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Abstract. The influence of the amplitude-dependent periodic driven field on the formation
propagation of solitary waves in nonlinear dispersive media is studied. The model equ.
— the forced Korteweg—de Vries equation — is integrated numerically under harmonic ir
and periodic boundary conditions by using the pseudospectral method. Main attention is
to solitonic solutions. The driven field is classified as weak, moderate, strong or domina
according to the character of the solution. The solution is found to be solitonic in the cas
weak, moderate, and strong fields.
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1. INTRODUCTION

The celebrated Korteweg—de Vries (KdV) equation involves quadre
nonlinearity and cubic dispersion and describes solitonic waves in conservi
systems. However, in nonconservative cases the energy influx or the influen
external forces must be taken into account. This results in a forced KdV (fKc
equation

Ut + Ul + dUggy = aF(“? x,t, ﬁz)a (1)

wherewu is the excitation,t the time coordinatex the space coordinate] the
dispersion parameter, and the functibrrepresents the influence of an addition:
force (driven) field. The parametessand;, ¢ = 1,2,..., may be called force
and field parameters, respectively.

Equation (1) has been studied in connection of propagation of solitary wave
water over the changing bottom topography].
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The case where the force field (in the 1D case) is given by the cubic polynotr

F =u(u—p1)(u— B2) (2)

is found to describe the wave propagation in a microstructured layer with ent
influx like seismic waves in lithosphere (see, for examplé])l In ["®], Eq. (1)
with (2) has been solved numerically under the harmonic initial conditions.
In the present paper the case of an amplitude-dependent periodic driven (fi
field
F =sin fu (3)

is studied. The field (3) brings the ideas of the external periodic field like in
sine-Gordon equation into the analysis of the KdV equation. Clearly, the r.h.s
the form of (3) introduces additional nonlinearity and additional dispersion ii
the system, i.e., it changes the magnitude of nonlinear and dispersive effects.
main question we address is the following: Can the fKdV equation (1), with -
periodic r.h.s. (3), attain a soliton-type solution? In the present paper we
solitary waves solitons if they (i) propagate with constant speed and amplitude
(i) interact with other solitons elastically, i.e., restore their speed and ampliti
after the interaction’].

In Section 2 the problem is stated and the numerical method is introdur
Results of numerical experiments are presented and discussed in Section :
conclusions are drawn in the final Section 4.

2. STATEMENT OF THE PROBLEM AND NUMERICAL METHOD
Let us consider the fKdV equation (1), (3) which has the form
U + Uty + gy, = asin Gu. 4)

Besides the main question of whether the solution of the problem is solitonic or
our goal is to understand how the dispersion paramétdre force parametet,
and the field parametét influence the solution in the qualitative as well as in tr
guantitative sense. For this reason, Eq. (4) is solved numerically under harmr
initial and periodic boundary conditions

u(z,0) = —sinz, x € [0 27], 5)
u(x + 2nm,t) = u(x,t), n==+1,£2,
over the following domain of considered parameters:
d=[10""%10"%?], 01<a <250, 01<B<T. (6)

The discrete Fourier transform (DFT) based pseudospectral method (Ps!
used for numerical integration of the fKdV equation (4). In a nutshell, the idee
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the PsM is to reduce PDE to ODE by approximation of space derivatives, mal
use of a certain global method (for example DFT), and to apply a certain C
solver to integration with respect to the time variable. In the present paper
Fastest Fourier Transform in the West (FFTW) algoritAfik applied to the DFT,

and the variable-coefficient ODE solver with the implicit Adams method and

functional corrector-iteration method!] to integration with respect to the time
variable.

3. RESULTS AND DISCUSSION
3.1. Conservative case, visible and hidden solitons

The fKdV equation (4) is reduced to the KdV equation if the field parame
a = 0. Solutions of the KdV equation under initial and boundary conditions |
are discussed in$:3] over a wide range of the logarithmic dispersion paramete

d; = —logd. (7

Here only the solution ford; = 2.2 is introduced as an example of the
conservative case. Figure 1 illustrates the formation of the train of solitons fi
the initial harmonic wave as well as the subsequent interaction process. At the
momentt = 3.2 (Fig. 2a) a train of eight equally spaced solitons can be detecte

For further analysis the notationgsible soliton and hidden solitonare
introduced. If a soliton can be detected from the initial train of equally space
solitons, it is called a visible solitoriThe analysis of time dependences of solitc
amplitudes and trajectories demonstrates that aside visible solitons hidden (vil
solitons can exist as well'4]. Thehidden soliton conceps based on the soliton
definition [’] and can be expressed by the following statements: (i) hidden solit
can emerge from a harmonic excitation, and have small energy and amplit
(i) hidden solitons cause changes, specific to soliton-type interaction, in amplitt
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Fig. 1. Unforced cased = 10~2-2, o = 3 = 0). Time-slice plot over two space periods.
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Fig. 2. Unforced cased = 10722, a = 3 = 0). Single wave profiles at the time moment:
t = 3.2 andt = 27.7, demonstrating trains of eight and nine solitons, respectively.

and trajectories of other solitons interacting with them; (iii) hidden solitons ¢
be detected in wave profiles for a short time interval only when several sol|
interactions have taken place and the equilibrium state is fluctuating, if ever; (iv)
physical essence of visible and hidden solitons is the same. For example, il
cased; = 2.2 the number of solitons in the initial train is eight (Fig. 2a), bt
neart = 27.7, nine solitons can be observed (Fig. 2b), i.e., one hidden solitor
detectable in wave profiles neiae= 27.7.

Analysis of time dependences of soliton amplitudes and trajectol
demonstrates that fel; = 2.2 the number of visible solitons (per oRe& period)
is eight and the number of hidden solitons is two, howeverdfor 1.4 all four
emerging solitons are visible. These numbers are taken into account in the
subsection, where the driven field classification is introduced and discussed.

3.2. Nonconservative (forced) case

In the nonconservative case the character of the solution changes dramat
compared with that of the conservative case. Due to the influence of the peri
driven field some solitons can be suppressed and some amplified to diffe
(amplitude) levels. We have divided the driven field into four categories, depenc
on the number of emerging solitons and the character of solution. It is importal
emphasize here that the strength of the field is not defined by the force parar
a only, but depends on the field parameteas well. The typical examples are
presented from the range of parameters (6) in order to demonstrate the charact:
features of each category.

Weak field. The driven field is called weak if the number of emerging solitons di
not exceed the number of visible solitons of the corresponding conservative sy
(KdV case).The solution ford = 10714, & = 0.3, and3 = 3 is presented here
as an example of a weak driven field. In the present case the number of eme
solitons (per on&r period) is two. Here and below, emerged solitary waves ¢
called solitons if they interact elastically, i.e., if they restore their shape and sg
after the interaction. The formation of the corresponding train of two solitons
be observed in the time-slice plot (Fig. 3). It is clear thattfer 10 there exists the
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Fig. 3. Weak driven field¢ = 10~*4, o = 0.3, 8 = 3). Time-slice plot over two space
periods: (a) fort = 0, ..., 20 and (b) fort = 20,.. ., 30.

third soliton as well. However, due to the driven field it is suppressed forl0.
Shortly, such a solution can be called the- 1 solution. In Fig. 4a—d four single
wave profiles (plotted by bold lines in Fig. 3) and the corresponding normali;
driven fields are presented. In this set of figures (and in similar sets below) |
normalized variable

(. t,8) = Lu(a, 1 ®)
7T
is used instead of; (ii) the wave profile is plotted fob < x < 2; (iii) for the
normalized driven fieldin 5 the vertical axis corresponds to the argument.

Amplitude levels. Our numerical experiments demonstrate that if a certain solit
is amplified, then its normalized amplitude can have three different vaiyes:2,
a2 =~ 4, oraz ~ 6. The amplituden; is related to the zero of the normalizet
force field ati, = 1, a- to that ati. = 3, ag to that atu = 5, and the wave profile
minimum is related to the zero of the normalized force field at —1. Below,
we say that a soliton is amplified to thith level if it has a normalized amplitude
a;, + = 1,2,3. At the peak of interaction between the first- and second-le
solitons, values of wave-profile local maxima are related to zeros of the normal
force field ati = 2 (see Fig. 4a). Solitons amplified to the first level are moving
the left while those amplified to the second or third level move to the right.
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Fig. 4. Weak driven field¢ = 1014, a = 0.3, 3 = 3). Single wave profiles (normalized
quantityw againstr) and the corresponding driven field:f 5 againsti).

Moderate field. The driven field is called moderate if the number of emergil
solitons is larger than the number of visible solitons but does not exceed the 1
number of solitons (visible and hidden) of the corresponding conservative sys
As an example of the moderate driven field we consider here the solution
d = 10722, a = 5, andB = 1. In the present case the total number of emergil
solitons (per on@xr period) is ten. In other words, in the present case two hidd
solitons are amplified to the “visible level”. In Fig. 5 the solution is present
at two different stages: (a) the formation of the ten-solitén+ 5) solution and
(b) stabilized solution. Now two groups of solitons form from the harmonic initi
excitation. During the formation stage five solitons are amplified to the first le
and five to the second level. This means also changes in the geometry of trajec
(i.e. velocities) as seen in Fig. 5a. The first group is moving to the left and
second to the right (Fig. 5). The interaction between the first- and second-I
solitons is almost simultaneous, but not exactly. Shortly, such a solution cal
called the5 + 5 solution.

Strong field. The driven field is called strong if the number of emerging solitons
larger than the total number of solitons of the corresponding conservative sys
The casel = 10714, a = 50, and = 0.25 is introduced here as an example
The formation of thes + 1 type solution and behaviour of the stabilized solutic
is presented in Fig. 6a and b, respectively, and typical single wave profiles
presented in Fig. 7.

Dominating field. The driven field is called dominating if the character c
the solution is not solitonic. In the present case the stabilized solution is ¢
oscillating wave package or a rectangular wave profile with Gibbs phenome
like oscillations.
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Fig. 5. Moderate driven fieldd = 10722, a« = 5, 3 = 1). Time-slice plot over two space
periods: (a) fot = 0,...,3 and (b) fort = 49, ..., 50.

As an example of the formation of the oscillating wave package we cons
here the casd = 10722, a = 10, 8 = 3. In the first stage of the formation
process, a sinusoidal initial wave is transformed into a rectangulariore+1),
with small-amplitude oscillations (Figs. 8a and 9a). In the next stage the trail
solitons is formed from the oscillating train near= 1. As a rule, there is a flat
regions, = 1 between such soliton trains (Figs. 8a and 9b,c). In the last stage o
formation process the soliton train is suppressed inctbeordinate direction. The
stabilized solution can be described as an oscillating wave package between
flat regions (see Figs. 8b and 9d).

For the highest values of the force parametethe formation process and
the stabilized solution are completely different from that described above. M
the formation process can be divided into two stages: first a rectangular v
profile is formed from the initial sinusoid and secondly, the rectangle is suppre:
in the z-coordinate direction. The formation process results in a relativi
narrow rectangular wave profile with small-amplitude oscillations as the stabili
solution. Such a rectangular entity is propagating with constant speed, amplit
and width. The corresponding solution o= 10722, o = 15, 3 = 3 is presented
in Fig. 10.
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50, B = 0.25). Single wave profiles

10—1.4’ a
(normalized quantitya againstz) and the corresponding driven fieldii{ 5 againsta).

Presented wave profiles are plotted by bold lines in Fig. 6.

Fig. 7. Strong driven field {d =
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Fig. 8. Dominating driven fieldd = 10722, o = 10, § = 3). Time-slice plot over two
space periods: (a) far=0,...,30 and (b) fort =49, ..., 50.

sinfa t=0.2
1-1 (a)

Fig. 9. Dominating driven fieldd = 10722, o = 10, 8 = 3). Single wave profiles
(normalized quantitya againstz) and the corresponding driven fieldii{ 54 againsta).
Presented wave profiles are indicated in Fig. 8.
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Fig. 10. Dominating driven fieldd = 10722, o = 15, § = 3). Single wave profiles

(normalized quantityi: againstz) and the corresponding driven fielgiif 54 againsta) for

t =90 (a) andt = 900 (b).

3.3. Discussion

In the sense of the solution character there are no differences between v
moderate, or strong driven field. If increasing the value of the force param
« (for the fixed values of the dispersion paramefesind field parametef) in
the corresponding domain of parameters, either one more soliton (suppresse
smaller values oty) is amplified to the first level or one more soliton (alread
amplified to the first or second level for smaller valueapis amplified to a higher
level (to the second or third level, respectively). In other words, the increase in
parametery causes changes in the quantitative, but not qualitative sense in the
of a weak, moderate, or strong driven field. However, if the value of the fo
parametery exceeds a certain value, then the driven field starts to dominate anc
character of the solution is not solitonic any more — an oscillating wave packag
a rectangular wave profile with small-amplitude oscillations forms. The stabili
solution is localized and is propagating with constant speed in both cases, ther
one can call it a travelling solitary wave solution.

In ["®] numerical solutions of Eq. (1) with (2) under the harmonic initic
conditions are discussed. The force field is divided into three categories: st
(a > 1), weak (@ < 1), and very weakq < 1). In the case of a very weak
force field, the solution is similar to that of the KdV equation, i.e., a train
interacting solitons forms from the initial harmonic excitation. Compared with 1
KdV solution, some solitons are now amplified and some suppressed. In the ca
weak and strong force fields, stationary solutions of the following types are foun
form, depending on the values of the force paramet@nd field parameters;, and
(2 (i) asymmetric solitary waves of different shape; (ii) cnoidal waves; (iii) trivii
solution. The number of solitary and cnoidal waves (per 2n@eriod in space)
depends directly on the strength of the field — the stronger the field, the smalle
number of waves. If the force parameter exceeds a certain value, a trivial solt
forms, i.e., the initial sine wave is suppressed to constant profie0, u = 51,
oru = (35 that correspond to zeros of the cubic polynomial (2). Emerged solit
and cnoidal waves are propagating with constant speeds and constant amplit
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If more than one solitary or cnoidal wave per ahreperiod is formed, then all of
them have the same shape, amplitude, and speed and no interactions take
Therefore, in the case of the cubic polynomial force field (2), the emerged soli
waves can be called solitons only in the case of a very weak force field.

4. CONCLUSIONS

The periodic amplitude-dependent driven field introduces essential chal
into the solitonic structures of the basic KdV equation. The changes depend o
strength of the driven field. In the case of weak, moderate, and strong driven fi
the character of the solution is solitonic, while the dominating driven field result:
a nonsolitonic solution. In'f] the behaviour of the solutions is analysed by makir
use of the discrete spectral analysig][ It is shown that all solitonic solutions
demonstrate (quasi)periodic behaviour in the stabilized solution stage. In the
of the dominating field, the stabilized solution in the form of the oscillating wa
package (see Figs. 8 and 9) is reflected by periodic behaviour of spectral amplit
as well. However, if the stabilized solution has a rectangular shape (Fig. 10),
all spectral amplitudes remain constant in the stabilized solution stage.

Emerging solitons are asymmetric (see Figs. 4 and 7). The asymmetry o
soliton is basically reflected by the behaviour of the solution iiear—1, i.e., the
behaviour of the solution on the right of the “bell” differs from that on the left.

The number of emerging solitons depends on all three considered param
(d, o, andp): the dispersion parametédefines the minimum number of emergin
solitons; for the fixed value of the dispersion paramelte¢he field parametef
defines the number of emerging solitons — the smaller the valyg tife higher
the number of emerging solitons; for fixed values of the dispersion parahaiel
the field parametef, the force parameter defines the total number of emerging
solitons as well as the number of solitons amplified to a certain level.

Future studies will clarify the role of the driven fiell(x) as the source of
additional nonlinearity and dispersion (to understand to what extent the dr
field can change the magnitude of nonlinear and dispersive effects), as well a
possibility of the existence of single solitary waves.
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Perioodiliselt véimendatud solitonid
dispersiivses keskkonnas

Andrus Salupere ja Martti Kukk

On uuritud amplituudist sdltuva sundiva perioodilise jduvalja mdju tksiklaine
formeerumisele ja levile mittelineaarses dispersiivses keskkonnas, kasul
Kortewegi—de Vriesi tllpi vérrandit, mille paremal poolel olev funktsioon mod:
leerib jouvalja mdju. T66 peaeesmark on selgitada solitoni tiUpi lahendite forn
rumise vBimalikkust. Mudelvérrandile on leitud numbrilised lahendid harmc
nilise algtingimuse ja perioodilise rajatingimuse korral. Numbriliseks integrt
rimiseks on kasutatud pseudospektraalmeetodit. Séltuvalt lahendi iseloomt
formeeruvate solitonide arvust on jouvdli liigitatud ndrgaks, keskmiseks, tuge\
vdi domineerivaks. Kdigi nelja juhu kohta on esitatud illustreerivad naited. Nor
keskmise ja tugeva jouvélja puhul on tegu solitoni tiupi lahenditega, dominee
jouvalja puhul aga uksiklainelise lahendiga.
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