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Abstract. Wave propagation in dilatant granular materials is studied by using a hierarchical
Korteweg–de Vries type evolution equation. The model equation is solved numerically
under harmonic initial conditions. The behaviour of the solution is described and analysed
over a wide range of material parameters (two dispersion parameters and one microstructure
parameter). Two main solution types with different subtypes are introduced. The character of
the both solution types is found to be solitonic.
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1. INTRODUCTION

Many physical and technological applications deal with nonlinear wave
propagation in continuous media with the microstructure, e.g. in granular materials
and bubbly liquids [1−3]. The flow behaviour of a granular material is usually
considered to be similar to the fluid behaviour, except that its response depends on
the distribution of the volume fraction in the reference placement. Moreover, the
introduction of the volume fraction of the grains as an independent kinematical
variable, in order to describe the local deformations of the grains themselves,
requires an additional balance equation for the microinertia [3]. In dynamics the
most important scale factor is an averaged diameter of a grain that must be related
to the wavelength of the excitation (i.e. propagating wave). A physically consistent
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derivation of the governing mathematical model of dilatant granular materials
is given by Giovine and Oliveri [1]. In one-dimensional setting the governing
equation is
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whereα1, α2 are dispersion parameters andb is a parameter involving the ratio of
the grain size to the wavelength. Equation (1) consists of two Korteweg–de Vries
(KdV) operators: the first describes the motion in the macrostructure and the second
(in brackets) – the motion in the microstructure. Equation (1) is clearly hierarchical
in Whitham’s sense: if the parameterb is small, the influence of the microstructure
can be neglected and the wave “feels” only the macrostructure [4]. If, however, the
parameterb is large, only the influence of the microstructure “is felt” by the wave.
Due to that kind of hierarchy Eq. (1) could by called a hierarchical Korteweg–
de Vries (HKdV) equation.

The main aim of this paper is to analyse the mechanism of the emergence
of solitary waves from harmonic initial excitation, in the range of parameters
where both the macro- and microstructure are to be taken into account. Special
attention is paid to the formation of soliton ensembles. The paper is organized as
follows. Section 2 gives the statement of the problem and a brief description of the
numerical technique. In Section 3 solution types are introduced and discussed, and
in Section 4 conclusions are drawn and further prospects envisaged.

2. STATEMENT OF THE PROBLEM AND NUMERICAL METHOD

In the present paper the wave propagation in dilatant granular materials is
studied making use of the HKdV equation (1). This model equation is integrated
numerically under the periodic boundary conditions

u (x + 2nπ, t) = u (x, t) , n = 0,±1,±2, ... (2)

and the harmonic initial conditions

u (x, 0) = sin x, 0 ≤ x ≤ 2π. (3)

The goals of the present paper are: (i) to find numerical solutions to the proposed
problem (1)–(3); (ii) to analyse the time-space behaviour of the solutions for
different values of material parametersα1, α2, andb; (iii) to define solution types
and the character of the solution (solitonic or not).

To numerical integration of the HKdV equation the pseudospectral method
(PsM) [5−8] is applied. In a nutshell, the idea of the PsM is to approximate
space derivatives by a certain global method, reducing thereby a partial differential
equation to an ordinary differential equation (ODE), and to apply a certain ODE
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solver to integration with respect to the time variable. In the present paper space
derivatives are found using the discrete Fourier transform,

U(ω, t) = Fu =
n−1∑
j=0

u(j∆x, t) exp
(
−2πijω

n

)
, (4)

wheren is the number of space-grid points,∆x = 2π/n space step,i an imaginary
unit, ω = 0,±1,±2, . . . ,± (n/2− 1) ,−n/2, andF denotes the discrete Fourier
transform. To integrate in time, the 4th- and 5th-order embedded Runge–Kutta–
Fehlberg formulas are applied. The usual PsM algorithm (derived forut =
Φ(u, ux, u2x, . . . , unx) type equations) needs to be modified due to the existence
of the mixed partial derivative in the HKdV equation (1).

At first the HKdV equation is rewritten in the form

(u + bu2x)t + (u + bu2x) ux + (α1 + bu)u3x + bα2u5x = 0 (5)

and a variable
v = u + bu2x (6)

is introduced. Making use of the Fourier transform, the last expression can be
rewritten in the form

v = F−1 [F (u)] + bF−1
[
−ω2F (u)

]
= F−1

[(
1− bω2

)
F (u)

]
, (7)

whereF−1 is the inverse Fourier transform. From the expression (7) the variableu
can be explicit in the form

u = F−1

[
F (v)

1− bω2

]
. (8)

Now the space derivatives ofu can be expressed in terms ofv:

∂nu

∂xn
= F−1

[
(iω)n F (v)

1− bω2

]
. (9)

Substituting the expression (9) into Eq. (5) and expliciting the time derivativevt

results in the following equation:

vt = −vux − (α1 + bu) u3x − α2bu5x. (10)

In Eq. (10) the variableu and all its space derivatives could be expressed in terms of
v according to expressions (6), (8), and (9). Therefore Eq. (10) can be considered as
an ODE with respect to the variablev and could be integrated numerically making
use of standard ODE solvers.
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The question about the stability and accuracy of solutions certainly arises with
any numerical computation. The studied HKdV equation (1) can be rewritten in the
form of the conservation law

(u + bu2x)t +
[
u2 + α1u3x +

(
u2 + α2u3x

)
x

]
x

= 0, (11)

with conserved density

C1 (t) =

2π∫
0

(u + bu2x) dx. (12)

In order to estimate the accuracy of computations, numerical experiments were
carried out, with the number of space-grid pointsn = 64, 128, 256, 512. The
behaviour of the conserved density was traced and final wave profilesu (x, tf ),
i.e. the wave profiles at the end of the integration intervalt = tf , were compared.
It was found that final wave profiles forn ≥ 128 practically coincided and therefore
in numerical experiments below the number of space-grid pointsn = 128 is used.
It is clear that in the case of harmonic initial conditionsC1(0) = 0. In all cases,
discussed below, the absolute error of the densityC1 (t) is less than10−10.

In order to cut off high-frequency computational noise and increase the stability
of the numerical scheme, a certain filtration algorithm is applied, i.e., the influence
of the harmonics corresponding toω∗ = n/γ < ω < n/2 is suppressed [6,7].
To verify the application of filtering, numerical experiments withn = 128 and
n ≥ 256 were carried out and the time-space behaviour of solutions corresponding
to different values ofn were compared. It is clear that if the value ofγ is fixed, the
harmonics, suppressed forn = 128, are conserved forn ≥ 256. The corresponding
numerical experiments demonstrated that the filtering procedure did not change the
essence of the solution. Numerical experiments with different values ofγ (n fixed)
demonstrated that the valueω∗ = 3n/8 gave the best results in the sense of the
stability of the scheme.

3. RESULTS AND DISCUSSION

The numerical integration of the HKdV equation (1) is carried out
in the range of parametersα1 = {−0.4, ..., 0.4}, α2 = {−0.4, ..., 0.4}, b =
{−0.0111, 0.0111}. By pilot studies such a range of parameters was found to
be convenient for demonstrating the behaviour of typical solutions. Some typical
solutions for the time interval0 ≤ t ≤ 20 are presented in Figs. 1–3 in the form of
time-slice plots (all solutions are plotted over two2π space periods). The space
coordinate increases in the horizontal direction form left to right, and the time
coordinate increases in the vertical direction from bottom to top.
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Symmetry. The solutions of the HKdV equation (1) have symmetry in the plane of
parametersα1 andα2 as follows:

u(x, t, α1, α2) = −u(−x, t,−α1,−α2). (13)

Therefore only the behaviour of positive soliton ensembles is discussed below.

Solution types.Solutions of the HKdV equation (1) can be divided into two main
types, both having several subtypes (six in total).

1. Only the KdV-like train ofn-solitons (called the KdV ensemble) emerges:

(a) the positive KdV ensemble emerges (see Fig. 1);

(b) the negative KdV ensemble emerges.

2. The KdV ensemble and train ofm solitary waves of nearly equal amplitudes
(called the EA ensemble) emerge simultaneously:

(a) the positive KdV ensemble and positive EA ensemble emerge
simultaneously:

(i) the KdV ensemble is dominating (see Fig. 2),
(ii) the EA ensemble is dominating (see Fig. 3);

(b) the negative KdV ensemble and negative EA ensemble emerge
simultaneously:

(i) the KdV ensemble is dominating,
(ii) the EA ensemble is dominating.

Fig. 1. Positive KdV ensemble (α1 = 0.05, α2 = 0.03, b = 0.0111).
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Fig. 2. Positive KdV ensemble together with the positive EA ensemble; the KdV ensemble is
dominating (α1 = 0.05, α2 = 0.063, b = 0.0111).

Fig. 3. Positive KdV ensemble together with the positive EA ensemble; the EA ensemble is
dominating (α1 = 0.05, α2 = 0.071, b = 0.0111).

It is clear that the initial excitation−1 ≤ u (x, 0) ≤ 1. If the train of positive
solitons forms, then the zero level of the soliton trainu∞ < 0 and the wave profile
is stretched in the positive direction. In the case of a train of negative solitons, vice
versa,u∞ > 0 and the wave profile is stretched in the negative direction.
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Solitonic character of the solution. Our analysis of numerical results over the
considered range of parameters shows that the interaction between emerged solitary
waves is elastic, i.e. they restore their amplitude and speed after interaction.
Therefore one can call them solitons.
Dispersion types versus solution types.In the studied case the dispersion can be
pure normal, pure anomalous, or mixed. In the 3D space of the parametersα1,
α2, andb there exists a strict relation between the character of the dispersion and
the solution types. Only the KdV ensemble appears in the case of pure normal
or pure anomalous dispersion. If there appears some kind of transition between
the normal and anomalous dispersion, then the EA ensemble and KdV ensemble
emerge simultaneously [9].
Domination of the EA ensemble. For certain combinations of parametersα1

and α2 the EA ensemble starts to play a dominating role in the solution (see
Fig. 3). In very simple words, the whole phenomenon could be characterized as
a phenomenon of resonance. For certain values of parametersα1 andα2, the EA
ensemble is suppressed and for certain values it is amplified. Furthermore, the
amplification of the EA ensemble can be so strong that it starts to dominate over that
of the KdV ensemble, the whole structure changes and the KdV ensemble is hardly
recognizable. In order to analyse the behaviour of the solution, and especially the
domination of the EA ensemble, we introduce spectral amplitudes

Sω =
2 |U (ω, t)|

n
, ω = 1, ...,

n

2
. (14)

Spectral amplitudes in Fig. 4 correspond to the pure KdV ensemble (α1 = 0.05,
α2 = 0.03, b = 0.0111; see Fig. 1). One can detect here a quite good
(quasi)periodic behaviour of the first three spectral amplitudes. Such a behaviour
is typical of KdV soliton ensembles (cf. the corresponding figures in [10]). For
α2 = 0.063 (α1 = 0.05, b = 0.0111), the EA ensemble of seven solitary waves
(per 2π period) emerges besides the KdV ensemble (Fig. 2). As far as the KdV
ensemble is dominating here, the spectrum of the solution (Fig. 5) is similar to that
of the pure KdV ensemble case (Fig. 4).

Fig. 4. Spectral amplitudes against time – the positive KdV ensemble (α1 = 0.05, α2 = 0.03,
b = 0.0111).
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Fig. 5. Spectral amplitudes against time – the positive KdV ensemble is dominating over the
positive EA ensemble (α1 = 0.05, α2 = 0.063, b = 0.0111).

Forα2 = 0.071 (α1 = 0.05, b = 0.0111), the EA ensemble is dominating and
the KdV ensemble is hardly recognizable. The wave profile seems to be consisting
of eight solitary waves per2π period (see the corresponding time-slice plot in
Fig. 3). Such a phenomenon is reflected by strong domination of the 8th spectral
densityS8 (Figs. 6 and 7). The behaviour of spectral amplitudesS2 and S3 is
still similar to the pure KdV case (Fig. 7). Therefore they can belong only to the
hidden KdV ensemble, i.e., the KdV ensemble still exists behind the EA ensemble,
notwithstanding that it is practically undetectable in wave profiles.

Another phenomenon is involved with the EA ensemble amplification. There
appears to be some strict relation between the domination of the EA ensemble over
the KdV ensemble, the number of solitary waves in the EA ensemble and the mutual
relation of parametersα1 andα2. The domination of the EA ensemble appears
only in the case of concrete values of the ratioα2/α1 within a constant number of
solitons. The maximum amplification of the EA ensemble ofm solitons takes place
only in the very narrow neighbourhood of straight lines, plotted in Fig. 8. Between
these lines, the KdV ensemble is dominating.

Fig. 6. Spectral amplitudes against time – the positive EA ensemble is dominating over the
positive KdV ensemble (α1 = 0.05, α2 = 0.071, b = 0.0111).
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Fig. 7. Spectral amplitudes against time – the positive EA ensemble is dominating over the
positive KdV ensemble. Same as Fig. 9, but the scale forSk is different.

Fig. 8. Numbers of solitary waves in the dominating EA ensemble and corresponding straight
lines in theα1 − α2 plane.

4. CONCLUSIONS

Numerical solutions to the HKdV equation (1) are found and analysed over a
wide range of material parametersα1, α2, andb. Two main solution types and six
subtypes are found. Symmetry of the solution is detected in theα1 − α2 plane.
The solution is solitonic for all solution types and subtypes, i.e., emerging solitary
waves restore their shape and speed after interaction. Furthermore, a noteworthy
phenomenon of simultaneous existence of two different structures having soliton-
like behaviour is detected. The appearance of the domination of the EA ensemble
is determined by the mutual relation between the parametersα1 andα2 and clearly
reflected by spectral amplitudes. The numerical experiments and corresponding
analysis of long-time behaviour of solitons, with different values of the parameter
|b| 6= 0.0111, are in progress and will be discussed in a forthcoming paper.
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Solitonid hierarhilistes Kortewegi–de Vriesi tüüpi
süsteemides

Lauri Ilison ja Andrus Salupere

On uuritud lainelevi granuleeritud materjalides. Mudelvõrrandina on kasuta-
tud Kortewegi–de Vriesi tüüpi hierarhilist evolutsioonivõrrandit, millele on leitud
numbrilised lahendid laias materjaliparameetrite vahemikus (kaks dispersiooni-
parameetrit ja üks mikrostruktuuriparameeter). Numbriliseks integreerimiseks on
kasutatud pseudospektraalmeetodit. Algtingimused on harmoonilised ja rajatingi-
mused perioodilised. On esitatud kaks peamist lahenditüüpi koos alamtüüpidega
ning erinevate lahenditüüpide omadused. On leitud, et harmoonilisest alglainest
formeerunud üksiklained käituvad kui solitonid – nad levivad konstantse kuju ja
kiirusega ning pärast interaktsiooni taastavad algse kuju ja kiiruse.
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