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Abstract. Consistent modelling of wave motion in microstructured solids is discussed. Based
on the Mindlin model, the simplest model equation of motion is derived. The fundamental
properties of such a model are (i) hierarchical structure distinguishing the macro- and
microbalance, (ii) changes in the wave speed, and (iii) definite influence of dispersion. The
nonlinearity in the microlevel, although presented by a simple energy density function, leads
to a complicated nonlinear term in the equation of motion as well as in the corresponding
evolution equation. Such consistent modelling opens up direct ways for determining material
constants characterizing the microstructure.
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1. INTRODUCTION

Attention to microstructured materials has increased enormously over the last
decade. One reason is that materials like alloys, crystallites, ceramics, composites,
functionally graded materials, etc. have gained wide application. On the other
hand, the dynamical excitations have the same wavelengths as the spatial scale
of inhomogeneities, and even intuitively one could understand that the internal
structure of the material should influence the wave field. In order to model possible
physical phenomena related to various scales, both macro- and microscales should
be distinguished. Actually, the theory of continua foresaw such problems long
ago [1−3]. Contemporary understanding of basic mechanics of such materials
is presented in Maugin [4]. The microstructure involves additional degrees of
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freedom to the motion of the macrostructure. There are several possibilities of
describing the influence of such a phenomenon depending upon the assumptions:
Cosserat continuum, continua with planar and ordinary spins, continua with vector
microstructure, micromorphic continua, etc. [5,6].

Here attention is focused on the modelling of wave motion in microstructured
solids following the idea of the hierarchy of waves in the sense of Whitham [7].
The idea is to construct a governing equation, say for a longitudinal wave which
should be able to distinguish between the scales, i.e. between long- and short-
wave excitations. Considering recent findings on nonlinear behaviour of the
microstructure [8], the model should be able to catch that effect.

An overview of several models can be found in [9]. More recently, the ideas
of Mindlin [3] have been used in several studies [10−12] for analysing the one-
dimensional (1D) wave motion. It has been shown that the concept of internal
variables [13] can be extremely useful in deriving the evolution equations [11];
this approach corresponds to the case where microbalance is assumed not to be
inertial. Several models for granular media have been derived accounting either for
the rotation of particles [14] or full deformation of grains [15].

Despite the existence of several models, we would like here to clarify the
essence of the approach based on splitting the macro- and microforce balances.
In other words, this is a search for a “skeleton” to which “flesh” could be added
depending on various physical constitutive assumptions. Section 2 gives the basic
statements and a short description of the Mindlin theory. In Section 3 the basic
model is derived and analysed. Section 4 describes nonlinearity in microscale.
Finally, in Section 5 the discussion on modelling and the corresponding evolution
equations is presented.

2. BASIC STATEMENTS

The starting assumption is to distinguish between the macro- and microscales
(i.e. gross and fine structure, respectively [10,16]). Actually, the terminology is not
yet fixed and here we stress that the microscale corresponds to a scale of about
1 µm. This scale excludes nanoeffects and is sometimes called a mesoscale (the
notion of mesoscopic materials is used [8]). According to [2,16], the fundamental
balance laws accounting for two scales can be formulated as follows: macroscopic
momentum balance:∫

∂P
S nda+

∫
P

bmacdV =
d

dt

∫
P

vdV, (2.1)

and microscopic momentum balance:∫
∂P

N nda+
∫

P
(bmic + T)dV =

d

dt

∫
P

wdV. (2.2)

13



HereP is a control volume,n is the outward unit normal to∂P , S is the macrostress
tensor (Piola stress),N is the microstress tensor,bmac andbmic are the body macro-
and microforces, respectively,T is the interactive microforce. The kinematics
include the following notations:v = ρẏ is the linear momentum,ρ is the mass
density, andẏ is the macroscopic velocity;w = Iinδ̇, whereIin is the inertia
tensor anḋδ is the microscopic velocity.

In the 1D case, Eqs. (2.1), (2.2) yield

ρutt = σx + bmac, (2.3a)

Iδtt = ηx + τ + bmic, (2.3b)

whereσ, η, and τ denote the single components ofS,N, andT, respectively,
and the indicesx, t denote differentiation. Further on the influence ofbmac, bmic is
neglected.

Several studies are based on simplifications of (2.3). In [11] the inertia of the
microstructure was neglected, and the microstructure was treated as an internal
variable taking the dissipative effects into account. In [12] the influence of inertia
was analysed together with several assumptions concerning the nonequilibrium
parts of macro- and microstresses. Here we revisit [3] in order to build up a clear
basis for further generalizations.

Mindlin [3, p. 51] has interpreted the microstructure “as a molecule of a
polymer, a crystallite of a polycrystal or a grain of a granular material”. Such
an inclusion is a unit cell, and if this cell is rigid, the Cosserat model is obtained.
The displacementu of a material volumeP is defined by its componentsui ≡
xi − Xi, wherexi, Xi(i = 1, 2, 3) are the components of the spatial and material
position vectors, respectively. Within each material volume (particle) there is a
microvolumeP ′ and the microdisplacementu′ is defined byx′i, u

′
i ≡ x′i −X ′

i,
where the origin ofx′i moves with the displacementu. The displacement
gradients are assumed to be small. This leads to thebasic assumptionthat “the
microdisplacement can be expressed as a sum of products of specified functions of
x′i and arbitrary functions ofxi andt” [ 3, p. 52]. The first approximation is then

u
′
j = x

′
kψkj(xi, t). (2.4)

Themicrodeformationis
∂u

′
j

∂x
′
i

≡ ∂
′
iu

′
j = ψij . (2.5)

Clearly, beside macrostrainεij one should account for arelative deformation

γij = ∂iuj − ψij , (2.6)

which is actually the difference between the macrodisplacement gradient and the
microdeformation, and also for amicrodeformation gradient

χijk = ∂iψjk, (2.7)
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i.e. for the macrogradient of the microdeformation. Note thatεij , γij , χijk

are independent ofx
′
i. Mindlin [3] has treated the full set of equations based

on a homogeneous quadratic function of the potential energy density. The
maximum number of independent coefficients is then 1764, but it can be reduced
considerably by using additional assumptions. Here we use the basic kinematics
of Mindlin and derive the governing equations for the 1D case:ε11 = ux,
γ11 = ux − ψ, χ111 = ψx.

3. GOVERNING EQUATIONS

On the basis of the discussion in Sec. 2, we proceed with the simplest 1D model

ρutt = σx, Iψtt = ηx + τ, (3.1)

where there is no need to distinguish between material and space coordinates.
Further we need the free energy functionW = W (ux, ψ, ψx, ...) and the
constitutive equations. These equations are split up into equilibrium and non-
equilibrium (dissipative) components:

σ = σeq + σneq, η = ηeq + ηneq, τ = τeq + τneq. (3.2)

The equilibrium components are deduced from the free energy

σ =
∂W

∂ux
, η =

∂W

∂ψx
, τ =

∂W

∂ψ
, (3.3)

while for nonequilibrium components the assumptions are needed, based on the
principle of equipresence:

σneq = D11uxt +D12ϕt +D13ψxt, (3.4a)

ηneq = D21uxt +D22ψt +D23ψxt, (3.4b)

τneq = D31uxt +D32ψt +D33ψxt. (3.4c)

Clearly, these equations are phenomenological and the dissipation inequality
imposes restrictions on parametersDkl. These assumptions need detailed analysis;
here we leave them out from the further discussion and analyse only the
dissipationless case.

The simplest free energy function describing the influence of a microstructure
is a quadratic function

W =
1
2
αu2

x −Aψux +
1
2
Bψ2 +

1
2
Cψ2

x, (3.5)

with α,A,B,C constants.
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The balance equations are now specified as follows:

ρutt = αuxx −Aψx, (3.6a)

Iψtt = Cψxx −Aux +Bψ. (3.6b)

For further analysis we introduce dimensionless variables (note thatψ is
already dimensionless)

U = uU−1
0 , X = xL−1, T = tc0L

−1, (3.7)

wherec20 = αρ−1; U0 andL are certain constants (intensity and wavelength of
the initial excitation). We also need a scale of the microstructurel. Then two
dimensionless parameters can be introduced:δ ∼ l2L−2, ε ∼ U0L

−1. Following
[12], we supposeI = ρl2I∗, C = l2C∗, whereI∗ is dimensionless andC∗ has the
dimension of the stress. Then (3.6) yields

UTT = UXX − A

ερ0c20
ψX , (3.8a)

δαI∗ψTT = δC∗ψXX − AεUX + Bψ. (3.8b)

In order to reduce system (3.8) into one governing equation, the slaving
principle could be used [12,17]. Indeed, (3.8b) yields

ψ =
εA

B
UX +

δ

B
(αI∗ψTT − C∗ψXX) . (3.9)

If we considerψ = ψ0 + δψ1 + ..., we get

ψ0 = εAB−1UX , (3.10)

ψ1 = εαAI∗B−2UXTT − εAC∗B−2UXXX . (3.11)

Inserting (3.10), (3.11) into (3.8), we get the final equation in terms ofU as
follows:

UTT =
(

1 − A2

αB

)
UXX + δ

A2I∗

B2

(
UTT − C∗

αI∗
UXX

)
XX

. (3.12)

This is the sought “skeleton” of the wave equation for microstructured solids,
much in the sense of the Lorenz system for the Navier–Stokes equations. Equation
(3.12) has several remarkable properties:

(i) it reflects thewave hierarchyin Whitham’s sence [7]; if δ is small, then the
last two terms are negligible; ifδ is large, then the first two terms are negligible and
the process is governed by properties of the microstructure;
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(ii) the wave speedin the compound material is affected by the microstructure
(1 vs. A2α−1B−1) and clearly onlyA = 0 excludes this dependence. This
is directly observed in numerical calculations of the wavefield in materials with
randomly distributed inclusions [18];

(iii) the influence of the microstructure is, as expected, characterized by
dispersive terms; however, contrary to the idealized models (see [19]), the double
dispersion (different termsUTTXX andUXXXX ) is of importance (see [20] where
a similar effect is described in detail for waves in rods).

The model of the one-dimensional chain of dumbbell-like particles, exhibiting
transverse displacementsVn and rotationsψn, yields a similar result [6]. Indeed,
after passing to the continuum limit, the final system of equations of that model,
describing micropolar Cosserat-type elasticity, coincides in principle with (3.6).
Notice that the Maxwell–Rayleigh model [21] leads also to the double dispersion.
However, the dispersive terms (UTTTT andUXXTT ) are different from those in
(3.12), which means a differerent operator for the wave hierarchy. While (3.12)
includes the space derivatives of the wave operator in brackets, this model [21]
indicates the role of time derivatives of the wave operator.

4. NONLINEARITY OF THE MICROSTRUCTURE

We focus now on possible nonlinear effects on the microstructural level
motivated by experiments [8]. In order to understand again the basic effects, the
description of the macrolevel is kept linear, and only one term in the free energy
function is added compared to (3.5). Suppose

W =
1
2
αu2

x −Aψux +
1
2
Bψ2 +

1
2
Cψ2 +

1
6
Mψ3. (4.1)

Then instead of (3.6) we have

ρutt = αuxx −Aψx, (4.2a)

Iψtt = Cψxx +Mψxψxx −Aux +Bψ. (4.2b)

Note that ifA = 0, then Eq. (4.2b) is the familiar nonlinear equation of motion
(termψxψxx). Following the slaving procedure (see Sec. 3), we obtain

ψ1 = εαAI∗B−2UXTT − εAC∗B−2UXXX

− εδ1/2A2M∗B−3UXXUXXX , (4.3)

whereM = l2M∗. Due to basic assumptions about the microstructure, the
nonlinearity is now described by higher-order derivatives. The final governing
equation is then
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UTT =
(

1− A2

αB

)
UXX + δ

A2I∗

B2

(
UTT −

C∗

αI∗
UXX

)
XX

− δ3/2 ε
A3M∗

αB3

[
1
2

(UXX)2
]

XX

. (4.4)

The effect of the nonlinearity is emphasized by the last term of Eq. (4.4). Its
effect on wave profile distortion should be examined in detail. Obviously, the
evolution equation could be derived on the basis of Eq. (4.4). For that we introduce
the moving framea2 = 1 − A2α−1B−1. The evolution equation governing the
wave propagating to the right is then derived in terms ofv ∼ Ux:

∂v

∂τ
+

δ

ε
m
∂3v

∂ξ3
+ δ3/2n

[(
∂2v

∂ξ2

)2

+
∂v

∂ξ

(
∂3v

∂ξ3

)]
= 0, (4.5)

where

m ∼ A2C∗

2αa2B
− A2I∗

2B2
, n =

A3M∗

2αa2B3
. (4.6)

5. DISCUSSION

First we give some ideas about the assumptions of the Mindlin theory. One
might think about a more sophisticated description of the microstructure. For
example, supposeu

′
j = u

′
j(x

′
i, X

h, t). Then

∂
′
iu

′
j =

∂

∂x
′
i

u
′
j

(
x

′
h, X

h, t
)

= ψ
′
ij

(
x

′
h, X

h, t
)
. (5.1)

If we now magnify this to the level of the macrostructure, we get

ψ̄ij = lim
Ω→X

1
Ω

∫
Ω
ψ

′
ijdx

′
1dx

′
2dx

′
3, (5.2)

whereΩ is any portion of the body. Clearly,̄ψij depends only onXh. Hence,
the microdeformation is expressed as a function of the macrocoordinates only in
an “exact way” and not as a first approximation in (2.5). Obviously (2.5) can
also be written in terms of Lagrangian coordinates. Moreover, the mathematical
restrictions on the field functionψ

′
ij , such that the limit (5.2) exists, are weaker

than the linearity assumed by Mindlin. Finally, the linear approximation is surely
included in (5.2): if (5.1) holds and if we assume (2.4), thenψij coincides withψ̄ij ,
i.e. we recover the Mindlin model, only one assumption is included. Generally,
the description (5.2) might be useful when we study the acceleration waves where
jumps of the second derivatives for the macrofield and of the first derivative for the
microfield occur (see [10]).
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Within the framework of the Mindlin theory the simplest nonlinear evolution
equation is Eq. (4.5). Although the dispersion is of the third order like in the KdV
equation, the nonlinearity involved is much more complicated. The constraints due
to the double-dispersion character of Eqs. (3.12) and (4.4) need to be analysed in
detail (cf. [20]), but the influence of two terms is directly seen for the expression
of the parameterm. Evidently the dispersion could be either normal or anomalous,
depending on the material parameters. The nonlinear effects are crucial and the
main question is whether the dispersive and nonlinear effects could be balanced.
One should note here that we have kept kinematics linear and introduced only
physical nonlinearity. This can be justified by the usual balance of geometrical and
physical nonlinearities (see, for example, [22]) because the physical nonlinearity
has leading qualitative and quantitative effects.

The model equations demonstrate clearly the fundamental influence of a
microstructure on the wave motion – changes in the wave speed, dispersive
character of motion, and the influence of a scale parameter. This permits us
also to relate the experimental measurements directly to theoretically introduced
parameters (cf. for example, the changes in wave speeds calculated by Berezovski
et al. [18]).

In this paper nonlinearity in the microscale was introduced by smooth terms
in the energy function (Section 4). There is experimental evidence that for some
materials the microstructural nonlinearity has hysteretic character [8], modelled by
phenomenological expressions. Further interest is to combine both descriptions:
theory of continua and phenomenological approaches.
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Lainelevi mikrostruktuuriga materjalides
ja mikrostruktuuri mittelineaarsus

Jüri Engelbrecht ja Franco Pastrone

Lähtudes Mindlini teooriast on mikrostruktuur modelleeritav iseseisva kine-
maatikaga osakestena, mille kohta kehtivad sarnaselt makroelemendi liikumisega
jäävusseadused. On tuletatud lihtsaim ühemõõtmeline liikumisvõrrand, mille ana-
lüüs lubab tuvastada järgmised füüsikalised efektid. Esiteks on mudelil hierarhi-
line struktuur, mis eristab makro- ja mikroefektid sõltuvalt dünaamilise mõjutuse
lainepikkusest. Teiseks ilmneb mudelist lainelevi kiiruse otsene sõltuvus mikro-
struktuuri parameetritest. Kolmandaks on mudelist tuvastatav nn topeltdisper-
sioon, kus lisaks tavapärasele sõltuvusele mikrostruktuuri ruumilisest jaotusest
lisandub sõltuvus mikroelemendi inertsiaalsusest. Mikrostruktuuri mittelineaar-
sus (vastavalt kõige lihtsamale siseenergiafunktsioonile) põhjustab tavapärasest
keerukamad mittelineaarsed efektid. Esitatud matemaatiline mudel lubab leida
otseseid meetodeid mikrostruktuuri parameetrite määramiseks.
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