Proc. Estonian Acad. Sci. Phys. Math., 2083, 1, 125-134
https://doi.org/10.3176/phys.math.2003.1.12

Solitons in hierarchical
Korteweg—de Vries type systems

Lauri llisor®? and Andrus Salupeté

a Centre for Nonlinear Studies, Institute of Cybernetics at Tallinn Technical Univers
Akadeemia tee 21, 12618 Tallinn, Estonia; salupere@ioc.ee

b Department of Mechanics, Tallinn Technical University, Ehitajate tee 5, 19086 Talli
Estonia

Received 15 October 2002, in revised form 25 November 2002

Abstract. Wave propagation in dilatant granular materials is studied by using a hierarct
Korteweg—de Vries type evolution equation. The model equation is solved numeric
under harmonic initial conditions. The behaviour of the solution is described and anal
over a wide range of material parameters (two dispersion parameters and one microstri
parameter). Two main solution types with different subtypes are introduced. The charact
the both solution types is found to be solitonic.
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1. INTRODUCTION

Many physical and technological applications deal with nonlinear we
propagation in continuous media with the microstructure, e.g. in granular mate
and bubbly liquids {=3]. The flow behaviour of a granular material is usuall
considered to be similar to the fluid behaviour, except that its response depen
the distribution of the volume fraction in the reference placement. Moreover,
introduction of the volume fraction of the grains as an independent kinemai
variable, in order to describe the local deformations of the grains themsel
requires an additional balance equation for the microinetfialp dynamics the
most important scale factor is an averaged diameter of a grain that must be re
to the wavelength of the excitation (i.e. propagating wave). A physically consis
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derivation of the governing mathematical model of dilatant granular mater
is given by Giovine and Oliveri']. In one-dimensional setting the governin
equation is

— +u—+ oy +b@ +u— + oy

ot "o T Mom 5t Tl T as (1)

ou ou u 0? ((9u ou 83u> 0
whereay, ay are dispersion parameters anid a parameter involving the ratio of
the grain size to the wavelength. Equation (1) consists of two Korteweg—de V
(KdV) operators: the first describes the motion in the macrostructure and the se
(in brackets) — the motion in the microstructure. Equation (1) is clearly hierarch
in Whitham'’s sense: if the parameteis small, the influence of the microstructure
can be neglected and the wave “feels” only the macrostructiiréf,[however, the
parameteb is large, only the influence of the microstructure “is felt” by the wav
Due to that kind of hierarchy Eq. (1) could by called a hierarchical Kortewe
de Vries (HKdV) equation.

The main aim of this paper is to analyse the mechanism of the emerge
of solitary waves from harmonic initial excitation, in the range of paramet
where both the macro- and microstructure are to be taken into account. Sp
attention is paid to the formation of soliton ensembles. The paper is organize
follows. Section 2 gives the statement of the problem and a brief description of
numerical technique. In Section 3 solution types are introduced and discussec
in Section 4 conclusions are drawn and further prospects envisaged.

2. STATEMENT OF THE PROBLEM AND NUMERICAL METHOD

In the present paper the wave propagation in dilatant granular materia
studied making use of the HKdV equation (1). This model equation is integre
numerically under the periodic boundary conditions

u(z+2nm,t) =u(x,t), n=0,£1,£2, .. 2)
and the harmonic initial conditions
u(z,0) =sinz, 0<z<2m. 3

The goals of the present paper are: (i) to find numerical solutions to the prop:
problem (1)-(3); (ii) to analyse the time-space behaviour of the solutions
different values of material parameters, a2, andb; (iii) to define solution types
and the character of the solution (solitonic or not).

To numerical integration of the HKdV equation the pseudospectral metl
(PsM) P~8] is applied. In a nutshell, the idea of the PsM is to approxime
space derivatives by a certain global method, reducing thereby a partial differe
equation to an ordinary differential equation (ODE), and to apply a certain O
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solver to integration with respect to the time variable. In the present paper sj
derivatives are found using the discrete Fourier transform,

n—1 ..
U(w,t) = Fu= u(jAz,t) exp <_2m]w> ; (4)

- n
Jj=0

wheren is the number of space-grid pointSg = 27 /n space step,an imaginary
unit,w = 0,£1,+2,...,+(n/2 — 1), —n/2, andF' denotes the discrete Fouriel
transform. To integrate in time, the 4th- and 5th-order embedded Runge—Ku
Fehlberg formulas are applied. The usual PsM algorithm (derived.for=
D(u, uy, ugg, - - -, Uny) type equations) needs to be modified due to the exister
of the mixed partial derivative in the HKdV equation (1).

At first the HKdV equation is rewritten in the form

(u+ bugg), + (u + bugy) ug + (o1 + bu) ugy + bagus, =0 (5)

and a variable
v =u+ bugg (6)

is introduced. Making use of the Fourier transform, the last expression car
rewritten in the form

v= F7UF ()] 4 057 [P (] = F7 (1= b?) F(w)] . ()

whereF~! is the inverse Fourier transform. From the expression (7) the variabl
can be explicit in the form

o F (v)
U_Fl[l—buﬂ]' (8)

Now the space derivatives afcan be expressed in termsqwof

o [(iw)”F(v)] |

9z — ©)

Substituting the expression (9) into Eq. (5) and expliciting the time derivative
results in the following equation:

vy = —vuy — (g + bu) ugy — asbus,. (10)
In Eq. (10) the variable and all its space derivatives could be expressed in terms
v according to expressions (6), (8), and (9). Therefore Eq. (10) can be consider
an ODE with respect to the variableand could be integrated numerically making
use of standard ODE solvers.
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The question about the stability and accuracy of solutions certainly arises
any numerical computation. The studied HKdV equation (1) can be rewritten in
form of the conservation law

(u+ bugy), + [u® + cqugs + (v + OéQUgI)x]x =0, (11)

with conserved density

21

Ci(t) = | (u+ bugg)dx. (12)
[

In order to estimate the accuracy of computations, numerical experiments \
carried out, with the number of space-grid points= 64, 128,256,512. The
behaviour of the conserved density was traced and final wave profileg ),
i.e. the wave profiles at the end of the integration intetvalt ;, were compared.
It was found that final wave profiles far > 128 practically coincided and therefore
in numerical experiments below the number of space-grid paints128 is used.
It is clear that in the case of harmonic initial conditiafis(0) = 0. In all cases,
discussed below, the absolute error of the derGityt) is less thari0~1°.

In order to cut off high-frequency computational noise and increase the stak
of the numerical scheme, a certain filtration algorithm is applied, i.e., the influe
of the harmonics corresponding 6 = n/y < w < n/2 is suppressed’{].
To verify the application of filtering, numerical experiments with= 128 and
n > 256 were carried out and the time-space behaviour of solutions correspon
to different values ofi were compared. It is clear that if the value-ois fixed, the
harmonics, suppressed for= 128, are conserved for > 256. The corresponding
numerical experiments demonstrated that the filtering procedure did not chang
essence of the solution. Numerical experiments with different valueg:ofixed)
demonstrated that the valug¢ = 3n/8 gave the best results in the sense of t
stability of the scheme.

3. RESULTS AND DISCUSSION

The numerical integration of the HKdV equation (1) is carried o
in the range of parameters; = {—04,...,0.4}, as ={-0.4,...,04}, b=
{-0.0111,0.0111}. By pilot studies such a range of parameters was found
be convenient for demonstrating the behaviour of typical solutions. Some tyg
solutions for the time intervdl < t < 20 are presented in Figs. 1-3 in the form o
time-slice plots (all solutions are plotted over t&m space periods). The spact
coordinate increases in the horizontal direction form left to right, and the ti
coordinate increases in the vertical direction from bottom to top.
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Symmetry. The solutions of the HKdV equation (1) have symmetry in the plane
parametersy; andas as follows:

U(x,t, CYl,OéQ) = _u(_‘r7t7_a17 —042)- (13)

Therefore only the behaviour of positive soliton ensembles is discussed below

Solution types. Solutions of the HKdV equation (1) can be divided into two ma
types, both having several subtypes (six in total).

1. Only the KdV-like train ofn-solitons (called the KdV ensemble) emerges:

(a) the positive KdV ensemble emerges (see Fig. 1);
(b) the negative KdV ensemble emerges.

2. The KdV ensemble and train of solitary waves of nearly equal amplitude:
(called the EA ensemble) emerge simultaneously:

(a) the positive KdV ensemble and positive EA ensemble eme
simultaneously:
(i) the KdV ensemble is dominating (see Fig. 2),
(ii) the EA ensemble is dominating (see Fig. 3);
(b) the negative KdV ensemble and negative EA ensemble eme
simultaneously:
(i) the KdV ensemble is dominating,
(i) the EA ensemble is dominating.

Fig. 1. Positive KdV ensemblen; = 0.05, ay = 0.03, b = 0.0111).

129



Fig. 2. Positive KdV ensemble together with the positive EA ensemble; the KdV ensembl

0.0111).

b

0.05, oz = 0.063,

dominating (1

Fig. 3. Positive KdV ensemble together with the positive EA ensemble; the EA ensemb

0.0111).

b

dominating (v; = 0.05, as = 0.071

(

solitons forms, then the zero level of the soliton traig < 0 and the wave profile
is stretched in the positive direction. In the case of a train of negative solitons,

versaus, > 0 and the wave profile is stretched in the negative direction.

It is clear that the initial excitation-1 < u

z,0) < 1. If the train of positive
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Solitonic character of the solution. Our analysis of nhumerical results over th
considered range of parameters shows that the interaction between emerged s
waves is elastic, i.e. they restore their amplitude and speed after interac
Therefore one can call them solitons.

Dispersion types versus solution typedn the studied case the dispersion can t
pure normal, pure anomalous, or mixed. In the 3D space of the paramegter:
a, andb there exists a strict relation between the character of the dispersion
the solution types. Only the KdV ensemble appears in the case of pure no
or pure anomalous dispersion. If there appears some kind of transition bet\
the normal and anomalous dispersion, then the EA ensemble and KdV ense
emerge simultaneously]

Domination of the EA ensemble. For certain combinations of parameters
and ay the EA ensemble starts to play a dominating role in the solution (:
Fig. 3). In very simple words, the whole phenomenon could be characterize
a phenomenon of resonance. For certain values of parametensd as, the EA
ensemble is suppressed and for certain values it is amplified. Furthermore
amplification of the EA ensemble can be so strong that it starts to dominate ovel
of the KdV ensemble, the whole structure changes and the KdV ensemble is h
recognizable. In order to analyse the behaviour of the solution, and especiall
domination of the EA ensemble, we introduce spectral amplitudes

g, = 20Ol (14)

n 2

Spectral amplitudes in Fig. 4 correspond to the pure KdV ensemhle=(0.05,
as = 0.03, b = 0.0111; see Fig. 1). One can detect here a quite go
(quasi)periodic behaviour of the first three spectral amplitudes. Such a beha
is typical of KdV soliton ensembles (cf. the corresponding figuresii.[ For
ag = 0.063 (ap = 0.05, b = 0.0111), the EA ensemble of seven solitary wave
(per 27 period) emerges besides the KdV ensemble (Fig. 2). As far as the
ensemble is dominating here, the spectrum of the solution (Fig. 5) is similar to
of the pure KdV ensemble case (Fig. 4).

Fig. 4. Spectral amplitudes against time — the positive KdV ensemable< 0.05, as = 0.03,
b= 0.0111).
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Fig. 5. Spectral amplitudes against time — the positive KdV ensemble is dominating ovet
positive EA ensemblen(; = 0.05, as = 0.063, b = 0.0111).

For as = 0.071 (a; = 0.05, b = 0.0111), the EA ensemble is dominating anc
the KdV ensembile is hardly recognizable. The wave profile seems to be consi
of eight solitary waves pe2rw period (see the corresponding time-slice plot i
Fig. 3). Such a phenomenon is reflected by strong domination of the 8th spe
density Sg (Figs. 6 and 7). The behaviour of spectral amplitudesand S5 is
still similar to the pure KdV case (Fig. 7). Therefore they can belong only to-
hidden KdV ensemble, i.e., the KdV ensemble still exists behind the EA ensen
notwithstanding that it is practically undetectable in wave profiles.

Another phenomenon is involved with the EA ensemble amplification. Th
appears to be some strict relation between the domination of the EA ensemble
the KdV ensemble, the number of solitary waves in the EA ensemble and the mi
relation of parametera; andas. The domination of the EA ensemble appea
only in the case of concrete values of the ratig'a; within a constant number of
solitons. The maximum amplification of the EA ensemblenafolitons takes place
only in the very narrow neighbourhood of straight lines, plotted in Fig. 8. Betwe
these lines, the KdV ensemble is dominating.

Fig. 6. Spectral amplitudes against time — the positive EA ensemble is dominating ovel
positive KdV ensemblex; = 0.05, as = 0.071, b = 0.0111).
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Fig. 7. Spectral amplitudes against time — the positive EA ensemble is dominating ovel
positive KdV ensemble. Same as Fig. 9, but the scalé&fas different.
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Fig. 8. Numbers of solitary waves in the dominating EA ensemble and corresponding stre
lines in thea; — ap plane.

4. CONCLUSIONS

Numerical solutions to the HKdV equation (1) are found and analysed ow
wide range of material parameters, ao, andb. Two main solution types and six
subtypes are found. Symmetry of the solution is detected invthe as plane.
The solution is solitonic for all solution types and subtypes, i.e., emerging solit
waves restore their shape and speed after interaction. Furthermore, a notew
phenomenon of simultaneous existence of two different structures having sol
like behaviour is detected. The appearance of the domination of the EA ense
is determined by the mutual relation between the parameteasdas and clearly
reflected by spectral amplitudes. The numerical experiments and correspor
analysis of long-time behaviour of solitons, with different values of the parame
|b| # 0.0111, are in progress and will be discussed in a forthcoming paper.
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Solitonid hierarhilistes Kortewegi—de Vriesi tlupi
stisteemides

Lauri llison ja Andrus Salupere

On uuritud lainelevi granuleeritud materjalides. MudelvBrrandina on kast
tud Kortewegi—de Vriesi tllpi hierarhilist evolutsioonivdrrandit, millele on leitt
numbrilised lahendid laias materjaliparameetrite vahemikus (kaks dispersic
parameetrit ja Uks mikrostruktuuriparameeter). Numbriliseks integreerimisek:
kasutatud pseudospektraalmeetodit. Algtingimused on harmoonilised ja rajat
mused perioodilised. On esitatud kaks peamist lahenditttipi koos alamtudpi
ning erinevate lahendittitpide omadused. On leitud, et harmoonilisest algla
formeerunud Uksiklained kaituvad kui solitonid — nad levivad konstantse kujt
kiirusega ning parast interaktsiooni taastavad algse kuju ja Kiiruse.
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