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On the existence of bulk solitary waves in plexiglas
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Abstract. The study of the nonlinear waves in plexiglas was aimed to prove the nonexisten:
positive strain (compression) solitary waves in this polymer. The estimation and calcule
were based on the only, relatively old data available on plexiglas’ elasticity. We succeed
generate and observe for the first time a compression solitary wave in plexiglas and provi
this polymer is a transparent material suitable for observation afdah#ression solitoim an
elastic solid wave guide, and may be of interest for applications in fracture or nondestru
testing.
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1. INTRODUCTION

Main motivation for our study was observation of a manifestation of mici
structure phenomenon, if any, in physical experiments in waves in solids. Tc
this it was necessary to exclude in experiments any bulk linear and nonlinear \
of deformation in solids by choosing a material with a high rate of linear we
decay and an inappropriate sign of the nonlinearity coefficient (§eelp other
words, our initial aim was to study the nonlinear waves in plexiglas, to prove 1
no positive strain (compression) solitary wave existed in this polymer, which wc
allow us to investigate the microstructure without any disturbances or artef
caused by strain solitons.

Most of elastic polymers are highly nonlinear and of interest for microstruct
studies. Formerly only polystyrene was used for observation of bulk solitary we
and for comprehensive study of nonlinear wave propagation, due to its un
combination of elasticity and optical properties.

Many nonlinearly elastic materials (steel, brass, bronze, aluminium, tungs
etc.) allow the formation of a solitary wave. However, most of them are opac
which excludes the possibility of translucent optical recording that is expecte:
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be the most informative and reliable tool for investigation of these long wave:
relatively small density.

Plexiglas (persplex, PMMA, acrylic) was anticipated to be a good candidate
microstructure study because of its optical transparency and the absence of co
tional compression solitary waves in it. Theoretical estimations based on publit
data on the elastic third-order (macro)moduli led to the conclusion that no t
compression longitudinal solitons could propagate in plexiglas (see,d)g., [

Soliton generation in a nonlinearly elastic wave guide can be initiated b
powerful pulse of deformation propagating in a nonlinearly elastic and boun
solid. The curvature of a wave front can increase rapidly right up to the appear:
of irreversible deformations if it is not balanced with wave dispersion inside a w
guide having small, finite but not an infinitesimal cross section. With this bala
a long bulk density wave appears and moves along the homogeneous wave
having permanent shape and amplitude. In the absence of balance, which m
caused by a nonlinearity with an opposite sign with respect to compression v
propagation, the initial pulse is subjected to a dissipation and disappears ra
(see ).

Our next step is to check all features of nonlinear waves in plexiglas
physical experiments. The type of a nonlinear wave in a cylindrical solid wi
guide depends on nonlinearity, Poisson’s ratjonaterial’'s densityp, and wave
velocity. Starting with the relationship between the longitudinal displacem
gradient component (strain, for shotf) and transversal (radial) displacemé¥it

U=U(x,t) + 10Uz /2, W = 10U, — r*v?Upss/ 203 = 2v)] (1)

(see []), for a strain component = U, we introduce the Young modulus,
the linear “rod’s” wave velocity? = E/p, the third-order Murnaghan moduli
(I,m,n), and the nonlinearity coefficiens = 3E + 2((1 — 2v)3 + 4m(1 + v)?
x(1 — 2v) + 6nv? = B(E,v;l,m,n). We assumed = |Blsgn B; u =
lulsgn u; o = |ajsgno, wheresgn « = +1if > 0, andsgn z = —1 if
z < 0. Hence, the nonlinearity depends prE sgn 3 - sgn u = +1, which leads
to the dimensional doubly dispersive equation (DDE) as follows:

1[[B
[ulue = Flules = {‘p' P’ + VR [luler — (1= )[ul] } @)
and provides a solitary wave solution:
1 A
u:Acosh_QK <x:|:t cg+35> , 3)
where both quantities must be positive:
Ap 1-v 3FE
2__ 2, 4P 2 _ 2 ([ _ °=
V—CO+3P, A* =2(vR) ( > +Aﬂ>' 4)
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The velocity V' of a nonlinear compression wave in conventional soli
(0 < v < 3) liesin the interval

2 2 Cg 2

Co < %4 < m = Clim>» (5)
while for “expanding” solid§—1 < v < 0)

&0

V?< or  V?>ck (6)

1—v
Note that forv > 0 there is no subsonid{ < ¢p) solitary compression wave bui
only the transonic solitonl{ > ¢;) in a nonlinearly elastic wave guide (sé¢for
details).
Therefore, on the basis of the longitudinal wave velocities in thecgaahd in
the corresponding elastic medium defined as:

o = )\+2u_c 1—v
L= p N a+nia-—wy

and on the compression solitary wave veloditydefined in (5): c¢o <V < ¢iim
< ¢, one can calculate the difference in velocities as a functianafd show that

Co .

—¢|—0 ifvr—1/3.
(ﬂ —v l> /

It means that the compression solitary wave velocity in solids Wikhy < % may

be greater than the longitudinal wave velocity in a medium, i.e., the solitary w

will be powerful, almost lossless, and supersonic (Fig. 1).

1/2
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1
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Fig. 1. Wave velocities vs. Poisson’s ratio for < 0. Allowed soliton velocity intervals are
shown in grey.
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2. EXPERIMENTS ON SOLITARY WAVES IN A PLEXIGLAS ROD

At first our estimations of velocity for experiments were based on relativ:
old data on elasticity of plexiglas, because we lacked new published measure
datal Unexpectedly the results obtained demonstrated the existence ¢
compression solitary wave in plexiglas. Detailed analysis of observation data
comparison with data and calculations presented®jrigd us to the following
conclusions.

1. Although Murnaghan’s model of nonlinear elasticity was used®jnthe
new third-order elastic modulia, b, c) measured were, in fact, almost similar t
the Landau modul{4, B, C), but not to thos€l, m, n) introduced by Murnaghan;
confusion of the model and the data led to misinterpretation of modulj.in [

2. Relationships?] between these two sets of the third-order moduli:=

C=1-B,b=B=m—n/2, c=A = nallow us to calculate the correct value:
of the Murnaghan moduli for plexiglas as follows:= —1.093, m = —0.773,
n = —0.141 (all are in units ofl0'° N/m?) and, consequently, the nonlinearity
coefficient3 = —0.47 x 10! N/m? in DDE (2). Therefore, we may conclude
that, along with polystyrene, plexiglas is another transparent polymer suiti
for generation and observation of the compression long solitary strain wave
soliton) in an elastic rod.

To prove the conclusions a setup was used, similar to that utilized in
previous research (see Fig. 2). The strain wave is generated in an elastic rod fi

lens beamsplitter water cell wedge hologram

ruby laser U/ /\ ;_EE

—

foil
target

control unit

D ruby laser

Fig. 2. Setup used for solitary wave generation and observation in solids.

mirror

1 We have requested any new data on the plexiglas third-order moduli from many collea
in different countries, but unsuccessfully.
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weak shock wave made in water cell due to explosive evaporation of the
aluminium layer coating the foil target. The setup contains a synchronize
holographic interferometer, and a control unit for measuring the laser pulse en
The rod used for experiments w40 mm long andl0 mm in diameter, with two
parallel longitudinal cut-offs made for translucent optical recording.

We compared the solitary compression waves in both polystyrene and plex
to confirm that the wave detected in plexiglas is, indeed, the strain solitary w
A set of experiments with plexiglas have been performed, namely, the sol
formation in arod, its evolution in the rod of constant cross section and its reflec
from a free or clamped end of the rod.

2.1. Wave patterns near the input of the plexiglas rod

Wave patterns near the input are shown in Fig. 3. The initial shock wave
enters the rod and the process of its transformation begins. It provides for the
called Poisson wave#] in water, accompanying the wave) @nd being caused
by the Poisson expansion of the rod lateral surface when the compression
wave propagates along the rod. The residual shock wBygropagates in the
surrounding water behind the wawug ith a much smaller velocity than it has ir
solids. The smooth and long disturban& iqside the rod represents the proce:
of soliton formation behind the wavé)(

The anglen between the Poisson wave front and the rod surface allows u
calculate the velocity of the wavé)(in the rod. Indeed, a simple geometry leads"
the relationship

sina = Vi / V7,

Fig. 3. Wave pattern in the rod near its input and in the surrounding water.
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whereV7; is the velocity of the wavel] in a sample and7yy is the wave velocity
in water, whose value is close to the sound velocity. dref 34° measured on the
interferogram andiy = 1450 m/s we obtain/; = 2600 m/s.

2.2. Parameters of the strain wave in a plexiglas rod

The bulk solitary compression wave in the plexiglas rod was detected ¢
distance of abous0 mm from the input cross section, where nonlinearity ar
dispersion actions on the initial shock wave appear to balance each other. Figi
presents the interferogram of the soliton moving to the right in the rod at the intel
of 50-90 mm from its input.

The parameters of the strain soliton observed in plexiglas for the first time w
found to be as follows: a maximal fringe shitKX’ = 0.8 fringe and wavelength
A =32 mm.

Bulk extensionD in terms of the finite deformation tensor invariad{$C) is

D = (dV —dv)/dv=+/I5(G) —1=+/1+2I,(C) + 4I(C) + 813(C) — 1
~ (1-20v)U, +O(u?).
Mass conservation yields
po/p=dV/dv=1+(1-2v)U;, b6p="Uy(1—-2v). (7)

On the other hand, variation in density is proportional to variation in refracti
indices:

5[):_7;2_”;’:”2_711:_Ux(1—2u)(n1—l), (8)
L=

whereny, no are the refractive indices of the material before and after deformati
The carrier fringe shift during interference is proportional to the difference of lig
phase variations:

AK = Agy — Agy.

Before and after deformation, respectively, we have
AoA¢y1/(2m) = no(L — 2h) + 2hny,
AoAdo/(27) = no(L — 2h — 2AR) + (2h + 2AR)no,
whereA is the wavelength of recording light agd < Ry is rod’s thickness along
the light path of the detecting laser light. Finally, we have
A AK =2h(1 —2v)(1 — n1)U, + 2AR(ng — n2) 9)
and using the relationship” = V(v,U,), we obtain for the maximal soliton
amplitudeA = max U, :
Ay AK

AT T D - 20) 1 vl — )]

(10)
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Fig. 4. Strain solitary wave in the plexiglas rod. One of the fringes in the rod was extrac
from the interferogram and is shown below for convenience.

Table 1. Parameters of solitons observed in polystyrene (PS) and plexiglas (PMMA) rods, and
calculated velocities V, ¢, C

L

Material 1% Deformation | Width A, Soliton velocity C,» C,
amplitude A mm V, m/s m/s m/s

PS 0.34 2.82x 10 325 ~2280 1870 2310

PMMA 0.34 43x10™ 32 ~2530 2060 2570

The parameters of the material are as follows: = 1.33, n = 149, h =
7.5%x1073m,Ag =6.94x107"m, R = 5x1072>m,» = 0.34, which lead to the
amplitude valued = 4.3 x 10~ (Table 1). We note that the fringe shift measure
in plexiglas islessthan that in polystyrene, while the genuine wave amplitude
1.5 timeshigher (4.3 x 10~* in plexiglas vs.2.82 x 10~* in polystyrene), because
of the lower value of the refractive index of plexiglad9 vs. 1.59 of polystyrene.

2.3. Soliton reflection from the clamped end of the rod

The process of nonlinear wave reflection under different conditions at
rod end is distinctive for soliton detection and is expected to be of pract
importance for mechanical structures. We consider the following two case:
boundary conditions:

1. clamped end of the rod, where the acoustical wave resistance of the se
medium is much greater than that of the rod material (plexiglas/brass interface
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brass plate brass plate
—— e %_ el
a b

Fig. 5. Soliton reflection from the clamped end of the plexiglas rod: (a) wave approaches
interface from the left side; (b) amplitude is doubled due to reflection. One of the fringes
extracted from the interferogram and is shown below each figure.

2. free end, where the wave resistance relation is the opposite (e.g.,
plexiglas/water interface).

The results of experiments are similar to those obtained for polystyrene
[°]). First the end of the plexiglas rod was glued to a brass plate, and the soliton
found to be reflected back as the compression wave of the same shape and ve
Wave patterns near the clamped end of the rod are shown in Fig. 5. In Fig
the soliton approaches the clamped end, while the interferogram in Fig. 5b st
the soliton reflection when approximately half of the soliton was already reflec
which caused the doubling of fringe shift near the interface. Therefore, from
qualitative viewpoint, the soliton reflection from the plexiglas/brass interface
quite similar to that from the polystyrene/brass interface and is in good agreer
with the theory.

2.4. Soliton interaction with the free end of the rod

We observed the compression strain (density) solitary wave interaction with
free end of a rod (in other words, with the rod/water interface), in which the soli
reverses its polarity, and has to be reflected as an extension wave. Howeve
extension solitons cannot exist both in polystyrene and plexiglas 0), therefore
such a wave decays quickly and is converted into an oscillating wave tail.
process of extension wave formation and simultaneous decay was observed
plexiglas rod. Parameters of plexiglas allowed us to record this wave as shov
Fig. 6.

The strain solitary wave changes its polarity, indeed, due to interaction v
the free end of the wave guide, begins to propagate back as an extension wav
decays.
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Fig. 6. Sequential moments of soliton interaction with the free end of the rod imposed in w:

3. DISCUSSION AND CONCLUSIONS

Observation of the solitary wave of compression in plexiglas allows us
conclude that the wave exists due to the elastic (macro)nonlinearity of plexic
and not due to its microstructure properties. Refinement of calculation of
third-order (macro)moduli of elasticity provided the proper sign of the nonlineal
coefficient (see Table 2), and the soliton was first detected in plexiglas v
parameters being in good agreement with the theory. It seems to be an instrt
demonstration of the importance of distinctive experiments between waves ir
microstructured medium and bulk solitary waves, and of the reliable measuren
of the values of third-order (macro)moduli.

Main features of solitary waves in plexiglas were proved in theory a
experiments, and can be summarized as follows:

1. There is no long wave of opposite sign behind the compression bulk soli
wave, whose length is 7-10 times greater than the wave guide radius.

Table 2. Elastic parameters of polystyrene (PS) and plexiglas (PMMA), according to different
sources, Valuesof 4, i, E, 1, m, n, 8 aregiven in units of 10 N/m?

Materia |  p, Cy v 7, E A I m n p
kg/m® | mis

PS, 1060 1870 034 014 037 029 -1.89 -133 -10 -2.76
after [%]

PMMA, 1160 2076 0339 1.86 05 39 -109 +024 +188 +16.8
after [7] T wrong
PMMA, 1160 2076 034 187 049 -1.09 +0.77 -0.14 -0.47
after [
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2. The solitary wave retains permanent shape when propagating. This
observed at distances 20-30 times greater than the wave guide radius (a |
scale value), where both linear waves and weak shocks disappeared.

3. Solitary wave keeps the shape after reflection from the clamped end o
wave guide, while at the free end it changes its polarity, begins to propagate
as an extension wave and decays.
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Uksiklainete esinemine orgaanilises klaasis
Aleksander M. Samsonov, Galina V. Dreiden ja Irina V. Semenova

Mittelineaarsete lainete uurimise eesmark oli tdestada, et positiivseid (su
Uksiklaineid orgaanilises klaasis ei esine. Hinnang ja arvutused pd&hinesid
teliselt vanadel andmetel orgaanilise klaasi elastsete omaduste kohta. Aut
onnestus esmakordselt genereerida ja jalgida surve uksiklaineid orgaan
klaasis ning tbestada, et see polimeer on sobiv labipaistev materjal Uksikla
jlgimiseks elastses lainejuhis. See jareldus vbib pakkuda huvi rakendustes
mittepurustav katsetamine ja purunemise uurimine).
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