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Abstract. Wave propagation in microstructured materials is strongly influenced by disper.
effects. In the present paper two Korteweg—de Vries type model equations, with the ti
and fifth-order dispersion, are studied. Both model equations are solved numerically, L
harmonic initial and periodic boundary conditions, by making use of the pseudospe
method. The character of the solution is found to be solitonic in both cases. The nut
of visible and hidden solitons in the emerging train is detected. Phenomena of recurrenc
super-recurrence are examined.
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1. INTRODUCTION
Studies of microstructured materials have led to the need to take also dispe
effects of higher order into account. Together with higher-order nonlinearity th
effects can cause dramatic changes in the behaviour of the emerging wave

the present paper two one-dimensional model equations are studied which bo
based on a Korteweg—de Vries (KdV) equation

ur + [P(u)], + duggs + bugpzzs = 0. (@)

Herew is the excitationf the time coordinater the space coordinaté?(u) the
elastic potentiald the third-order dispersion parameter arttiat of the fifth order.
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The elastic potentiaP(u) is expressed in the polynomial form and the order
nonlinearity is determined by the highest-order tern®if).

First, if
2 4

P(u) = (—“2 + Z) , 2

we have a KdV-type equation with quartic nonlinearity, and both the third- ¢
fifth-order dispersion (KdV435). Here the fourth-order elastic potential (2) depi
guartic nonlinearity in the simplest (symmetrical) form that can possess
minima. The higher-order dispersion can be caused by dislocations in the cr
structure. For instance, this is the case of martensitic-austenitic shape-me
alloys ['=4].

Second, if we have the quadratic elastic potential

P(u) = — 3)

then Eq. (1) results in the fifth-order KdV (FKdV) equation, which is consider
as the second model case. Note that the same potential corresponds to the
eqguation, only the fifth-order dispersion has been added.

Equation (1), with quartic nonlinearity (2J,> 0 andb > 0, is studied in{~°].

In [>%] the problem (1), (2) is studied under periodic boundary conditions &
harmonic initial conditions. In these papers three different regions in the disper
parameters plane are detected. In the first region the third-order dispersion e
dominate over the fifth-order effects and a train of negative solitons forms from
initial harmonic excitation. In the second region the fifth-order dispersive effe
take over the third-order effects and a train of positive solitons forms from

initial harmonic excitation. In the third region between the previous two regic
the rivalry between the third- and fifth-order dispersion creates the situation wi
both the trains of negative and positive solitons might start to form simultaneot

The numerical detection of solitary wave solutions to Eq. (1) with quar
nonlinearity (2) is studied in“[?]. In these papers it is shown that (i) both
negative and positive solitary wave solutions can be detected under asymy
boundary conditions and (ii) interaction of two positive solitons is inelast
whereas interaction between two negative solitons is elastic — they behave
solitons.

In the present paper the cade> 0 and b < 0 is considered. Both model
equations are integrated numerically under periodic boundary conditions
harmonic initial conditions. The main goal is to analyse the time-space behaviol
solutions — dependences between dispersion parameters and the number of si
(including hidden solitons) are detected, and recurrence and super-recurl
phenomena are discussed making use of spectral amplitudes. The proble
stated in Section 2. In Sections 3 and 4 results are presented and discusse
in Section 5 some conclusions are drawn.
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2. STATEMENT OF THE PROBLEM

Both proposed model equations are integrated numerically under peri
boundary conditions

u(x,t) = u(x + 2nm,t), n==+1,4£2,... 4
The initial excitation is given by
u(x,0) = sinz, 0<z<2m. (5)

In the present study the dispersion paraméiterconsidered to be negative, whicl
results in pure normal dispersion. The notations

d; = —logd and b = —log(—b) (6)

are introduced for future analysis. Note that dispersion parameters have opg
signs!

Both problems are solved numerically for the range of the dispers
parameterd; andb;:

0.8 < dl <24 and 0.4 < bl < 4.8. (7)

Considering previous experience, the pseudospectral method (P§i8)dsed for
numerical simulations of wave propagation. The results are analysed using dis
spectral characteristics!].

The goals of the present paper are to find numerical solutions to the prop
model equations KdV435 and FKdV, to examine the behaviour and characteri
of the solutions over relatively long time intervals, and to study the recurrence
super-recurrence phenomenon.

3. TYPE OF THE SOLUTION

On the basis of numerical results over a wide range of dispersion parametel
one can say that the solution type of the KdV435 equation with proposed boun
(4) and initial (5) conditions is a train of negative solitons (Fig. 1), except 1
case of very weak dispersion. In this case (discussed below), besides the
of negative solitons, a train of positive solitons emerges. The solution type of
FKdV equation is a train of positive solitons (Fig. 2).

Visible solitons. We call a soliton visible if it can be detected from the initie
train of equally spaced solitons. The number of visible solitons in the train depe
on the values of the dispersion parameters and is presented in Table 1. How
in some cases more solitons become visible after a sufficiently long integre
interval.
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Fig.

momentt = 4.0).

Table 1. The number of visible solitons in the train according to the values of the dispersion
parameters. The left part corresponds to the KdV 435 equation, the right to the FKdV equation

11. Wave profiles of the solution
(KdVv435 equationd; = 1.6 andb; = 4.8;

the solid curve corresponds to the initial time curve corresponds to the initial time momen
momentt = 0, the dashed curve to the time ¢ = 0, the dashed curve to the time momen

Fig. 2. Wave profiles of the solution (FKdV
equationd; = 1.2 andb; = 4.8; the solid

t =10.3).

by d by d

0.8] 12 ] 16 ] 20 ]2.4 0.8 ] 12 ] 16 ] 20 ] 24
04 1 1 1 1 1| 04 1 1 1 1 1
12 1 1 1 1 1| 12 1 2 2 2 2
20 2 2 2 2 2| 20 2 2 2 2 2
28 2 2 3 3 3| 28 2 3 3 3 4
36 2 2 3 4 4 | 36 2 3 4 5 5
40 2 2 3 4 5 | 40 2 3 4 5 6
44 2 2 3 4 6 | 44 2 3 4 6 7
48 2 2 3 4 7 | 48 2 3 4 6 8

Hidden solitons. In addition to visible solitons, also hidden solitons were detectt
The concept of hidden (virtual) solitons is described in detailin{?]. The main

characteristics of hidden solitons are as follows: hidden solitons can emerge
harmonic excitation, have very small energy and amplitude, interact with vis
solitons and cause distinct changes in visible soliton amplitudes and traject:
during interaction, can be detected in wave profiles for a short time interval ¢
when several soliton interactions have taken place, if ever. Physical essen
visible and hidden solitons is the same. The influence of a hidden soliton
trajectories and amplitudes of visible solitons is presented in Fig. 3. On the k
of numerical results one can determine at least one hidden soliton in case of
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Fig. 3. Trajectories (a) and amplitude curves (b). FKdV cakes 2.4 andb; = 2.0.

model equations.

However, in the KdV435 case, with the values of dispersion parametets
2.4 andb; = {4.0,4.4,4.8}, one cannot explain the behaviour of the solution or
in terms of visible and hidden negative solitons. In those cases wave profile:
stretched in the negative as well as in the positive direction (see Fig. 4). A
additional curves appear in the plots of trajectories and amplitudes. The explan
for such a phenomenon is that in addition to the train of negative solitons,
positive solitons start to emerge.

Fig. 4. Typical wave profile for the case when trains of positive and negative solitons em
simultaneously (KdV435 equation; = 2.4 andb; = 4.4). The solid line corresponds to the
time moment = 0 and dashed line tb= 2.5.
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4. RECURRENCE AND PERIODICITY

The concept of recurrence and recurrence time was first introduced by Zab
and Kruskal [*]. The ideal recurrence timg; can be described as an interval c
time after which all solitons that have emerged from initial harmonic excitati
arrive in such a phase that they reconstruct the initial state. Such a state sl
be repeated attr, ~ ntr, n = 2,3,... However, it is shown in'P] that even
the first recurrence &z, = tr is incomplete, leading to incompleteness of tk
following recurrences as well. One reason for such phenomena can be asymi
of energy sharing between the mod&y,[

In order to estimate the recurrence time one can use the spectral ampliti
if t — tg, thenSA;(t) — 1 andSA(t) — 0, &k > 1. As stated above, in
many cases even the first recurrence is incomplete. However, in the same
at certain time momentSA; (tg,) > SAi(tr,). Such a phenomenon is callec
super-recurrence. It is clear that if the recurrence is repeateg at ntg, then
the solution can be called (quasi)periodic. For detection of the recurrence time
first three spectral amplitudes 4,, SA., andSAj3) are taken into account. We
are looking for the situation where the first spectral amplitdde has maxima and
other spectral amplitudes (e.§.A; and S A3) have minima at the same momen
of time. If we can detect the first recurrencetat tr, (first maxima of the first
spectral amplitude after initiation), then we are looking for maxima of the fi
spectral amplitude at the time momengs ~ ntr, n =2,3,...

We say that the solution is periodic if at least three consecutive maxime
the first spectral amplitude do not differ much from the initial value 1 (at the tii
moments =tg,, n=2,3,...,andtr, < tr, —tr, R tpy —tR, = ...).

Recurrence.From numerical experiments one can detect that the recurrence
tr depends on the values of the logarithmic dispersion paramétensdb; (see
Table 2). In case of both model equations the length of the recurrence time incre
as value(s) of the logarithmic dispersion parameter(s) increases, but in the ce
a fixed value ofi; (or b;) it has a limit value.

Table 2. Recurrence time tg against the logarithmic dispersion parameters. The left part
corresponds to the KdV 435 equation and right to the FKdV equation

b d by d,
08 | 12 | 16 | 20 | 24 08 | 12 | 16 | 20 | 24

0.4 049 051 052 052 052 0.4 049 051 052 052 052
12 21 2.6 29 3.0 3.0 12 2.0 25 2.7 2.8 2.8
20 4.3 6.5 8.3 9.3 9.9 20 39 54 6.5 7.1 74
2.8 51 86 129 174 207 2.8 4.7 7.1 98 154 178
3.6 53 92 157 250 202 3.6 4.8 78 118 257 137
4.0 53 94 163 285 279 4.0 4.8 79 124 188 178
4.4 53 94 167 193 16.2 4.4 4.8 80 127 191 215
4.8 53 94 169 210 4.8 4.8 80 128 1938
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For both proposed model equations three different domains it thé; plane
were detected, depending on the behaviour of spectral amplitudes:

(1) In the first domain (see normal font in Table 2) at least three consecu
recurrences can be detected, while time intervals between them do not ¢
much from each other. Values of the first spectral amplittide attp,, are
close to the initial value 1; the difference is less than 0.1 (Fig. 5).

(2) In the second domain (see bold font and empty cells in Table 2) «
cannot detect the first recurrence, or time intervals between the first tl
consecutive recurrences do differ much from each other and values ot
first spectral amplitud&' A; attpr, differ from the initial value by more than
0.1 (see Fig. 6).

(3) The third domain (see italic font in Table 2) is characterized by t
transitional behaviour between the first two domains. Here one can de
easily the first three consecutive recurrences, but time intervals betw
consecutive recurrences differ much from each other (see Fig. 7).

More concrete examples and time intervials — tr, andtg, — tr, are presented
in [*3].

Super-recurrence. Extra long numerical integrations (hnumerical simulations t
to the time moment = 1000) were carried out in order to detect super-recurrenc
The phenomenon of super-recurrence could not be detected in few cases on
these cases the value of the first spectral amplittide at the first recurrence is
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Fig. 5. The first three spectral amplitudes; the KdV435 equation, dase 1.6 andb; = 2.0
(the solid line corresponds to the first spectral amplitddg , the dashed line to the seconc
spectral amplitud& As, and the dotted line to the third spectral amplituiés).
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Fig. 6. The first three spectral amplitudes; the KdV435 equation, dase 2.0 andb; = 4.4
(the solid line corresponds to the first spectral amplit§de , the dashed line to the seconc
spectral amplitud& A,, and the dotted line to the third spectral amplitutiés).
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Fig. 7. The first three spectral amplitudes; the FKdV equation, dase 1.6 andb; = 4.4
(the solid line corresponds to the first spectral amplit§de , the dashed line to the seconc
spectral amplitudé A,, and the dotted line to the third spectral amplitutiés).

very close to the initial value 1 and, as a rule, much higher than the values ir
cases where the super-recurrence was detected teedh example of the super-
recurrence phenomenon is presented in Fig. 8 where the values of the first sp
amplitudeS A, (tr, ) are plotted against the number of recurrences
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Fig. 8. Maxima of the first spectral amplitudeA; against the number of recurrences. FKd\
equationd; = 0.8 andb; = 4.4.

5. CONCLUSIONS

Numerical solutions of two KdV-type model equations (KdvV435 and FKd'
are found and analysed. The initial harmonic wave results in the train of posi
solitons in the case of the FKdV equation. However, in the case of the KdV.
equation, the solution type is the train of negative solitons, except the very w
dispersion case which results in simultaneous formation of trains of negativ
well as positive solitons. It is demonstrated that, besides visible solitons
least one hidden soliton can be detected in all studied cases. Recurrenci
super-recurrence phenomena are analysed by making use of the first three sy
amplitudes. One can conclude that the weaker the dispersion, the worse
recurrence, like in the case of the KdV equation.
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Solitonide formeerumisest kérgemat jarku
dispersiooniga keskkondades

Olari llison ja Andrus Salupere

Lainelevi mikrostruktuuriga keskkonnas on tugevalt mdjutatud nimeta:
keskkonna dispersiivsetest omadustest. Kaesolevas artiklis on vaadeldud
Kortewegi—de Vriesi tulpi (KdV435 ja FKdV) mudelvdrrandit, milles dispersioc
on avaldatud kolmandat ja viiendat jarku likmete abil. M&lema mudelvérrai
jaoks on leitud numbrilised lahendid harmoonilise alg- ja perioodilise rajatingimi
korral. Numbriliseks meetodiks on pseudospekiraalmeetod. Lahendittitbik:
KdVv435 korral negatiivsete solitonide jada, FKdV korral koosneb aga tek
solitonide jada positiivsetest solitonidest. Leitud on ndhtavate ja peidetud solito
arv jadas. Samuti on uuritud rekurentsi ja super-rekurentsi néhtust.

144



