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Abstract. A relatively simple method for nondestructive evaluation of weak and smor
variation of the physical properties of the material from their constant values is proposed.
method is based on the analysis of nonlinear effects of simultaneous propagation, refle
and interaction of two ultrasonic waves in the material. The results of the analysis er
one to solve several problems of material parameter evaluation provided some prelim
information about the material is available.
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1. INTRODUCTION

Application of ultrasonic waves in nondestructive detection of the mici
structure or defects in the form of discontinuities (flaws, cracks, inclusions, ¢
is not new ['2]. Most conventional ultrasonic testing techniqué} $eek to
locate and size the defects, but this is inappropriate for many advanced mat:
(ceramics, ceramics matrix composites, etc.) due to the presence of a large nt
of dispersed defects of relatively small size. Small well-distributed defects cal
described by the continuous model interpreting them as a variation of the phy.
properties of the material.

In this paper a relatively simple method for nondestructive determinatior
the variation of the physical properties of the material in the form of continuc
deviation of basic parameters of nonlinear elastic material from their cons
values is proposed and the theoretical basis of the method is presented.
method is based on the analysis of nonlinear effects of simultaneous propag:
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reflection, and interaction of two ultrasonic waves in the material. The peculial
of the approach is that due to the progress in the symbolic computation softw
(Maple V) the wave interaction problem is described by the analytical solution
the nonlinear wave equation. This enables one to follow the whole process of t
wave nonlinear interaction in the material analytically and to study the evolution
nonlinear effects in detail.

The analysis of the numerical experiment data leads to the conclusion thai
ultrasound response has strong sensitivity to the deviation of material prope!
from their constant values. On the basis of these data it is easy to pose qualiti
and quantitative NDT problems. For example, it is possible to distingui
homogeneous and inhomogeneous material qualitatively and determine the
of the properties variation. The results of the analysis enable one to solve se\
problems of material parameter evaluation provided some preliminary informat
about the material is available.

2. INHOMOGENEOUS MATERIAL

A specimen of nonlinear physically inhomogeneous elastic material w
two parallel surfaces is considered. The material is described on the basi
the nonlinear theory of elasticity!]] It is characterized along the Lagrangiar
coordinate X by variable densityp,(X), the second-order elastic coefficients
AX), u(X), and the third-order elastic coefficients (X), vo(X), v3(X).
One-dimensional dynamics of the specimen is governed in terms of partic
displacement’ in time ¢ by the equation of motion

14k (X)U x (X, )] Uxx(X,t) + ko (X)U x (X, 1)
+hg(X) [Ux (X, 8)]° = ka(X)U (X, ) = 0. @)
Here the indices after the comma indicate differentiation with respect to |

corresponding variables.
The coefficients:; (X) (i =1,...,4)in (1)

ko(X) = [MX) +2u(X)]™ 1,

ki (X) = 3{1 + 2ko(X)[11(X) + v2(X) + v3(X)]},

k2 (X) = ko(X) [Ax(X) +2p x(X)], 2
k3(X) = Sko(X) {Ax (X) + 2p,x (X) + 2 1, x (X) +v2,x (X) +v3.x (X)]},

k4(X):p0( )kO( )

are functions of inhomogeneous physical properties of the material.
It is interesting that in the one-dimensional case the second- and third-ol
elastic coefficients in (2) are grouped as follows:

a(X) = A(X) + 2(X),
B(X) =2 [n(X)+ri(2) +v3(X)].

\ w
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Henceforth,a(X) is called the linear an@(X) the nonlinear elastic coefficient.
Consequently, in the one-dimensional case the inhomogeneous materi
characterized by three parameters( X ), a(X), ands(X).

The weak spatial variation of the physical properties of the material (phys
inhomogeneity) is described by the polynomials

YX) =1V +e9@(X), 0<e<l, v=pp B, (4)
YO(X) = e X 4+ e X2+ 93 X7, E=p,a, . (5)
Herey(!) denotes the constant part and the functio® (X) the weak variation

of material properties.

3. HARMONIC WAVE INTERACTION

Two longitudinal waves are excited simultaneously on two parallel surfa
X = 0andX = L of the specimen according to the initial and boundary conditic
to (1):

U(X,0) = U,(X,0) = 0,
U,t (O’ t) =¢&ap (10(75) H(t>7 (6)
Uy(Lot) = £ ag (t) H(?).

Here o(t) and ¢(t) (max | ¢(t) |= 1, max | ¢(t) |= 1, limoU4(0,t) =
limy o U4(L,t) = 0) are smooth and arbitrary functiong/(¢) denotes the
Heaviside step function, ardzy ande a;, determine the excitation amplitudes ol
different boundaries.

Wave propagation in the material is described analytically on the basis of
equation of motion (1) under the initial and boundary conditions (6), by us
the perturbation method. The solution to (1) is sought in a series with a st
parametee:

UX,t)=) UMXt), 0<e<l 7)
n=1

Following the standard perturbation procedure, the first three terms in
solution (7) are determined. The first term is a solution to the linear wave eque

Uy (X.8) = 2 UY (X, 1) =0, (8)

and it has the form

3
UO(X.t) = agH(E) / o(r)dr + ar H(n) /O"wde

0 ¢
~apH () /0 o()dr — aLH(O) /0 b(rydr. (9)
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The functions, n, 6, and¢ are determined by the expressions

X L-X 2L — X X+1L
£: T n=t—— H:t_77 C:t_; (10)
& C C C

Herec denotes the velocity of the linear wave in a homogeneous mateial |

Simultaneous linear propagation, reflection, and interaction of two longitudi
harmonic waves in a homogeneous material is illustrated in Fig. 1 in terms of
function U()l() (X, t) that characterizes qualitatively linear stress distribution in t
material, induced by the wave motion. Harmonic wave profiles are specifie:
Fig. 1 as sine functions

p(t) = (t) = sin(wt), (11)
with the frequency = 1.4510 x 10° rad/s and amplitudﬁgl) = ¢ ag Whereay =
—ay, = —cm/s,e = 1 x 10~*. The material properties are chosen close to thc

of duralumin:pS” = 3000 kg/m?, o) = 100 GPa, 31) = —750 GPa. The linear
dimension of the specimen [s= 0.1 m.

The wave process in Fig. 1 is described analytically in the time inter
0 < te¢/ L < 2. During this period two sine waves of the same initial amplituc
and frequency propagate simultaneously into the depth of the material, meet
other, interact, reach the opposite surfaces, reflect, and come back to the st

of excitation. The first ternU(;() (X,t) in the solution (7) describes the linea
wave process in a physically linear homogeneous material. Consequently, the
interaction phenomenon in Fig. 1 is obtained by superposition of wave profiles
aresult, it is possible to distinguish two different time intervals on the boundarie
the specimen where the oscillation of material particles is different: (i) the intel
of propagationq < t ¢/ L < 1) and (i) the interval of interactionl(< t ¢/ L < 2).

Fig. 1. Simultaneous propagation of longitudinal waves in a homogeneous elastic mater
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It is interesting that amplification of the oscillation amplitude in the interacti
interval depends on frequend3][ If the excitation frequency is chosen such th:
the number of oscillation periods in the propagation interval is equal to the inte
then the oscillation amplitude is three times higher in the interaction interval t
in the propagation interval. The amplification of the oscillation amplitude tal
place. If the number of oscillation periods equals the integer and a half, then t
is no amplification of the oscillation amplitude in the interaction interval at all. |
other values of this number the amplification is less than three times.

The second and subsequent terms in the solution (7) correct the linear sol
and take the nonlinearity and inhomogeneity of the problem into account. They
determined following the perturbation procedure as solutions to the correspon
second-order inhomogeneous hyperbolic PDEsifder the initial and boundary
conditions equal to zero.

The evolution of the nonlinear effects that accompany simultane:
propagation of two sine waves in a physically nonlinear homogeneous el:
material is illustrated in Fig. 2 on the basis of the second ty@ X, t) of the
solution (7). These effects are governed by the double frequency. Similaril
the linear problem, the amplification of the oscillation amplitude in the interact
interval takes place, but it is not very sensitive to the excitation frequency variat
It is essential that the amplification amplitude in the interaction interval is t
orders higher than in the propagation interval and the physical nonlinearity ¢
not modulate the boundary oscillation in both intervals of the specimen c
homogeneous elastic material.

i
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Fig. 2. Nonlinear effects of wave interaction in a homogeneous material.
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Fig. 3. Second-order nonlinear boundary oscillation versus material inhomogeneity. The
line denotes oscillation in a homogeneous material, bold and dashed lines show oscillatic
an inhomogeneous material &t= 0 and X = L, respectively.

x1076

Fig. 4. The influence of material inhomogeneity on the third-order nonlinear bound
oscillation. The thin line denotes oscillation in a homogeneous material, bold and da
lines show oscillations in an inhomogeneous materidl at 0 and X = L, respectively.

The influence of physical inhomogeneity on nonlinear effects of bound
oscillation is illustrated in Figs. 3 and 4. The thin line in Fig. 3 corresponds
the oscillation profile described by the second term in the solution (7) in case
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physically homogeneous nonlinear elastic material. The bold and the dashed li
respectively, correspond to the oscillations on the bound&fies0 andX = L of

the physically inhomogeneous material described by the same term. The physi
inhomogeneity is caused by the linear variation of the coefficiedescribed by
formulae (4) and (5), wherg, = —2 x 10* GPa/m. The density and the nonlinear
elastic properties of the material are constant in space. It is remarkable that -
inhomogeneity of the physical properties of the material induces the modulation
the amplitude of the boundary oscillation.

The higher-order nonlinear effects are described by the third term in tr
solution (7). The boundary oscillations of this order are modulated even in the ce
of homogeneous material (Fig. 4). Inhomogeneity of material properties introduc
additional modulation to the amplitude of the boundary oscillation.

4. CHARACTERIZATION OF THE MATERIAL

Boundary oscillations caused by simultaneous propagation of two longitudin
waves in the material are sensitive to the physical properties of the material a
to the spatial variation of these properties. This enables one to investigate |
possibility of using boundary oscillation data in nondestructive evaluation (NDE
of material properties. It is essential that nonlinear interaction of waves amplifie
the boundary oscillation amplitude and this enhances the possibilities of NDE
comparison with the through transmission technidije [

The following scheme for NDE of the physical properties of a nonlinear elasti
material is proposed. A specimen has two parallel surfaces, and the wave proc
is excited simultaneously on both surfaces in terms of particle velocity. The wa
process is recorded on the same surfaces in terms of the stress characterized b
functionU x (X, t) [*]. The algorithm for NDE of material properties is proposed
on the basis of the analyses of the recorded boundary oscillation data.

Two model problems of NDE are considered. First, the material is homc

geneous and its properties are characterized by three consants?), and3().
Rough values of these constants are known, and it is necessary to determine t
real values for the specimen under investigation. The second problem contain
preliminary information that the properties of the material vary linearly in spac
from the known values of the constarytél), a®, and 8. The aim of the
considerations below is to evaluate this variation.

Both cases make use of the fact that the description of boundary oscillatic
(solution (7)) can be presented in the form

Ux(X,t) = Ao+ Ay sin(wr + 61) + Az sin(2wt + 02) + A3 sin(3wr + 63) (12)

163



if the excitation frequency satisfies the conditiandgnotes the integer)
w=2men/L. (13)

Description of the boundary oscillation in terms of three harmonics (;
consists of a nonperiodic term,, amplitudesA,, As, A3, and phase shifté;,
A5, 05 of the harmonics.

4.1. The first model problem

It is known from the preliminary information that the density of the materi

of the specimens under investigation is constant and equépt@: 3000 kg/m?,
but the elastic properties may deviate from the basic propesfies= 100 GPa,
1) = —750 GPa plus or minus 15%. Here the goal is to determine the r
properties of each specimen on the basis of wave interaction data. By ma
use of the analytical solution (12) the plots of wave characteristics versus mat
properties in the wave interaction interval are composed. Analysis of these |
leads one to the decision to solve the NDE problem on the basis of the f
of the second harmonic relative amplitude versllS and 5(V) (Fig. 5) and the
first harmonic phase shift versusg!) and 5! (Fig. 6). In Fig. 5, Ay denotes
the amplitude of the second harmonic in the material with basic properties.
wave characteristics in Figs. 5 and 6 are sensitive to both coefficients of elast
and these dependences are close to linear. This enables one to describe
dependences by a set of two linear algebraic equations. The NDE procedure
to the necessity to determine experimentally the values of the relative amplituc
the second harmonic and the phase shift of the first harmonic on the boundary ¢
specimen, introduce these values into a set of equations, and solve these eqL
with respect tax™V) and ().

— B, GPa

102 (Ay — Agg)/ Agg

Fig. 5. The second harmonic relative amplitude versus elastic const&htand (1.
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Fig. 6. The first harmonic phase shift versus elastic constafitsand3(V).

4.2. The second model problem

The preliminary information confirms that the material under investigation |
inhomogeneous properties and the variation of properties is linear:

FX) =7V (1+6¢), E=p,a, 3. (14)

The basic values of material properties) are known and the parameters to b
determined aré ,, 61, andd;s.

It is proposed to solve the NDE problem resorting to the plots of we
characteristics versus material properties, composed on the basis of the anal
solution (12). Analysis of these plots reveals that the influence of the inhomoger
of nonlinear elasticityd;g on the sine wave characteristics is negligible in tt
interaction interval. In this interval wave characteristics are sensitive to
inhomogeneity of density;, and linear elasticity);, (Figs. 7 and 8). In these
figures the dependence of the phase shifts of the first and the second harmol
the parameters;, andd,,, is close to linear. This enables one to describe the
dependences also here by a set of two linear algebraic equations. Nondestr
evaluation of the parameteds, andé;, is possible provided the experimentally
recorded values of the first and the second harmonic phase shifts are availab
the real specimen. The values of the parameigrandé;, can be determined then
as the solution to the set of algebraic equations.

The sensitivity of wave characteristics to the paramelgfsdi, andé; s is of
the same order in the propagation interval. The value of the paramgtean be
determined now directly resorting, for example, to the plot of the second harm
phase shift versus the paramet&rsandd, , (Fig. 9) composed by the known value
of the parametedy,,.
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Fig. 7. Sensitivity of the first harmonic phase shift to the variation of inhomogeneity parame
51,1 andélp.
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Fig. 8. The second harmonic phase shift versus inhomogeneity parameteasdd; , in the
interaction interval.
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Fig. 9. The second harmonic phase shift versus inhomogeneity paramigteaadd;, in the
propagation interval.

5. CONCLUSIONS

The problem of nonlinear wave interaction in a weakly inhomogeneous n
linear elastic material was investigated theoretically. Simultaneous propaga
reflection, and interaction of two longitudinal waves was considered. The analy
solution was derived and analysed. It was established that (i) nonlinear efi
that accompany wave—wave and wave—material interaction are sensitive to ma
properties and (ii) the wave—wave interaction amplifies the oscillation ampliti
of material particles. The conclusion is that the use of nonlinear wave—wave
wave—material interaction data enhances the possibilities of the nondestru
material characterization technique compared to the conventional one. Th
demonstrated by two model problems of NDE of material properties on the b
of the data on simultaneous propagation of two sine waves.
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Lainete mittelineaarne interaktsioon materjali
mittehomogeensusega

Andres Braunbriick ja Arvi Ravasoo

On esitatud suhteliselt lihtne meetod mittelineaarse elastse materjali nd
muutuvate omaduste mittepurustavaks maaramiseks. Meetod baseerub mat
samaaegselt levivate, peegelduvate ja interakteeruvate pikilainetega kaasr
mittelineaarsete efektide anallitsi tulemustel ning véimaldab lahendada erint
materjali mittehomogeensete omaduste mittepurustava maéramise tlesandeic
nduab teatud eelinformatsiooni materjali kohta.
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