
Proc. Estonian Acad. Sci. Phys. Math., 2003,52, 1, 135–144

On the formation of solitons in media
with higher-order dispersive effects

Olari Ilisona,b and Andrus Saluperea,b

a Centre for Nonlinear Studies, Institute of Cybernetics at Tallinn Technical University,
Akadeemia tee 21, 12618 Tallinn, Estonia; salupere@ioc.ee

b Department of Mechanics, Tallinn Technical University, Ehitajate tee 5, 19086 Tallinn,
Estonia

Received 15 October 2002, in revised form 2 December 2002

Abstract. Wave propagation in microstructured materials is strongly influenced by dispersive
effects. In the present paper two Korteweg–de Vries type model equations, with the third-
and fifth-order dispersion, are studied. Both model equations are solved numerically, under
harmonic initial and periodic boundary conditions, by making use of the pseudospectral
method. The character of the solution is found to be solitonic in both cases. The number
of visible and hidden solitons in the emerging train is detected. Phenomena of recurrence and
super-recurrence are examined.

Key words: microstructure, dispersion, nonlinearity, Korteweg–de Vries type evolution
equations, solitons, pseudospectral method.

1. INTRODUCTION

Studies of microstructured materials have led to the need to take also dispersive
effects of higher order into account. Together with higher-order nonlinearity these
effects can cause dramatic changes in the behaviour of the emerging waves. In
the present paper two one-dimensional model equations are studied which both are
based on a Korteweg–de Vries (KdV) equation

ut + [P (u)]x + duxxx + buxxxxx = 0. (1)

Hereu is the excitation,t the time coordinate,x the space coordinate,P (u) the
elastic potential,d the third-order dispersion parameter andb that of the fifth order.
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The elastic potentialP (u) is expressed in the polynomial form and the order of
nonlinearity is determined by the highest-order term inP (u).

First, if

P (u) =
(
−u2

2
+

u4

4

)
, (2)

we have a KdV-type equation with quartic nonlinearity, and both the third- and
fifth-order dispersion (KdV435). Here the fourth-order elastic potential (2) depicts
quartic nonlinearity in the simplest (symmetrical) form that can possess two
minima. The higher-order dispersion can be caused by dislocations in the crystal
structure. For instance, this is the case of martensitic-austenitic shape-memory
alloys [1−4].

Second, if we have the quadratic elastic potential

P (u) =
u2

2
, (3)

then Eq. (1) results in the fifth-order KdV (FKdV) equation, which is considered
as the second model case. Note that the same potential corresponds to the KdV
equation, only the fifth-order dispersion has been added.

Equation (1), with quartic nonlinearity (2),d > 0 andb > 0, is studied in [5−9].
In [5,6] the problem (1), (2) is studied under periodic boundary conditions and
harmonic initial conditions. In these papers three different regions in the dispersion
parameters plane are detected. In the first region the third-order dispersion effects
dominate over the fifth-order effects and a train of negative solitons forms from the
initial harmonic excitation. In the second region the fifth-order dispersive effects
take over the third-order effects and a train of positive solitons forms from the
initial harmonic excitation. In the third region between the previous two regions
the rivalry between the third- and fifth-order dispersion creates the situation where
both the trains of negative and positive solitons might start to form simultaneously.

The numerical detection of solitary wave solutions to Eq. (1) with quartic
nonlinearity (2) is studied in [7−9]. In these papers it is shown that (i) both,
negative and positive solitary wave solutions can be detected under asymptotic
boundary conditions and (ii) interaction of two positive solitons is inelastic,
whereas interaction between two negative solitons is elastic – they behave like
solitons.

In the present paper the cased > 0 and b < 0 is considered. Both model
equations are integrated numerically under periodic boundary conditions and
harmonic initial conditions. The main goal is to analyse the time-space behaviour of
solutions – dependences between dispersion parameters and the number of solitons
(including hidden solitons) are detected, and recurrence and super-recurrence
phenomena are discussed making use of spectral amplitudes. The problem is
stated in Section 2. In Sections 3 and 4 results are presented and discussed, and
in Section 5 some conclusions are drawn.
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2. STATEMENT OF THE PROBLEM

Both proposed model equations are integrated numerically under periodic
boundary conditions

u(x, t) = u(x + 2nπ, t), n = ±1,±2, . . . (4)

The initial excitation is given by

u(x, 0) = sin x, 0 ≤ x ≤ 2π. (5)

In the present study the dispersion parameterb is considered to be negative, which
results in pure normal dispersion. The notations

dl = − log d and bl = − log(−b) (6)

are introduced for future analysis. Note that dispersion parameters have opposite
signs!

Both problems are solved numerically for the range of the dispersion
parametersdl andbl:

0.8 ≤ dl ≤ 2.4 and 0.4 ≤ bl ≤ 4.8. (7)

Considering previous experience, the pseudospectral method (PsM) [10] is used for
numerical simulations of wave propagation. The results are analysed using discrete
spectral characteristics [11].

The goals of the present paper are to find numerical solutions to the proposed
model equations KdV435 and FKdV, to examine the behaviour and characteristics
of the solutions over relatively long time intervals, and to study the recurrence and
super-recurrence phenomenon.

3. TYPE OF THE SOLUTION

On the basis of numerical results over a wide range of dispersion parameters (7)
one can say that the solution type of the KdV435 equation with proposed boundary
(4) and initial (5) conditions is a train of negative solitons (Fig. 1), except the
case of very weak dispersion. In this case (discussed below), besides the train
of negative solitons, a train of positive solitons emerges. The solution type of the
FKdV equation is a train of positive solitons (Fig. 2).

Visible solitons. We call a soliton visible if it can be detected from the initial
train of equally spaced solitons. The number of visible solitons in the train depends
on the values of the dispersion parameters and is presented in Table 1. However,
in some cases more solitons become visible after a sufficiently long integration
interval.
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Fig. 11. Wave profiles of the solution
(KdV435 equation,dl = 1.6 andbl = 4.8;
the solid curve corresponds to the initial time
momentt = 0, the dashed curve to the time
momentt = 4.0).

Fig. 2. Wave profiles of the solution (FKdV
equation,dl = 1.2 andbl = 4.8; the solid
curve corresponds to the initial time moment
t = 0, the dashed curve to the time moment
t = 10.3).

Hidden solitons. In addition to visible solitons, also hidden solitons were detected.
The concept of hidden (virtual) solitons is described in detail in [11−13]. The main
characteristics of hidden solitons are as follows: hidden solitons can emerge from
harmonic excitation, have very small energy and amplitude, interact with visible
solitons and cause distinct changes in visible soliton amplitudes and trajectories
during interaction, can be detected in wave profiles for a short time interval only
when several soliton interactions have taken place, if ever. Physical essence of
visible and hidden solitons is the same. The influence of a hidden soliton on
trajectories and amplitudes of visible solitons is presented in Fig. 3. On the basis
of numerical results one can determine at least one hidden soliton in case of both
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Table 1. The number of visible solitons in the train according to the values of the dispersion 
parameters. The left part corresponds to the KdV435 equation, the right to the FKdV equation 
 

dl dl bl 

0.8 1.2 1.6 2.0 2.4 

bl 

0.8 1.2 1.6 2.0 2.4 

0.4 1 1 1 1 1 0.4 1 1 1 1 1 
1.2 1 1 1 1 1 1.2 1 2 2 2 2 
2.0 2 2 2 2 2 2.0 2 2 2 2 2 
2.8 2 2 3 3 3 2.8 2 3 3 3 4 
3.6 2 2 3 4 4 3.6 2 3 4 5 5 
4.0 2 2 3 4 5 4.0 2 3 4 5 6 
4.4 2 2 3 4 6 4.4 2 3 4 6 7 
4.8 2 2 3 4 7 4.8 2 3 4 6 8 

 
 
 
 
 
 
 
 
 
 
 



Fig. 3. Trajectories (a) and amplitude curves (b). FKdV case,dl = 2.4 andbl = 2.0.

model equations.
However, in the KdV435 case, with the values of dispersion parametersdl =

2.4 andbl = {4.0, 4.4, 4.8}, one cannot explain the behaviour of the solution only
in terms of visible and hidden negative solitons. In those cases wave profiles are
stretched in the negative as well as in the positive direction (see Fig. 4). Also,
additional curves appear in the plots of trajectories and amplitudes. The explanation
for such a phenomenon is that in addition to the train of negative solitons, also
positive solitons start to emerge.

Fig. 4. Typical wave profile for the case when trains of positive and negative solitons emerge
simultaneously (KdV435 equation,dl = 2.4 andbl = 4.4). The solid line corresponds to the
time momentt = 0 and dashed line tot = 2.5.
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4. RECURRENCE AND PERIODICITY

The concept of recurrence and recurrence time was first introduced by Zabusky
and Kruskal [14]. The ideal recurrence timetR can be described as an interval of
time after which all solitons that have emerged from initial harmonic excitation
arrive in such a phase that they reconstruct the initial state. Such a state should
be repeated attRn ≈ ntR, n = 2, 3, . . . However, it is shown in [15] that even
the first recurrence attR1 ≡ tR is incomplete, leading to incompleteness of the
following recurrences as well. One reason for such phenomena can be asymmetry
of energy sharing between the modes [16].

In order to estimate the recurrence time one can use the spectral amplitudes:
if t → tR, thenSA1(t) → 1 andSAk(t) → 0, k > 1. As stated above, in
many cases even the first recurrence is incomplete. However, in the same cases
at certain time momentsSA1(tRS

) > SA1(tR1). Such a phenomenon is called
super-recurrence. It is clear that if the recurrence is repeated attRn ≈ ntR, then
the solution can be called (quasi)periodic. For detection of the recurrence time the
first three spectral amplitudes (SA1, SA2, andSA3) are taken into account. We
are looking for the situation where the first spectral amplitudeSA1 has maxima and
other spectral amplitudes (e.g.SA2 andSA3) have minima at the same moment
of time. If we can detect the first recurrence att = tR1 (first maxima of the first
spectral amplitude after initiation), then we are looking for maxima of the first
spectral amplitude at the time momentstRn ≈ ntR, n = 2, 3, . . .

We say that the solution is periodic if at least three consecutive maxima of
the first spectral amplitude do not differ much from the initial value 1 (at the time
momentst = tRn , n = 2, 3, . . . , andtR1 ≈ tR2 − tR1 ≈ tR3 − tR2 ≈ . . . ).

Recurrence.From numerical experiments one can detect that the recurrence time
tR depends on the values of the logarithmic dispersion parametersdl andbl (see
Table 2). In case of both model equations the length of the recurrence time increases
as value(s) of the logarithmic dispersion parameter(s) increases, but in the case of
a fixed value ofdl (or bl) it has a limit value.
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Table 2. Recurrence time tR against the logarithmic dispersion parameters. The left part 
corresponds to the KdV435 equation and right to the FKdV equation 
 

dl dl bl 

0.8 1.2 1.6 2.0 2.4 

bl 

0.8 1.2 1.6 2.0 2.4 

0.4 0.49 0.51 0.52 0.52 0.52 0.4 0.49 0.51 0.52 0.52 0.52 
1.2 2.1 2.6 2.9 3.0 3.0 1.2 2.0 2.5 2.7 2.8 2.8 
2.0 4.3 6.5 8.3 9.3 9.9 2.0 3.9 5.4 6.5 7.1 7.4 
2.8 5.1 8.6 12.9 17.4 20.7 2.8 4.7 7.1 9.8 15.4 17.8 
3.6 5.3 9.2 15.7 25.0 20.2 3.6 4.8 7.8 11.8 25.7 13.7 
4.0 5.3 9.4 16.3 28.5 27.9 4.0 4.8 7.9 12.4 18.8 17.8 
4.4 5.3 9.4 16.7 19.3 16.2 4.4 4.8 8.0 12.7 19.1 21.5 
4.8 5.3 9.4 16.9 21.0  4.8 4.8 8.0 12.8 19.8  

 
 



For both proposed model equations three different domains in thedl − bl plane
were detected, depending on the behaviour of spectral amplitudes:

(1) In the first domain (see normal font in Table 2) at least three consecutive
recurrences can be detected, while time intervals between them do not differ
much from each other. Values of the first spectral amplitudeSA1 at tRn are
close to the initial value 1; the difference is less than 0.1 (Fig. 5).

(2) In the second domain (see bold font and empty cells in Table 2) one
cannot detect the first recurrence, or time intervals between the first three
consecutive recurrences do differ much from each other and values of the
first spectral amplitudeSA1 at tRn differ from the initial value by more than
0.1 (see Fig. 6).

(3) The third domain (see italic font in Table 2) is characterized by the
transitional behaviour between the first two domains. Here one can detect
easily the first three consecutive recurrences, but time intervals between
consecutive recurrences differ much from each other (see Fig. 7).

More concrete examples and time intervalstR2 − tR1 andtR3 − tR2 are presented
in [13].

Super-recurrence. Extra long numerical integrations (numerical simulations up
to the time momentt = 1000) were carried out in order to detect super-recurrence.
The phenomenon of super-recurrence could not be detected in few cases only. In
these cases the value of the first spectral amplitudeSA1 at the first recurrence is

Fig. 5. The first three spectral amplitudes; the KdV435 equation, casedl = 1.6 andbl = 2.0
(the solid line corresponds to the first spectral amplitudeSA1, the dashed line to the second
spectral amplitudeSA2, and the dotted line to the third spectral amplitudeSA3).
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Fig. 6. The first three spectral amplitudes; the KdV435 equation, casedl = 2.0 andbl = 4.4
(the solid line corresponds to the first spectral amplitudeSA1, the dashed line to the second
spectral amplitudeSA2, and the dotted line to the third spectral amplitudeSA3).

Fig. 7. The first three spectral amplitudes; the FKdV equation, casedl = 1.6 andbl = 4.4
(the solid line corresponds to the first spectral amplitudeSA1, the dashed line to the second
spectral amplitudeSA2, and the dotted line to the third spectral amplitudeSA3).

very close to the initial value 1 and, as a rule, much higher than the values in the
cases where the super-recurrence was detected (see [13]). An example of the super-
recurrence phenomenon is presented in Fig. 8 where the values of the first spectral
amplitudeSA1(tRn) are plotted against the number of recurrencesn.
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Fig. 8. Maxima of the first spectral amplitudeSA1 against the number of recurrences. FKdV
equation,dl = 0.8 andbl = 4.4.

5. CONCLUSIONS

Numerical solutions of two KdV-type model equations (KdV435 and FKdV)
are found and analysed. The initial harmonic wave results in the train of positive
solitons in the case of the FKdV equation. However, in the case of the KdV435
equation, the solution type is the train of negative solitons, except the very weak
dispersion case which results in simultaneous formation of trains of negative as
well as positive solitons. It is demonstrated that, besides visible solitons, at
least one hidden soliton can be detected in all studied cases. Recurrence and
super-recurrence phenomena are analysed by making use of the first three spectral
amplitudes. One can conclude that the weaker the dispersion, the worse the
recurrence, like in the case of the KdV equation.
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Solitonide formeerumisest kõrgemat järku
dispersiooniga keskkondades

Olari Ilison ja Andrus Salupere

Lainelevi mikrostruktuuriga keskkonnas on tugevalt mõjutatud nimetatud
keskkonna dispersiivsetest omadustest. Käesolevas artiklis on vaadeldud kahte
Kortewegi–de Vriesi tüüpi (KdV435 ja FKdV) mudelvõrrandit, milles dispersioon
on avaldatud kolmandat ja viiendat järku liikmete abil. Mõlema mudelvõrrandi
jaoks on leitud numbrilised lahendid harmoonilise alg- ja perioodilise rajatingimuse
korral. Numbriliseks meetodiks on pseudospektraalmeetod. Lahenditüübiks on
KdV435 korral negatiivsete solitonide jada, FKdV korral koosneb aga tekkiv
solitonide jada positiivsetest solitonidest. Leitud on nähtavate ja peidetud solitonide
arv jadas. Samuti on uuritud rekurentsi ja super-rekurentsi nähtust.

144


