wave process in a physically linear homogeneous material. Consequently, the wave
interaction phenomenon in Fig. 1 is obtained by superposition of wave profiles. As
a result, it is possible to distinguish two different time intervals on the boundaries of
the specimen where the oscillation of material particles is different: (i) the interval
of propagation (0 ≤ t c/L < 1) and (ii) the interval of interaction (1 ≤ t c/L < 2).

Fig. 1.Simultaneous propagation of longitudinal waves in a homogeneous elastic material.
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It is interesting that amplification of the oscillation amplitude in the interaction
interval depends on frequency [5]. If the excitation frequency is chosen such that
the number of oscillation periods in the propagation interval is equal to the integer,
then the oscillation amplitude is three times higher in the interaction interval than
in the propagation interval. The amplification of the oscillation amplitude takes
place. If the number of oscillation periods equals the integer and a half, then there
is no amplification of the oscillation amplitude in the interaction interval at all. By
other values of this number the amplification is less than three times.

The second and subsequent terms in the solution (7) correct the linear solution
and take the nonlinearity and inhomogeneity of the problem into account. They are
determined following the perturbation procedure as solutions to the corresponding
second-order inhomogeneous hyperbolic PDEs [6] under the initial and boundary
conditions equal to zero.

The evolution of the nonlinear effects that accompany simultaneous
propagation of two sine waves in a physically nonlinear homogeneous elastic
material is illustrated in Fig. 2 on the basis of the second termU

(2)
,X (X, t) of the

solution (7). These effects are governed by the double frequency. Similarily to
the linear problem, the amplification of the oscillation amplitude in the interaction
interval takes place, but it is not very sensitive to the excitation frequency variation.
It is essential that the amplification amplitude in the interaction interval is two
orders higher than in the propagation interval and the physical nonlinearity does
not modulate the boundary oscillation in both intervals of the specimen of a
homogeneous elastic material.

Fig. 2.Nonlinear effects of wave interaction in a homogeneous material.
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Fig. 3. Second-order nonlinear boundary oscillation versus material inhomogeneity. The thin
line denotes oscillation in a homogeneous material, bold and dashed lines show oscillations in
an inhomogeneous material atX = 0 andX = L, respectively.

Fig. 4. The influence of material inhomogeneity on the third-order nonlinear boundary
oscillation. The thin line denotes oscillation in a homogeneous material, bold and dashed
lines show oscillations in an inhomogeneous material atX = 0 andX = L, respectively.

The influence of physical inhomogeneity on nonlinear effects of boundary
oscillation is illustrated in Figs. 3 and 4. The thin line in Fig. 3 corresponds to
the oscillation profile described by the second term in the solution (7) in case of a
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physically homogeneous nonlinear elastic material. The bold and the dashed line,
respectively, correspond to the oscillations on the boundariesX = 0 andX = L of
the physically inhomogeneous material described by the same term. The physical
inhomogeneity is caused by the linear variation of the coefficientα described by
formulae (4) and (5), whereγ1α = −2×104 GPa/m. The density and the nonlinear
elastic properties of the material are constant in space. It is remarkable that the
inhomogeneity of the physical properties of the material induces the modulation to
the amplitude of the boundary oscillation.

The higher-order nonlinear effects are described by the third term in the
solution (7). The boundary oscillations of this order are modulated even in the case
of homogeneous material (Fig. 4). Inhomogeneity of material properties introduces
additional modulation to the amplitude of the boundary oscillation.

4. CHARACTERIZATION OF THE MATERIAL

Boundary oscillations caused by simultaneous propagation of two longitudinal
waves in the material are sensitive to the physical properties of the material and
to the spatial variation of these properties. This enables one to investigate the
possibility of using boundary oscillation data in nondestructive evaluation (NDE)
of material properties. It is essential that nonlinear interaction of waves amplifies
the boundary oscillation amplitude and this enhances the possibilities of NDE in
comparison with the through transmission technique [6].

The following scheme for NDE of the physical properties of a nonlinear elastic
material is proposed. A specimen has two parallel surfaces, and the wave process
is excited simultaneously on both surfaces in terms of particle velocity. The wave
process is recorded on the same surfaces in terms of the stress characterized by the
functionU,X(X, t) [4]. The algorithm for NDE of material properties is proposed
on the basis of the analyses of the recorded boundary oscillation data.

Two model problems of NDE are considered. First, the material is homo-
geneous and its properties are characterized by three constantsρ

(1)
o , α(1), andβ(1).

Rough values of these constants are known, and it is necessary to determine their
real values for the specimen under investigation. The second problem contains a
preliminary information that the properties of the material vary linearly in space
from the known values of the constantsρ(1)

o , α(1), and β(1). The aim of the
considerations below is to evaluate this variation.

Both cases make use of the fact that the description of boundary oscillation
(solution (7)) can be presented in the form

U,X(X, t) = A0 +A1 sin(ωτ + θ1) +A2 sin(2ωτ + θ2) +A3 sin(3ωτ + θ3) (12)
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if the excitation frequency satisfies the condition (n denotes the integer)

ω = 2π c n/L. (13)

Description of the boundary oscillation in terms of three harmonics (12)
consists of a nonperiodic termA0, amplitudesA1, A2, A3, and phase shiftsθ1,
θ2, θ3 of the harmonics.

4.1. The first model problem

It is known from the preliminary information that the density of the material
of the specimens under investigation is constant and equal toρ

(1)
o = 3000 kg/m3,

but the elastic properties may deviate from the basic propertiesα(1) = 100 GPa,
β(1) = −750 GPa plus or minus 15%. Here the goal is to determine the real
properties of each specimen on the basis of wave interaction data. By making
use of the analytical solution (12) the plots of wave characteristics versus material
properties in the wave interaction interval are composed. Analysis of these plots
leads one to the decision to solve the NDE problem on the basis of the plots
of the second harmonic relative amplitude versusα(1) andβ(1) (Fig. 5) and the
first harmonic phase shift versusα(1) andβ(1) (Fig. 6). In Fig. 5,A20 denotes
the amplitude of the second harmonic in the material with basic properties. The
wave characteristics in Figs. 5 and 6 are sensitive to both coefficients of elasticity,
and these dependences are close to linear. This enables one to describe these
dependences by a set of two linear algebraic equations. The NDE procedure leads
to the necessity to determine experimentally the values of the relative amplitude of
the second harmonic and the phase shift of the first harmonic on the boundary of the
specimen, introduce these values into a set of equations, and solve these equations
with respect toα(1) andβ(1).

Fig. 5.The second harmonic relative amplitude versus elastic constantsα(1) andβ(1).
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Fig. 6.The first harmonic phase shift versus elastic constantsα(1) andβ(1).

4.2. The second model problem

The preliminary information confirms that the material under investigation has
inhomogeneous properties and the variation of properties is linear:

γ(X) = γ(1) ( 1 + δ1ξ ) , ξ = ρ, α, β . (14)

The basic values of material propertiesγ(1) are known and the parameters to be
determined areδ1ρ, δ1α, andδ1β .

It is proposed to solve the NDE problem resorting to the plots of wave
characteristics versus material properties, composed on the basis of the analytical
solution (12). Analysis of these plots reveals that the influence of the inhomogeneity
of nonlinear elasticityδ1β on the sine wave characteristics is negligible in the
interaction interval. In this interval wave characteristics are sensitive to the
inhomogeneity of densityδ1ρ and linear elasticityδ1α (Figs. 7 and 8). In these
figures the dependence of the phase shifts of the first and the second harmonic on
the parametersδ1ρ andδ1α is close to linear. This enables one to describe these
dependences also here by a set of two linear algebraic equations. Nondestructive
evaluation of the parametersδ1ρ andδ1α is possible provided the experimentally
recorded values of the first and the second harmonic phase shifts are available for
the real specimen. The values of the parametersδ1ρ andδ1α can be determined then
as the solution to the set of algebraic equations.

The sensitivity of wave characteristics to the parametersδ1ρ, δ1α, andδ1β is of
the same order in the propagation interval. The value of the parameterδ1β can be
determined now directly resorting, for example, to the plot of the second harmonic
phase shift versus the parametersδ1β andδ1ρ (Fig. 9) composed by the known value
of the parameterδ1α.
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Fig. 7.Sensitivity of the first harmonic phase shift to the variation of inhomogeneity parameters
δ1α andδ1ρ.

Fig. 8. The second harmonic phase shift versus inhomogeneity parametersδ1α andδ1ρ in the
interaction interval.
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Fig. 9. The second harmonic phase shift versus inhomogeneity parametersδ1β andδ1ρ in the
propagation interval.

5. CONCLUSIONS

The problem of nonlinear wave interaction in a weakly inhomogeneous non-
linear elastic material was investigated theoretically. Simultaneous propagation,
reflection, and interaction of two longitudinal waves was considered. The analytical
solution was derived and analysed. It was established that (i) nonlinear effects
that accompany wave–wave and wave–material interaction are sensitive to material
properties and (ii) the wave–wave interaction amplifies the oscillation amplitude
of material particles. The conclusion is that the use of nonlinear wave–wave and
wave–material interaction data enhances the possibilities of the nondestructive
material characterization technique compared to the conventional one. This is
demonstrated by two model problems of NDE of material properties on the basis
of the data on simultaneous propagation of two sine waves.
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Lainete mittelineaarne interaktsioon materjali
mittehomogeensusega

Andres Braunbrück ja Arvi Ravasoo

On esitatud suhteliselt lihtne meetod mittelineaarse elastse materjali nõrgalt
muutuvate omaduste mittepurustavaks määramiseks. Meetod baseerub materjalis
samaaegselt levivate, peegelduvate ja interakteeruvate pikilainetega kaasnevate
mittelineaarsete efektide analüüsi tulemustel ning võimaldab lahendada erinevaid
materjali mittehomogeensete omaduste mittepurustava määramise ülesandeid, kuid
nõuab teatud eelinformatsiooni materjali kohta.

168


