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Abstract. One-dimensional deformation waves in microstructured materials are described by an 
hierarchical evolution equation that clearly distinguishes macro- and microstructural behaviour. 
The pseudospectral method is used for numerical simulation supported by the analytical solution 
for the linear case. It is shown how dissipative effects on various scales affect the harmonic wave. 
The shock wave formation on macroscale is strongly influenced by the microstructure. The results 
of this study can be used for material processing. 
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1. INTRODUCTION

The concept of microstructured materials is widely used in contemporary 
solid mechanics (cf. [1–4]). The corresponding theories describing the behaviour 
of solids take into account both the macroscopic and microscopic properties of 
materials, related to different length scales. Several mathematical models have 
been derived on that basis, accounting for possible dispersion and dissipation 
(eg. [4–6]). Among other methods, the formalism of internal variables has proved 
useful for describing the effects of microstructures with needed physical 
correctness [7]. From the viewpoint of wave motion, the implementation of ideas 
of internal variables has revealed an extremely important feature: it is possible to 
derive a mathematical model with clear distinction of scales in the material 
related to those of excitation (impact). For example, it has been shown [8] that a 
single evolution equation for 1D longitudinal waves can be derived involving 
two operators: one describing the propagation in the macrostructure, another – in 
the microstructure. The control parameter is the ratio of the length scale in the 
material to wavelength (or frequency) of the initial excitations. In [8], the 
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dissipative behaviour was studied, but the dispersive effects could also be 
described in a similar way (cf. [6]). Following [9], such mathematical models 
reflect wave hierarchy. On the basis of [8], more detailed analysis of dissipative 
effects was carried out in [10]. Here the results of this analysis are presented and 
discussed. It is shown that beside dissipative effects also the phase shift of a 
harmonic wave can occur due to the microstructure. It is also shown that the 
shock wave formation typical of the so-called Burgers model can be controlled 
by the microstructure. 

Section 2 presents the mathematical model for describing the evolution of 1D 
longitudinal waves. In Section 3, the numerical method used in simulations is 
briefly explained. Section 4 is the focal point of the paper, where both analytical 
and numerical results are presented and analysed. The final Section 5 includes 
conclusions. 

 
 

2. MATHEMATICAL  MODEL 
 
The mathematical model is based on the general balance laws of micro-

structured solids [1] distinguishing between a gross structure (macroscopic) stress 
and force, and an interaction force between gross and fine structure. In general, 
for the gross structure we use the following notation: S  is the first Piola–
Kirchhoff stress tensor, yv &ρ=  the linear momentum, macb  the body macro-
force, k  the interactive microforce, micb  the body microforce, y&  the macro-
scopic velocity, inIw =  ,δ  where δ  is the microstructural field, and inI  is an 
“inertia” tensor. Then, for any region BW ⊂  B(  is a classical deformable body), 
with n  being the outward unit normal to ,W∂  we have 

 

∫∫∫ =+
∂ WWW

dV
dt

d
dVda ,mac vbnS                               (2.1) 

 

∫∫∫ =+
WWW

dV
dt

d
dVdV .mic wbk                                (2.2) 

 

Further we neglect ,macb  ,micb  and take .0in =I  This means that the micro-
structural field δ  is noninertial and can be treated as an internal variable [7]. In 
the 1D case the system (2.1), (2.2) yields 

 

,0,, kvvu xtxt === σ                                   (2.3) 
 

where ,1),( −= xytxu  tyv =  and k,σ  are the unidimensional counterparts of 
S  and .k  

The governing equation is derived by using the free-energy function 
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where d  is the unidimensional counterpart of ;δ  c  and λ  are given constants, 
and )(dϕ  is a given function (of order higher than two). In addition, the non-
equilibrium fields σ̂  and k̂  of σ  and ,k  respectively, are used [6]: 
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= σσ                                   (2.5) 

 

with 
 

),(ˆ,ˆ txtx dEvCkBdAv −−=+=σ                            (2.6) 
 
where ,A  ,B  C  are constants and E  is a certain function of its argument that 
determines the scale of the microstructure (the simplest case related to the 
derivative of ),( tdE  denoted by ).dtE The second important notion is the concept 
of internal variables. For detailed derivation of the governing equation the reader 
is referred to [6]. In dimensionless variables the final result is the following 
evolution equation in moving coordinates ,σ :ς  
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Here the following notation is used. The field variable β  is related to 

),( 0uuu β=  0u  is the amplitude of the input, the moving coordinates are 
,a 1

01
−= cu ττσ  ,xετ =  1)( −−= cxct τς  1(a is a relative nonlinear constant and cτ  

– the wavelength of the input). The dimensionless constants reflect the macro- 
and microstructural properties of the material [8,10]. Leaving aside rather 
scrupulous formulae for constants, the following should be stressed. All the 
dimensionless constants, except Q  )sign( mQ =  can be presented as a product of 
two parameters 
 

,HIP =                                                  (2.8) 
 
where H  is related to the material parameters and I  – to the input para-
meters [8,11]. It means that the physical effects are controlled by properties of the 
material on one hand and the amplitude and the frequency (the wavelength) of 
the input on the other hand. The general structure of Eq. (2.7) reveals directly the 
hierarchical character of the wave propagation (cf. [9]). Namely, if L2λ  is small, 
then the second part of Eq. (2.7) (in round brackets) can be neglected and the 
wave propagation is affected only by the gross (macroscopic) structure. If, 
however, L2λ  is large, then the influence of the fine (microscopic) structure 
dominates over the macroscopic properties. Certainly, the intermediate scales are 
also of interest when both parts are present. 
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3. NUMERICAL  ALGORITHM  AND  LINEAR  SOLUTION 
 
The pseudospectral method is used for the numerical simulation. However, in 

case of Eq. (2.7), the situation is more complicated than in the standard cases 
(cf. [12,13]) due to the existence of the mixed derivative σςβ ∂∂∂ 2  parallel to 

.σβ ∂∂  This has forced us to use a different approach from standard one. The 
algorithm is based on the following considerations. 

Let the interval of interest be π2  and the grid formed by n  points with 
.2 nπ=∆  Then 

 
1
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ii iςς                                            (3.1) 

 

and 
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The discrete Fourier transform is defined by 
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and the inverse discrete Fourier transform by 
 

,e),(F),( 21 nijUUu ωπ

ω
σωσς −− ∑==                         (3.4) 

 
where i  is the imaginary unit and 
 

.2),12(,,2,1,0 nn −−±±±= Kω                            (3.5) 
 

Now, for the derivatives we get: 
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In this way we can handle the space derivatives and Eq. (2.7) can be written in 
the following form: 
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where K  is the linear or nonlinear function of the space derivatives and D  is the 
differential operator 
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.FF 1 UU ⋅= − ωiD                                        (3.8) 
 

With a new variable 
 

UUV D+=  or ]UV F)1[(F 1 ωi+= −                         (3.9) 
 
and the inverse transform 
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we obtain the formula for space derivatives  
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In this way, Eq. (3.7) is transformed into the ordinary differential equation with 
respect to :V  
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For Eq. (3.12), several Runge–Kutta algorithms were employed. The crucial 
point is that Eq. (2.7) is not conservative and the conservation laws as usual 
KdV-type calculations could not be used. Different time and space steps were 
tested in various solvers and results were compared also with the known linear 
solution (see below). In Section 4, the number of grid points 128=n  and the 
time step satisfying )2()(3 23 πς∆<h  with the fourth-order Runge–Kutta 
integration scheme were used. 

In the linearized case (the geometrical and physical nonlinearities neglected), 
the solution of the governing equation derived from Eq. (2.7) can be sought in the 
form of a superposition of different Fourier components: 
 

,)]([exp0 ωσςββ −= ki                                (3.13) 
 
where k  is the wave number and ω  the frequency. The corresponding 
dispersion relation is then 

 

),()]()([ kCkBkA −=ω                                      
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(3.14)
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Beside the full solution 
 

,)])()(([exp])()([exp~ σςσβ kCkAkikCkB −−        (3.15) 
 
we are interested in its approximations for λ  small 
 

][exp][exp~ 2 ςσβ kiKk−                                (3.16) 
 

and for λ  large 
 

.)]([exp][exp~ σςσβ kMkikN −−                         (3.17) 
 
In the case of the input ,sinςβ =  the phase velocity phv  is 
 

.)1()( 1242242
ph

−+−+= LLNMLLKv λλλλ               (3.18) 
 

Clearly, the linear solution already gives valuable information. It was shown 
already in [8] that for the given model both the gross and fine structures are 
dissipative but with different dissipation rates. In Eq. (2.7) it is emphasized by 
parameters K  and ,N  respectively. 

 
 

4. ANALYSIS  AND  DISCUSSION 
 
To the knowledge of the authors, no sufficient experimental values of para-

meters exist for Eq. (2.7). Therefore, here the aim was set up to analyse the limit 
cases and understand the influence of all parameters on the distortion of an initial 
harmonic excitation .sin),0( ςςβ =  The numerical simulation together with 
linearized solution was used. 

First, some typical time slice plots are shown in Fig. 1 (linear model) and 
Figs. 2, 3 (nonlinear model). The effects easily understood in all simulations are 
the attenuation and phase shifts. Due to the complicated structure of the 
governing equation, these effects can also be coupled for intermediate values of 

.2λ  For such an analysis we have used the linear model, while the nonlinear 
model reveals then the possible changes in shock wave formation. 

In linear analysis the solutions of Eq. (2.7) are shown for different 2λ  values 
(Fig. 1c–e), with all the other parameters taken equal to one (all terms in this 
equation are taken into account equally). For comparison, the macroequation 
(Fig. 1a) and microequation (Fig. 1b) are solved using the same parameter 
selection. The intermediate region for 2λ  is evidenced by stronger attenuation of 
the wave profile around 12 =λ  than in the cases where either the macro- or 
microstructure was only taken into account. As is seen in Fig. 4, where the 
amplitude of β  (at )1=σ  at different λ  values is shown, the wave amplitude at 
small λ  values is determined by the macrodissipation parameter ,K  and the 
wave amplitude at large λ  is determined by the microdissipation parameter .N  
However,  in  the  intermediate  region the  amplitude is mainly  dependent on the  
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parameter .M  Also the phase shift (phase velocity) changes with increasing 2λ  
starting from a pure macrostructural case, where no phase shift is present, and 
ending with a pure microstructural case, where the phase shift (velocity) is 
determined by the parameter ,M  passing the intermediate region, where phase 
velocity could be even higher than in the pure microstructural case (see 
Eq. (3.17) and Fig. 5). Like in the case with the amplitude, it seems that in the 
intermediate region the parameters that in marginal cases are “dissipative” – K  
and N  (not )M  – are causing the phase shift. However, K  brings about 
changes in phase velocity in positive direction, N  in  negative  direction.  In  this 

 

Fig. 1. (a) Solution of the pure macro-
equation, with the dissipation parameter

;1=K  (b) solution of the pure micro-
equation, with ;1=== MNL  (c) solu-
tion of Eq. (2.5), with 1=λ  and all
other parameters equal to 1; (d) the same
with ;1.0=λ  (e) the same with .10=λ  
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Fig. 2. (a) Solution of Eq. (2.5), with ,1

2 === LRQ λ  all other parameters neglected; (b) solution 
of Eq. (2.5), with ,1

2 ==== QRLK λ  other parameters equal to zero, i.e. macrodissipation 
avoids shock wave formation due to nonlinearity; (c) solution of Eq. (2.5), with ,1

2 === QRLλ  
,3=N  other parameters equal to zero; (d) solution of Eq. (2.5), with ,1

2 === RQLλ   
,3=M  other parameters equal to zero, i.e. nonlinearity with microdissipation. 

 
 
way the wave hierarchy associated with changing 2λ  is reflected also in the 
function of parameters. For example, with small 2λ  the parameter K  causes 
dissipation; with increase in 2λ  it starts to cause mainly the phase shift; with 
further increase in 2λ  the influence of K  on the wave profile will gradually 
disappear. Similar hierarchy is also evident with M  and .N  

Now the influence of the parameter L  is considered. In principle, L  
compares the input wavelength )( cτ  with the characteristics of the micro-
structure )( dtE  (for details see [8]). Numerical calculations revealed that changes 
in L , both increasing and decreasing, do not change the wave profile if all other 
parameters are zero. Physically it means that the wave process “feels” both the 
micro- and macrostructure, but there is no dissipation or phase shift. Although we 
have kept λ  and L  separated from Eq. (2.7), it is clear that it is not only ,λ  but 
the product of 2λ  and L  that determines the hierarchy, and instead of two 
microstructural parameters λ  and ,dtE  we could speak of dtE2λ  as one 
microstructural parameter in terms of wave profile changes. 
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Fig. 3. Same solutions as in Fig. 2, but instead of certain time slices, the whole time-slice plots are 
shown. 
 
 

In conclusion, these results show that if both terms ςσ∂∂∂ )(2 K  and 
σ∂∂ )(K  are taken into account, then the parameters ,L  ,M  and N  (that are 

intimately connected to the properties of the microstructure) cause the change in 
the macrowave profile (it is especially clear when we take the macrodissipation 
equal to zero). In this way, if it is possible to relate dtE  and other characteristics 
of the microstructure to the real materials, one could use these results and 
knowledge of material processing in order to change the characteristics of wave 
propagation in a desired way by changing the properties of materials 
microstructure. Also parameters that in pure macroscopic or pure microscopic 
models act only with one function: either connected to attenuation or phase shift, 
might cause both effects in the intermediate region. 

If only nonlinear terms were included, the shock wave (N-wave) would form 
(see Figs. 2a, 3a). We tried to understand how the shock formation was related to 
the material properties of different scales. For that we introduced different 
parameters  separately  while being in the intermediate region 12 =Lλ   where the  
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Fig. 4. Amplitude of β  at ,1=σ  calculated with linear model: one parameter is varied and others 
are taken equal to 1. (a) Influence of ,K  with ;1=== LMN  (b) influence of ;N  (c) influence 
of .M  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Influence of parameters on phase velocity: (a) influence of ,K  with ,1=L  ;0== NM  
(b) influence of ,M  with ,1=L  .0== NK  
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influences of both the macro- and microstructure should be evident. If a pure 
macroequation is solved, it is known that dissipation due to K  withdraws the 
shock formation. The parameter K  has the same effect in the intermediate region 
(Figs. 2b, 3b). Note also the phase shift that agrees well with the linear analysis. 
On the other hand, shock wave formation is clearly influenced by the presence of 
the microstructure (Figs. 2c,d and 3c,d). Both N  and M  are capable of 
eliminating the shock wave formation in macroscale. In this way, in principle, it 
is possible by changing the microstructure of the material to avoid the shock 
wave formation due to the nonlinear properties of the material. The nonlinear 
effects need certainly further studies, especially with other values of .2 Lλ  Due to 
combined influence of macro- and microstructure (different terms in Eq. (2.7)), 
the dispersive effects could also be evident. 

 
 

5. CONCLUSIONS 
 
We have studied numerically a certain one-dimensional evolution equation 

derived for microstructured solids. Theoretically it has been guessed earlier that 
this equation contains parameters that cause dissipation and phase shift (and in 
the nonlinear case the nonlinear behaviour) [8]. It seems to be specific to 
materials with the microstructure that it is not possible to distinguish a parameter 
that has only a dissipative or phase shift effect. The reason for such a conclusion 
is the existence of two different mechanisms modelled by two different terms 
containing derivatives taken with respect to “time” variable. In nonlinear cases 
the macroscopic and microscopic nonlinearities cause the formation of a classical  
N-wave, which is widely known. However, it is shown that the shock wave 
formation can be principally avoided by changing parameters in different scales. 
This knowledge about the influence of the material properties on wave 
propagation can be used for material processing. Nevertheless, several questions 
remain open for further research. As the parameters of the wave equation depend 
also on input, different input waves should be studied (e.g. the influence of the 
frequency should be analysed). In this way it is possible to study further the 
interplay and dependence between different parameters and their physical and 
input characteristics (see (2.8)). The problem is that not all independent changes 
in parameter values used in this work may be physically allowed. Also, the 
connection between the parameters of this model and the properties of the real 
materials needs future research. 
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Lainelevi  dissipatiivsetes  mikrostruktuuriga  materjalides 
 

Tarvo Sillat ja Jüri Engelbrecht 
 
Ühemõõtmelise lainelevi kirjeldamiseks on kasutatud varem tuletatud hie-

rarhilist evolutsioonivõrrandit, milles on struktureeritult eraldatud makro- ja 
mikroefektid. Üldjuhul on laineväli leitud numbriliselt pseudospektraalmeetodit 
kasutades, kuid mittelineaarsete efektide hülgamisel on võrdluseks leitud ka 
analüütiline lahend koos vastava dispersiooniseadusega. On tuvastatud dissipat-
siooniefektide mõju harmoonilisele lainele sõltuvalt koormusparameetritest ja 
mikrostruktuuri iseloomust. Olulised on seejuures ka võimalikud faasimuutused, 
mis kaasnevad amplituudi sumbumisega. On näidatud, milline on mikrostruktuuri 
mõju lööklaine tekkimisele makrotasandil. Tulemused loovad aluse mikrostruk-
tuuriga materjalide paremaks sünteesiks. 

 


