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Abstract. The influence of the amplitude-dependent periodic driven field on the formation and
propagation of solitary waves in nonlinear dispersive media is studied. The model equation
– the forced Korteweg–de Vries equation – is integrated numerically under harmonic initial
and periodic boundary conditions by using the pseudospectral method. Main attention is paid
to solitonic solutions. The driven field is classified as weak, moderate, strong or dominating,
according to the character of the solution. The solution is found to be solitonic in the case of
weak, moderate, and strong fields.
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1. INTRODUCTION

The celebrated Korteweg–de Vries (KdV) equation involves quadratic
nonlinearity and cubic dispersion and describes solitonic waves in conservative
systems. However, in nonconservative cases the energy influx or the influence of
external forces must be taken into account. This results in a forced KdV (fKdV)
equation

ut + uux + duxxx = αF (u, x, t, βi), (1)

whereu is the excitation,t the time coordinate,x the space coordinate,d the
dispersion parameter, and the functionF represents the influence of an additional
force (driven) field. The parametersα andβi, i = 1, 2, . . ., may be called force
and field parameters, respectively.

Equation (1) has been studied in connection of propagation of solitary waves in
water over the changing bottom topography [1−4].
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The case where the force field (in the 1D case) is given by the cubic polynomial

F = u(u− β1)(u− β2) (2)

is found to describe the wave propagation in a microstructured layer with energy
influx like seismic waves in lithosphere (see, for example, [5,6]). In [7,8], Eq. (1)
with (2) has been solved numerically under the harmonic initial conditions.

In the present paper the case of an amplitude-dependent periodic driven (force)
field

F = sinβu (3)

is studied. The field (3) brings the ideas of the external periodic field like in the
sine-Gordon equation into the analysis of the KdV equation. Clearly, the r.h.s. in
the form of (3) introduces additional nonlinearity and additional dispersion into
the system, i.e., it changes the magnitude of nonlinear and dispersive effects. The
main question we address is the following: Can the fKdV equation (1), with the
periodic r.h.s. (3), attain a soliton-type solution? In the present paper we call
solitary waves solitons if they (i) propagate with constant speed and amplitude and
(ii) interact with other solitons elastically, i.e., restore their speed and amplitude
after the interaction [9].

In Section 2 the problem is stated and the numerical method is introduced.
Results of numerical experiments are presented and discussed in Section 3 and
conclusions are drawn in the final Section 4.

2. STATEMENT OF THE PROBLEM AND NUMERICAL METHOD

Let us consider the fKdV equation (1), (3) which has the form

ut + uux + duxxx = α sinβu. (4)

Besides the main question of whether the solution of the problem is solitonic or not,
our goal is to understand how the dispersion parameterd, the force parameterα,
and the field parameterβ influence the solution in the qualitative as well as in the
quantitative sense. For this reason, Eq. (4) is solved numerically under harmonic
initial and periodic boundary conditions

u(x, 0) = − sinx, x ∈ [0 2π],
u(x + 2nπ, t) = u(x, t), n = ±1,±2,

(5)

over the following domain of considered parameters:

d =
[
10−1.4; 10−2.2

]
, 0.1 ≤ α ≤ 250, 0.1 ≤ β ≤ 7. (6)

The discrete Fourier transform (DFT) based pseudospectral method (PsM) is
used for numerical integration of the fKdV equation (4). In a nutshell, the idea of
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the PsM is to reduce PDE to ODE by approximation of space derivatives, making
use of a certain global method (for example DFT), and to apply a certain ODE
solver to integration with respect to the time variable. In the present paper the
Fastest Fourier Transform in the West (FFTW) algorithm [10] is applied to the DFT,
and the variable-coefficient ODE solver with the implicit Adams method and the
functional corrector-iteration method [11] to integration with respect to the time
variable.

3. RESULTS AND DISCUSSION

3.1. Conservative case, visible and hidden solitons

The fKdV equation (4) is reduced to the KdV equation if the field parameter
α = 0. Solutions of the KdV equation under initial and boundary conditions (5)
are discussed in [12,13] over a wide range of the logarithmic dispersion parameter

dl = − log d. (7)

Here only the solution fordl = 2.2 is introduced as an example of the
conservative case. Figure 1 illustrates the formation of the train of solitons from
the initial harmonic wave as well as the subsequent interaction process. At the time
momentt = 3.2 (Fig. 2a) a train of eight equally spaced solitons can be detected.

For further analysis the notationsvisible soliton and hidden solitonare
introduced. If a soliton can be detected from the initial train of equally spaced
solitons, it is called a visible soliton.The analysis of time dependences of soliton
amplitudes and trajectories demonstrates that aside visible solitons hidden (virtual)
solitons can exist as well [13,14]. Thehidden soliton conceptis based on the soliton
definition [9] and can be expressed by the following statements: (i) hidden solitons
can emerge from a harmonic excitation, and have small energy and amplitude;
(ii) hidden solitons cause changes, specific to soliton-type interaction, in amplitudes

Fig. 1. Unforced case (d = 10−2.2, α = β = 0). Time-slice plot over two space periods.
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Fig. 2. Unforced case (d = 10−2.2, α = β = 0). Single wave profiles at the time moments
t = 3.2 andt = 27.7, demonstrating trains of eight and nine solitons, respectively.

and trajectories of other solitons interacting with them; (iii) hidden solitons can
be detected in wave profiles for a short time interval only when several soliton
interactions have taken place and the equilibrium state is fluctuating, if ever; (iv) the
physical essence of visible and hidden solitons is the same. For example, in the
casedt = 2.2 the number of solitons in the initial train is eight (Fig. 2a), but
neart = 27.7, nine solitons can be observed (Fig. 2b), i.e., one hidden soliton is
detectable in wave profiles neart = 27.7.

Analysis of time dependences of soliton amplitudes and trajectories
demonstrates that fordl = 2.2 the number of visible solitons (per one2π period)
is eight and the number of hidden solitons is two, however, fordl = 1.4 all four
emerging solitons are visible. These numbers are taken into account in the next
subsection, where the driven field classification is introduced and discussed.

3.2. Nonconservative (forced) case

In the nonconservative case the character of the solution changes dramatically
compared with that of the conservative case. Due to the influence of the periodic
driven field some solitons can be suppressed and some amplified to different
(amplitude) levels. We have divided the driven field into four categories, depending
on the number of emerging solitons and the character of solution. It is important to
emphasize here that the strength of the field is not defined by the force parameter
α only, but depends on the field parameterβ as well. The typical examples are
presented from the range of parameters (6) in order to demonstrate the characteristic
features of each category.

Weak field. The driven field is called weak if the number of emerging solitons does
not exceed the number of visible solitons of the corresponding conservative system
(KdV case).The solution ford = 10−1.4, α = 0.3, andβ = 3 is presented here
as an example of a weak driven field. In the present case the number of emerging
solitons (per one2π period) is two. Here and below, emerged solitary waves are
called solitons if they interact elastically, i.e., if they restore their shape and speed
after the interaction. The formation of the corresponding train of two solitons can
be observed in the time-slice plot (Fig. 3). It is clear that fort < 10 there exists the
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Fig. 3. Weak driven field (d = 10−1.4, α = 0.3, β = 3). Time-slice plot over two space
periods: (a) fort = 0, . . . , 20 and (b) fort = 20, . . . , 30.

third soliton as well. However, due to the driven field it is suppressed fort > 10.
Shortly, such a solution can be called the1 + 1 solution. In Fig. 4a–d four single
wave profiles (plotted by bold lines in Fig. 3) and the corresponding normalized
driven fields are presented. In this set of figures (and in similar sets below) (i) a
normalized variable

û(x, t, β) =
β

π
u(x, t) (8)

is used instead ofu; (ii) the wave profile is plotted for0 ≤ x ≤ 2π; (iii) for the
normalized driven fieldsinβû the vertical axis corresponds to the argument.

Amplitude levels.Our numerical experiments demonstrate that if a certain soliton
is amplified, then its normalized amplitude can have three different values:a1 ≈ 2,
a2 ≈ 4, or a3 ≈ 6. The amplitudea1 is related to the zero of the normalized
force field atû = 1, a2 to that atû = 3, a3 to that atû = 5, and the wave profile
minimum is related to the zero of the normalized force field atû = −1. Below,
we say that a soliton is amplified to theith level if it has a normalized amplitude
ai, i = 1, 2, 3. At the peak of interaction between the first- and second-level
solitons, values of wave-profile local maxima are related to zeros of the normalized
force field atû = 2 (see Fig. 4a). Solitons amplified to the first level are moving to
the left while those amplified to the second or third level move to the right.
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Fig. 4. Weak driven field (d = 10−1.4, α = 0.3, β = 3). Single wave profiles (normalized
quantityû againstx) and the corresponding driven field (sinβû against̂u).

Moderate field. The driven field is called moderate if the number of emerging
solitons is larger than the number of visible solitons but does not exceed the total
number of solitons (visible and hidden) of the corresponding conservative system.
As an example of the moderate driven field we consider here the solution for
d = 10−2.2, α = 5, andβ = 1. In the present case the total number of emerging
solitons (per one2π period) is ten. In other words, in the present case two hidden
solitons are amplified to the “visible level”. In Fig. 5 the solution is presented
at two different stages: (a) the formation of the ten-soliton(5 + 5) solution and
(b) stabilized solution. Now two groups of solitons form from the harmonic initial
excitation. During the formation stage five solitons are amplified to the first level
and five to the second level. This means also changes in the geometry of trajectories
(i.e. velocities) as seen in Fig. 5a. The first group is moving to the left and the
second to the right (Fig. 5). The interaction between the first- and second-level
solitons is almost simultaneous, but not exactly. Shortly, such a solution can be
called the5 + 5 solution.

Strong field. The driven field is called strong if the number of emerging solitons is
larger than the total number of solitons of the corresponding conservative system.
The cased = 10−1.4, α = 50, andβ = 0.25 is introduced here as an example.
The formation of the6 + 1 type solution and behaviour of the stabilized solution
is presented in Fig. 6a and b, respectively, and typical single wave profiles are
presented in Fig. 7.

Dominating field. The driven field is called dominating if the character of
the solution is not solitonic. In the present case the stabilized solution is an
oscillating wave package or a rectangular wave profile with Gibbs phenomenon
like oscillations.
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Fig. 5. Moderate driven field (d = 10−2.2, α = 5, β = 1). Time-slice plot over two space
periods: (a) fort = 0, . . . , 3 and (b) fort = 49, . . . , 50.

As an example of the formation of the oscillating wave package we consider
here the cased = 10−2.2, α = 10, β = 3. In the first stage of the formation
process, a sinusoidal initial wave is transformed into a rectangular one (û = ±1),
with small-amplitude oscillations (Figs. 8a and 9a). In the next stage the train of
solitons is formed from the oscillating train nearû = 1. As a rule, there is a flat
regionû = 1 between such soliton trains (Figs. 8a and 9b,c). In the last stage of the
formation process the soliton train is suppressed in thex-coordinate direction. The
stabilized solution can be described as an oscillating wave package between long
flat regions (see Figs. 8b and 9d).

For the highest values of the force parameterα the formation process and
the stabilized solution are completely different from that described above. Now
the formation process can be divided into two stages: first a rectangular wave
profile is formed from the initial sinusoid and secondly, the rectangle is suppressed
in the x-coordinate direction. The formation process results in a relatively
narrow rectangular wave profile with small-amplitude oscillations as the stabilized
solution. Such a rectangular entity is propagating with constant speed, amplitude,
and width. The corresponding solution ford = 10−2.2, α = 15, β = 3 is presented
in Fig. 10.
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Fig. 6. Strong driven field (d = 10−1.4, α = 50, β = 0.25). Time-slice plot over two space
periods: (a) fort = 0, . . . , 2 and (b) fort = 8, . . . , 8.2.

Fig. 7. Strong driven field (d = 10−1.4, α = 50, β = 0.25). Single wave profiles
(normalized quantitŷu againstx) and the corresponding driven field (sinβû againstû).
Presented wave profiles are plotted by bold lines in Fig. 6.
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Fig. 8. Dominating driven field (d = 10−2.2, α = 10, β = 3). Time-slice plot over two
space periods: (a) fort = 0, . . . , 30 and (b) fort = 49, . . . , 50.

Fig. 9. Dominating driven field (d = 10−2.2, α = 10, β = 3). Single wave profiles
(normalized quantitŷu againstx) and the corresponding driven field (sinβû againstû).
Presented wave profiles are indicated in Fig. 8.
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Fig. 10. Dominating driven field (d = 10−2.2, α = 15, β = 3). Single wave profiles
(normalized quantitŷu againstx) and the corresponding driven field (sinβû againstû) for
t = 90 (a) andt = 900 (b).

3.3. Discussion

In the sense of the solution character there are no differences between weak,
moderate, or strong driven field. If increasing the value of the force parameter
α (for the fixed values of the dispersion parameterd and field parameterβ) in
the corresponding domain of parameters, either one more soliton (suppressed for
smaller values ofα) is amplified to the first level or one more soliton (already
amplified to the first or second level for smaller values ofα) is amplified to a higher
level (to the second or third level, respectively). In other words, the increase in the
parameterα causes changes in the quantitative, but not qualitative sense in the case
of a weak, moderate, or strong driven field. However, if the value of the force
parameterα exceeds a certain value, then the driven field starts to dominate and the
character of the solution is not solitonic any more – an oscillating wave package or
a rectangular wave profile with small-amplitude oscillations forms. The stabilized
solution is localized and is propagating with constant speed in both cases, therefore
one can call it a travelling solitary wave solution.

In [7,8] numerical solutions of Eq. (1) with (2) under the harmonic initial
conditions are discussed. The force field is divided into three categories: strong
(α > 1), weak (α < 1), and very weak (α � 1). In the case of a very weak
force field, the solution is similar to that of the KdV equation, i.e., a train of
interacting solitons forms from the initial harmonic excitation. Compared with the
KdV solution, some solitons are now amplified and some suppressed. In the case of
weak and strong force fields, stationary solutions of the following types are found to
form, depending on the values of the force parameterα and field parametersβ1 and
β2: (i) asymmetric solitary waves of different shape; (ii) cnoidal waves; (iii) trivial
solution. The number of solitary and cnoidal waves (per one2π period in space)
depends directly on the strength of the field – the stronger the field, the smaller the
number of waves. If the force parameter exceeds a certain value, a trivial solution
forms, i.e., the initial sine wave is suppressed to constant profileu = 0, u = β1,
or u = β2 that correspond to zeros of the cubic polynomial (2). Emerged solitary
and cnoidal waves are propagating with constant speeds and constant amplitudes.
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If more than one solitary or cnoidal wave per one2π period is formed, then all of
them have the same shape, amplitude, and speed and no interactions take place.
Therefore, in the case of the cubic polynomial force field (2), the emerged solitary
waves can be called solitons only in the case of a very weak force field.

4. CONCLUSIONS

The periodic amplitude-dependent driven field introduces essential changes
into the solitonic structures of the basic KdV equation. The changes depend on the
strength of the driven field. In the case of weak, moderate, and strong driven fields
the character of the solution is solitonic, while the dominating driven field results in
a nonsolitonic solution. In [15] the behaviour of the solutions is analysed by making
use of the discrete spectral analysis [13]. It is shown that all solitonic solutions
demonstrate (quasi)periodic behaviour in the stabilized solution stage. In the case
of the dominating field, the stabilized solution in the form of the oscillating wave
package (see Figs. 8 and 9) is reflected by periodic behaviour of spectral amplitudes
as well. However, if the stabilized solution has a rectangular shape (Fig. 10), then
all spectral amplitudes remain constant in the stabilized solution stage.

Emerging solitons are asymmetric (see Figs. 4 and 7). The asymmetry of the
soliton is basically reflected by the behaviour of the solution nearû = −1, i.e., the
behaviour of the solution on the right of the “bell” differs from that on the left.

The number of emerging solitons depends on all three considered parameters
(d, α, andβ): the dispersion parameterd defines the minimum number of emerging
solitons; for the fixed value of the dispersion parameterd the field parameterβ
defines the number of emerging solitons – the smaller the value ofβ, the higher
the number of emerging solitons; for fixed values of the dispersion parameterd and
the field parameterβ, the force parameterα defines the total number of emerging
solitons as well as the number of solitons amplified to a certain level.

Future studies will clarify the role of the driven fieldF (u) as the source of
additional nonlinearity and dispersion (to understand to what extent the driven
field can change the magnitude of nonlinear and dispersive effects), as well as the
possibility of the existence of single solitary waves.
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Perioodiliselt võimendatud solitonid
dispersiivses keskkonnas
Andrus Salupere ja Martti Kukk

On uuritud amplituudist sõltuva sundiva perioodilise jõuvälja mõju üksiklainete
formeerumisele ja levile mittelineaarses dispersiivses keskkonnas, kasutades
Kortewegi–de Vriesi tüüpi võrrandit, mille paremal poolel olev funktsioon model-
leerib jõuvälja mõju. Töö peaeesmärk on selgitada solitoni tüüpi lahendite formee-
rumise võimalikkust. Mudelvõrrandile on leitud numbrilised lahendid harmoo-
nilise algtingimuse ja perioodilise rajatingimuse korral. Numbriliseks integree-
rimiseks on kasutatud pseudospektraalmeetodit. Sõltuvalt lahendi iseloomust ja
formeeruvate solitonide arvust on jõuväli liigitatud nõrgaks, keskmiseks, tugevaks
või domineerivaks. Kõigi nelja juhu kohta on esitatud illustreerivad näited. Nõrga,
keskmise ja tugeva jõuvälja puhul on tegu solitoni tüüpi lahenditega, domineeriva
jõuvälja puhul aga üksiklainelise lahendiga.
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