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On the existence of bulk solitary waves in plexiglas
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Abstract. The study of the nonlinear waves in plexiglas was aimed to prove the nonexistence of
positive strain (compression) solitary waves in this polymer. The estimation and calculation
were based on the only, relatively old data available on plexiglas’ elasticity. We succeeded to
generate and observe for the first time a compression solitary wave in plexiglas and prove that
this polymer is a transparent material suitable for observation of thecompression solitonin an
elastic solid wave guide, and may be of interest for applications in fracture or nondestructive
testing.
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1. INTRODUCTION

Main motivation for our study was observation of a manifestation of micro-
structure phenomenon, if any, in physical experiments in waves in solids. To do
this it was necessary to exclude in experiments any bulk linear and nonlinear wave
of deformation in solids by choosing a material with a high rate of linear wave
decay and an inappropriate sign of the nonlinearity coefficient (see [1]). In other
words, our initial aim was to study the nonlinear waves in plexiglas, to prove that
no positive strain (compression) solitary wave existed in this polymer, which would
allow us to investigate the microstructure without any disturbances or artefacts
caused by strain solitons.

Most of elastic polymers are highly nonlinear and of interest for microstructure
studies. Formerly only polystyrene was used for observation of bulk solitary waves
and for comprehensive study of nonlinear wave propagation, due to its unique
combination of elasticity and optical properties.

Many nonlinearly elastic materials (steel, brass, bronze, aluminium, tungsten,
etc.) allow the formation of a solitary wave. However, most of them are opaque,
which excludes the possibility of translucent optical recording that is expected to
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be the most informative and reliable tool for investigation of these long waves of
relatively small density.

Plexiglas (persplex, PMMA, acrylic) was anticipated to be a good candidate for
microstructure study because of its optical transparency and the absence of conven-
tional compression solitary waves in it. Theoretical estimations based on published
data on the elastic third-order (macro)moduli led to the conclusion that no bulk
compression longitudinal solitons could propagate in plexiglas (see, e.g., [2]).

Soliton generation in a nonlinearly elastic wave guide can be initiated by a
powerful pulse of deformation propagating in a nonlinearly elastic and bounded
solid. The curvature of a wave front can increase rapidly right up to the appearance
of irreversible deformations if it is not balanced with wave dispersion inside a wave
guide having small, finite but not an infinitesimal cross section. With this balance
a long bulk density wave appears and moves along the homogeneous wave guide
having permanent shape and amplitude. In the absence of balance, which may be
caused by a nonlinearity with an opposite sign with respect to compression wave
propagation, the initial pulse is subjected to a dissipation and disappears rapidly
(see [1]).

Our next step is to check all features of nonlinear waves in plexiglas in
physical experiments. The type of a nonlinear wave in a cylindrical solid wave
guide depends on nonlinearity, Poisson’s ratioν, material’s densityρ, and wave
velocity. Starting with the relationship between the longitudinal displacement
gradient component (strain, for short)Ux and transversal (radial) displacementW

U = U(x, t) + r2νUxx/2, W = −rνUx − r3ν2Uxxx/ [2(3− 2ν)] (1)

(see [1]), for a strain componentu ≡ Ux we introduce the Young modulusE,
the linear “rod’s” wave velocityc2

0 = E/ρ, the third-order Murnaghan moduli
(l, m, n), and the nonlinearity coefficientβ = 3E + 2l(1 − 2ν)3 + 4m(1 + ν)2

×(1 − 2ν) + 6nν2 = β(E, ν; l, m, n). We assumeβ = |β|sgn β; u =
|u|sgn u; α = |α|sgn α, wheresgn x = +1 if x > 0, and sgn x = −1 if
x < 0. Hence, the nonlinearity depends onp ≡ sgn β · sgn u = ±1, which leads
to the dimensional doubly dispersive equation (DDE) as follows:

|u|tt − c2
0|u|xx =

1
2

{
|β|
ρ

p u2 + νR2
[
c2
0|u|xx − (1− ν)|u|tt

]}
xx

(2)

and provides a solitary wave solution:

u = A cosh−2 1
Λ

(
x± t

√
c2
0 +

Aβ

3ρ

)
, (3)

where both quantities must be positive:

V 2 = c2
0 +

Aβ

3ρ
, Λ2 = 2(νR)2

(
− 1− ν

ν
+

3E

Aβ

)
. (4)
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The velocity V of a nonlinear compression wave in conventional solids
(0 < ν < 1

2) lies in the interval

c2
0 < V 2 <

c2
0

1− ν
≡ c2

lim, (5)

while for “expanding” solids(−1 < ν < 0 )

V 2 <
c2
0

1− ν
or V 2 > c2

0. (6)

Note that forν > 0 there is no subsonic (V < c0) solitary compression wave but
only the transonic soliton (V > c0) in a nonlinearly elastic wave guide (see [1] for
details).

Therefore, on the basis of the longitudinal wave velocities in the rodc0 and in
the corresponding elastic mediumcl, defined as:

cl ≡

√
λ + 2µ

ρ
= c0

√
1− ν

(1 + ν)(1− 2ν)
,

and on the compression solitary wave velocityV defined in (5): c0 < V < clim

< cl, one can calculate the difference in velocities as a function ofν and show that(
c0√
1− ν

− cl

)
→ 0 if ν → 1/3.

It means that the compression solitary wave velocity in solids with0 < ν < 1
3 may

be greater than the longitudinal wave velocity in a medium, i.e., the solitary wave
will be powerful, almost lossless, and supersonic (Fig. 1).

Fig. 1. Wave velocities vs. Poisson’s ratio forβ < 0. Allowed soliton velocity intervals are
shown in grey.
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2. EXPERIMENTS ON SOLITARY WAVES IN A PLEXIGLAS ROD

At first our estimations of velocity for experiments were based on relatively
old data on elasticity of plexiglas, because we lacked new published measurement
data.1 Unexpectedly the results obtained demonstrated the existence of a
compression solitary wave in plexiglas. Detailed analysis of observation data and
comparison with data and calculations presented in [3] led us to the following
conclusions.

1. Although Murnaghan’s model of nonlinear elasticity was used in [3], the
new third-order elastic moduli(a, b, c) measured were, in fact, almost similar to
the Landau moduli(A,B, C), but not to those(l, m, n) introduced by Murnaghan;
confusion of the model and the data led to misinterpretation of moduli in [2].

2. Relationships [4] between these two sets of the third-order moduli:a =
C = l−B, b = B = m− n/2, c = A = n allow us to calculate the correct values
of the Murnaghan moduli for plexiglas as follows:l = −1.093, m = −0.773,
n = −0.141 (all are in units of1010 N/m2) and, consequently, the nonlinearity
coefficientβ = −0.47 × 1010 N/m2 in DDE (2). Therefore, we may conclude
that, along with polystyrene, plexiglas is another transparent polymer suitable
for generation and observation of the compression long solitary strain wave (the
soliton) in an elastic rod.

To prove the conclusions a setup was used, similar to that utilized in our
previous research (see Fig. 2). The strain wave is generated in an elastic rod from a

Fig. 2.Setup used for solitary wave generation and observation in solids.

1 We have requested any new data on the plexiglas third-order moduli from many colleagues
in different countries, but unsuccessfully.
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weak shock wave made in water cell due to explosive evaporation of the thin
aluminium layer coating the foil target. The setup contains a synchronizer, a
holographic interferometer, and a control unit for measuring the laser pulse energy.
The rod used for experiments was140 mm long and10 mm in diameter, with two
parallel longitudinal cut-offs made for translucent optical recording.

We compared the solitary compression waves in both polystyrene and plexiglas
to confirm that the wave detected in plexiglas is, indeed, the strain solitary wave.
A set of experiments with plexiglas have been performed, namely, the soliton
formation in a rod, its evolution in the rod of constant cross section and its reflection
from a free or clamped end of the rod.

2.1. Wave patterns near the input of the plexiglas rod

Wave patterns near the input are shown in Fig. 3. The initial shock wave (I )
enters the rod and the process of its transformation begins. It provides for the so-
called Poisson waves (P) in water, accompanying the wave (I ) and being caused
by the Poisson expansion of the rod lateral surface when the compression bulk
wave propagates along the rod. The residual shock wave (B) propagates in the
surrounding water behind the wave (I ) with a much smaller velocity than it has in
solids. The smooth and long disturbance (S) inside the rod represents the process
of soliton formation behind the wave (I ).

The angleα between the Poisson wave front and the rod surface allows us to
calculate the velocity of the wave (I ) in the rod. Indeed, a simple geometry leads to
the relationship

sinα = VW /VI ,

Fig. 3.Wave pattern in the rod near its input and in the surrounding water.
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whereVI is the velocity of the wave (I ) in a sample andVW is the wave velocity
in water, whose value is close to the sound velocity. Forα = 34◦ measured on the
interferogram andVW = 1450 m/s we obtainVI = 2600 m/s.

2.2. Parameters of the strain wave in a plexiglas rod

The bulk solitary compression wave in the plexiglas rod was detected at a
distance of about50 mm from the input cross section, where nonlinearity and
dispersion actions on the initial shock wave appear to balance each other. Figure 4
presents the interferogram of the soliton moving to the right in the rod at the interval
of 50–90 mm from its input.

The parameters of the strain soliton observed in plexiglas for the first time were
found to be as follows: a maximal fringe shift∆K = 0.8 fringe and wavelength
Λ = 32 mm.

Bulk extensionD in terms of the finite deformation tensor invariantsIk(C) is

D = (dV − dv)/dv =
√

I3(G)− 1 =
√

1 + 2I1(C) + 4I2(C) + 8I3(C)− 1
≈ (1− 2ν)Ux + O(u2

x).

Mass conservation yields

ρ0/ρ = dV/dv ≈ 1 + (1− 2ν)Ux, δρ = Ux(1− 2ν). (7)

On the other hand, variation in density is proportional to variation in refractive
indices:

δρ = −n2 − n1

n1 − 1
,=⇒ n2 − n1 = −Ux(1− 2ν)(n1 − 1), (8)

wheren1, n2 are the refractive indices of the material before and after deformation.
The carrier fringe shift during interference is proportional to the difference of light
phase variations:

∆K = ∆φ2 −∆φ1.

Before and after deformation, respectively, we have

Λ0∆φ1/(2π) = n0(L− 2h) + 2hn1,

Λ0∆φ2/(2π) = n0(L− 2h− 2∆R) + (2h + 2∆R)n2,

whereΛ0 is the wavelength of recording light and2h < R0 is rod’s thickness along
the light path of the detecting laser light. Finally, we have

Λ0∆K = 2h(1− 2ν)(1− n1)Ux + 2∆R(n0 − n2) (9)

and using the relationshipV = V (ν, Ux), we obtain for the maximal soliton
amplitudeA = maxUx:

A = − Λ0 ∆K

2h[(n1 − 1)(1− 2ν) + ν(n1 − n0)]
. (10)
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Fig. 4. Strain solitary wave in the plexiglas rod. One of the fringes in the rod was extracted
from the interferogram and is shown below for convenience.

The parameters of the material are as follows:n0 = 1.33, n = 1.49, h =
7.5×10−3 m,Λ0 = 6.94×10−7 m,R = 5×10−3 m,ν = 0.34, which lead to the
amplitude valueA = 4.3× 10−4 (Table 1). We note that the fringe shift measured
in plexiglas islessthan that in polystyrene, while the genuine wave amplitude is
1.5 timeshigher(4.3× 10−4 in plexiglas vs.2.82× 10−4 in polystyrene), because
of the lower value of the refractive index of plexiglas1.49 vs. 1.59 of polystyrene.

2.3. Soliton reflection from the clamped end of the rod

The process of nonlinear wave reflection under different conditions at the
rod end is distinctive for soliton detection and is expected to be of practical
importance for mechanical structures. We consider the following two cases of
boundary conditions:

1. clamped end of the rod, where the acoustical wave resistance of the second
medium is much greater than that of the rod material (plexiglas/brass interface);

121

 
Table 1. Parameters of solitons observed in polystyrene (PS) and plexiglas (PMMA) rods, and 

calculated velocities 
l

ccV ,,
0

 

 

Material ν  Deformation 

amplitude A 

Width ,Λ  

mm 

Soliton velocity 

,V  m/s 

,
0

c  

m/s 

,
l

c  

m/s 

PS 0.34 2.82 × 10–4 32.5 ≈ 2280 1870 2310 

PMMA 0.34 4.3 × 10–4 32 ≈ 2530 2060 2570 
 
 
 
 



Fig. 5. Soliton reflection from the clamped end of the plexiglas rod: (a) wave approaches the
interface from the left side; (b) amplitude is doubled due to reflection. One of the fringes was
extracted from the interferogram and is shown below each figure.

2. free end, where the wave resistance relation is the opposite (e.g., the
plexiglas/water interface).

The results of experiments are similar to those obtained for polystyrene (see
[5]). First the end of the plexiglas rod was glued to a brass plate, and the soliton was
found to be reflected back as the compression wave of the same shape and velocity.
Wave patterns near the clamped end of the rod are shown in Fig. 5. In Fig. 5a
the soliton approaches the clamped end, while the interferogram in Fig. 5b shows
the soliton reflection when approximately half of the soliton was already reflected,
which caused the doubling of fringe shift near the interface. Therefore, from the
qualitative viewpoint, the soliton reflection from the plexiglas/brass interface is
quite similar to that from the polystyrene/brass interface and is in good agreement
with the theory.

2.4. Soliton interaction with the free end of the rod

We observed the compression strain (density) solitary wave interaction with the
free end of a rod (in other words, with the rod/water interface), in which the soliton
reverses its polarity, and has to be reflected as an extension wave. However, the
extension solitons cannot exist both in polystyrene and plexiglas(β < 0), therefore
such a wave decays quickly and is converted into an oscillating wave tail. The
process of extension wave formation and simultaneous decay was observed in the
plexiglas rod. Parameters of plexiglas allowed us to record this wave as shown in
Fig. 6.

The strain solitary wave changes its polarity, indeed, due to interaction with
the free end of the wave guide, begins to propagate back as an extension wave and
decays.
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Fig. 6.Sequential moments of soliton interaction with the free end of the rod imposed in water.

3. DISCUSSION AND CONCLUSIONS

Observation of the solitary wave of compression in plexiglas allows us to
conclude that the wave exists due to the elastic (macro)nonlinearity of plexiglas,
and not due to its microstructure properties. Refinement of calculation of the
third-order (macro)moduli of elasticity provided the proper sign of the nonlinearity
coefficient (see Table 2), and the soliton was first detected in plexiglas with
parameters being in good agreement with the theory. It seems to be an instructive
demonstration of the importance of distinctive experiments between waves in the
microstructured medium and bulk solitary waves, and of the reliable measurements
of the values of third-order (macro)moduli.

Main features of solitary waves in plexiglas were proved in theory and
experiments, and can be summarized as follows:

1. There is no long wave of opposite sign behind the compression bulk solitary
wave, whose length is 7–10 times greater than the wave guide radius.
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Table 2. Elastic parameters of polystyrene (PS) and plexiglas (PMMA), according to different 
sources. Values of βµλ ,,,,,, nmlE  are given in units of 1010 N/m2 

 

Material ,ρ  

kg/m3 

,
0

c  

m/s 

ν  µ  E  λ  l  m  n  β  

PS, 

after [6] 

1060 1870 0.34 0.14   0.37   0.29 – 1.89 – 1.33 – 1.0     – 2.76 

PMMA, 1160 2076   0.339 1.86 0.5 3.9 – 1.09 + 0.24   + 1.88 + 16.8 

after [2]          wrong↑  

PMMA, 1160 2076 0.34 1.87   0.49  – 1.09 + 0.77   – 0.14     – 0.47 
after [3]           

 



2. The solitary wave retains permanent shape when propagating. This was
observed at distances 20–30 times greater than the wave guide radius (a length
scale value), where both linear waves and weak shocks disappeared.

3. Solitary wave keeps the shape after reflection from the clamped end of the
wave guide, while at the free end it changes its polarity, begins to propagate back
as an extension wave and decays.
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Üksiklainete esinemine orgaanilises klaasis
Aleksander M. Samsonov, Galina V. Dreiden ja Irina V. Semenova

Mittelineaarsete lainete uurimise eesmärk oli tõestada, et positiivseid (surve)
üksiklaineid orgaanilises klaasis ei esine. Hinnang ja arvutused põhinesid suh-
teliselt vanadel andmetel orgaanilise klaasi elastsete omaduste kohta. Autoritel
õnnestus esmakordselt genereerida ja jälgida surve üksiklaineid orgaanilises
klaasis ning tõestada, et see polümeer on sobiv läbipaistev materjal üksiklainete
jälgimiseks elastses lainejuhis. See järeldus võib pakkuda huvi rakendustes (näit
mittepurustav katsetamine ja purunemise uurimine).
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