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Abstract. We consider the group structure of the Hecke groupsH(λ), λ ≥ 2, which is
isomorphic to the free product of two cyclic groups of orders 2 and infinity and compute all
parabolic points ofH(λ).
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1. INTRODUCTION

Hecke groupsH(λ) are the subgroups ofPSL(2, R) (the group of orientation
preserving isometries of the upper half planeU ) generated by two linear fractional
transformations

R(z) = −1
z

and T (z) = z + λ,

whereλ is a fixed positive real number. They were introduced by Hecke [1]. He
showed that whenλ ≥ 2 or whenλ = λq = 2 cos(π/q), q ∈ N, q ≥ 3, the set

Fλ =
{

z ∈ U : |Re z| < λ

2
, |z| > 1

}
is a fundamental region for the groupH(λ), and alsoFλ fails to be a fundamental
region for all otherλ > 0. It follows thatH(λ) is discrete only for these values
of λ [1]. We are particularly interested in the caseλ ≥ 2. If the two generators of
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H(λ) have integer coefficients, then so has every element ofH(λ), and therefore
H(λ) will be contained in the modular groupPSL(2, Z) (and hence in the Picard
groupPSL(2, Z(i))).

The most interesting and investigated Hecke group is the modular groupH(λ3).
In this caseλ3 = 2 cos(π/3) = 1 and all coefficients of the elements ofH(λ3) are
integers. ThereforeH(λ3) = PSL(2, Z). It is isomorphic to the free product of
two cyclic groupsC2 andC3. In [2], Cangül gave a new and elementary proof of
the fact thatH(λq) is isomorphic to the free product of two finite cyclic groups of
orders2 andq, using the notion of fundamental region and a result of Macbeath [3].
In this paper we will show thatH(λ), λ ≥ 2, is isomorphic to the free product of
two cyclic groups of orders2 and infinity using Macbeath’s method and determine
parabolic points ofH(λ), λ > 2. Note that Lyndon and Ullman [4] showed that

A =
(

1 m
0 1

)
and B =

(
1 0
m 1

)
freely generate a free group ifm ∈ C and |m| ≥ 2. To do this, they used
Macbeath’s theorem in the form of a lemma that enables us to confine attention
to the action of a group on the extended real axis. In the proof of this fact they
showed that the group generated by

C =
(

0 −1
1 0

)
andA is the free product of the two cyclic subgroups with the generatorsA andC.
In this paper we obtain our result by applying Macbeath’s theorem directly to the
action ofH(λ) as linear fractional transformations acting on the open upper half of
the complex plane and by using the notion of a fundamental region.

2. FUNDAMENTAL REGIONS

By identifying the transformation(az + b)/(cz + d) with the matrix(
a b
c d

)
,

H(λ) may be regarded as a multiplicative group of2 × 2 matrices in which a
matrix is identified with its negative. A presentation ofH(λ) is

H(λ) =
〈
R,S; R2 = S∞ = (RS)∞ = 1

〉
,

whereS = RT. R andS have matrix representations(
0 −1
1 0

)
and

(
0 −1
1 λ

)
,

respectively.
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Whenλ > 2, the standard fundamental region ofH(λ) has an infinite area,
with two real intervals on its boundary. The quotient space is obtained by using the
translationT (z) = z + λ to identify the two vertical sides, and the elliptic element
R(z) = −1/z to identify the two halves of the semicircular sides; the result is a
sphere with a point (infinity) and a disc removed, and with a cone-point of order 2
at the elliptic fixed pointi. Whenλ = 2, the area is finite, the two real intervals
shrink to single points (1 and−1), and the removed disc shrinks to a point. It is
well known that the fundamental region of a group is not unique.

For convenience, we shall take

F
′
λ =

{
z ∈ U : −λ

2
< Re z < 0,

∣∣∣∣z +
1
λ

∣∣∣∣ > 1
λ

}
as a fundamental region for the Hecke groupsH(λ), λ ≥ 2.

Now we can determine the group structure ofH(λ), λ ≥ 2, using some result
of Macbeath [3]. First we have

Definition. Let [G, X] be a topological transformation group and letP ⊆ X. If
g1(P ) ∩ g2(P ) = φ for all g1, g2 ∈ G, g1 6= g2, thenP is called aG-packing.

Note that ifP is aG-packing, then it contains at most one element from each
orbit.

Lemma 1 [3]. Let H andK be two subgroups of a transformation group[G, X].
If P is anH-packing, Q is aK-packing, A = 〈H,K〉 (the group generated by the
generators ofH andK) andP ∪Q = X, P ∩Q 6= φ, then

A ∼= H ∗K.

AlsoP ∩Q is anA-packing.

Lemma 2. (i) Letλ = 2. Then thenth power ofS is

Sn =
(
−(n− 1) −n

n n + 1

)
.

(ii) Letλ > 2. Then thenth power ofS is

Sn =
(
−dn−1 −dn

dn dn+1

)
,

whered0 = 0, d1 = 1, anddn+1 = λdn − dn−1 for n ≥ 2.

Proof. (i) The proof is obtained easily by induction. Indeed, whenλ = 2, we have

S2 =
(

0 −1
1 2

)(
0 −1
1 2

)
=
(
−1 −2
2 3

)
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for n = 2. Assume that

Sn−1 =
(
−(n− 2) −(n− 1)

n− 1 n

)
.

Then we get

Sn =
(

0 −1
1 2

)(
−(n− 2) −(n− 1)

n− 1 n

)
=
(
−(n− 1) −n

n n + 1

)
.

(ii) It is known that powers of a2 × 2 matrix S of determinant 1 can be
computed by the formula

Sn = dn(X)S − dn−1(X)I2,

whered0 = 0, d1 = 1, anddn+1 = Xdn − dn−1. Then we have

S2 = d2(X)S − d1(X)I2.

So (
−1 −λ
λ −1 + λ2

)
= d2(X)

(
0 −1
1 λ

)
−
(

1 0
0 1

)
and hence we get−1 + λ2 = λd2(X) − 1, i.e. d2(X) = λ. From the recurrence
dn+1 = Xdn − dn−1, we getX = λ. Therefore we find

Sn = dnS − dn−1I2 =
(
−dn−1 −dn

dn dn+1

)
,

whered0 = 0, d1 = 1, anddn+1 = λdn − dn−1 for n ≥ 2.

Theorem 3.The Hecke groupH(λ), λ ≥ 2, is isomorphic to the free product of a
cyclic group of order2 and a free group of rank1, i.e. we have

H(λ) ∼= C2 ∗ Z.

Proof. First we consider the caseλ = 2. We have already seen that

F
′
2 =

{
z ∈ U : −1 < Re z < 0,

∣∣∣∣z +
1
2

∣∣∣∣ > 1
2

}
is a fundamental region forH(2). Recall thatR(z) = −1/z andT (z) = z + 2.
Let H = 〈R〉 ∼= C2 andK = 〈S〉 ∼= Z. Let us now find packingsP andQ for H
andK, respectively, such that the conditions of Lemma 1 are satisfied.

As

R(z) = −1
z

= − z

|z|2
=
−x + iy

x2 + y2
,
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it is clear that
sign(Re R(z)) = −sign(Re z)

and the set
P = {z ∈ U : Re z < 0}

is anH-packing. Now consider the set

Q =
{

z ∈ U :
∣∣∣∣z +

1
2

∣∣∣∣ > 1
2
,Re z > −1

}
.

Q has the vertices−1, 0, and∞. Applying the parabolic generatorS to Q
givesS(Q) with the vertices−1

2 , −1, and0. Applying S to S(Q), we obtain
S2(Q) with the vertices−2

3 , −1, and−1
2 ; applyingS to S2(Q), we obtainS3(Q)

with the vertices−3
4 , −1, and−2

3 . Repeating this process, we obtain the regions
S4(Q), S5(Q), ..., Sn(Q), ... which do not overlap. Indeed, note that being the
fixed point ofS, −1 is a vertex of everySn(Q), n ≥ 1. Let us find the other two
vertices ofSn(Q). Using Lemma 2(i), it is easy to show that

Sn(0) = Sn+1(∞) = − n

n + 1
.

So Sn(Q), n ≥ 1, has the vertices−1, Sn+1(∞), andSn(∞). Notice that the
sequenceSn(∞) = −(n− 1)/n is decreasing and has the limit−1. Therefore the
imagesSn(Q) do not overlap, andQ is aK-packing.

As we now have anH-packing and aK-packing, we can apply Lemma 1. Then
the groupH(2) = 〈H,K〉 is isomorphic to the free product of its subgroupsH and
K, i.e. H(2) ∼= C2 ∗ Z. Also

P ∩Q =
{

z ∈ U :
∣∣∣∣z +

1
2

∣∣∣∣ > 1
2
,−1 < Re z < 0

}
= F

′
2

is anH(2)-packing.
Let us now consider the caseλ > 2. Similarly to the caseλ = 2, we take

F
′
λ =

{
z ∈ U : −λ

2
< Re z < 0,

∣∣∣∣z +
1
λ

∣∣∣∣ > 1
λ

}
as a fundamental region forH(λ). Again, letH = 〈R〉 ∼= C2 andK = 〈S〉 ∼= Z. It
is clear thatH andK are subgroups ofH(λ) and the setP = {z ∈ U : Re z < 0}
is anH-packing. Now consider the set

Q =
{

z ∈ U :
∣∣∣∣z +

1
λ

∣∣∣∣ > 1
λ

,Re z > −λ

2

}
.

Applying the hyperbolic generatorS(z) = −1/(z + λ) to Q, we obtainS(Q)
with vertices

− 2
λ

,
λ

2− λ2
, − 1

λ
, and 0
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(notice thatQ has the vertices−λ/2, −2/λ, 0, and∞). Applying S to S(Q), we
obtainS2(Q) with the vertices

λ

2− λ2
,
−2 + λ2

3λ− λ3
,

−λ

−1 + λ2
, and − 1

λ
;

applyingS to S2(Q), we obtainS3(Q) with the vertices

−2 + λ2

3λ− λ3
,

−3λ + λ3

−λ4 + 4λ2 − 2
,

1− λ2

λ3 − 2λ
, and

−λ

−1 + λ2
.

Repeating this process, we obtain the regionsS4(Q), S5(Q), ..., Sn(Q), ... which
do not overlap. Indeed, from Lemma 2(ii), it follows easily that

Sn(0) = Sn+1(∞) = − dn

dn+1

and

Sn

(
− 2

λ

)
= Sn+1

(
−λ

2

)
= −λdn − 2dn−1

λdn+1 − 2dn
.

So Sn(Q), n ≥ 1, has the verticesSn (−λ/2) , Sn+1 (−λ/2) , Sn+1(∞), and
Sn(∞).

Therefore we get

Sn(∞) = −dn−1(λ)
dn(λ)

and Sn

(
−λ

2

)
= −bn−1(λ)

bn(λ)
,

where, for alln ≥ 1, dn’s are the polynomials given by the reduction formulae

d0(λ) = 0
d1(λ) = 1 (2.1)

d2(λ) = λ

dn(λ) = λdn−1(λ)− dn−2(λ); n ≥ 2

andbn’s are the polynomials given by the reduction formulae

b0(λ) = 2
b1(λ) = λ (2.2)

bn(λ) = λbn−1(λ)− bn−2(λ); n ≥ 2.

Also the sequence

Sn(∞) = −dn−1(λ)
dn(λ)
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is decreasing and the sequence

Sn

(
−λ

2

)
= −bn−1(λ)

bn(λ)

is increasing. Both of them have the same limit(−λ +
√

λ2 − 4 )/2 which is one
of the fixed points ofS. The other fixed point ofS is lying outside theF

′
λ.

Therefore the imagesSn(Q) do not overlap, andQ is aK-packing. Applying
Lemma 1, we have that the groupH(λ) = 〈H,K〉 is isomorphic to the free product
of its subgroupsH andK, i.e. H(λ) ∼= C2 ∗ Z. Also

P ∩Q =
{

z ∈ U : −λ

2
< Re z < 0,

∣∣∣∣z +
1
λ

∣∣∣∣ > 1
λ

}
= F

′
λ

is anH(λ)-packing.

Now we try to determine the parabolic point set (cuspset) ofH(λ). Parabolic
points are basically the images of infinity under group elements except forλ = 2.
H(2) has two cusp-classes, containing1 and∞. We omit the caseλ = 2 from our
discussion. Let us consider the Hecke groupsH(λ), λ > 2. Since infinity is one of
the vertices of theF ′λ, its transforms under the subgroup〈S〉 which is generated by
S of infinite order form a class of parabolic points ofH(λ). We want to determine
all parabolic points ofH(λ), i.e. to determine the cuspset ofH(λ) given by{

A

C
:
(

A B
C D

)
∈ H(λ)

}
,

which is the orbit of∞ onR ∪ {∞} .
To find the parabolic points of any particular Hecke groupH(λ), one needs to

know the form of the elements of this Hecke group. This is because all parabolic
points, being images of infinity under group elements, are quotients of the first and
third coefficients of the elements ofH(λ). In [5], Rosen showed that all elements
of H(λ) have one of the following two forms:

(i)
(

a bλ
cλ d

)
; ad− λ2bc = 1,

(ii)
(

aλ b
c dλ

)
; λ2ad− bc = 1,

wherea, b, c, andd are polynomials inλ2. But the converse is not true. That is,
all elements of type (i) or (ii) need not belong toH(λ). Those of type (i) are
called even while those of type (ii) are called odd. It follows easily that the set of
all even elements forms a subgroup of index2 called the even subgroup using the
Reidemeister–Schreier method. Rosen proved that a transformation

V (z) =
Az + B

Cz + D
∈ H(λ)
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if and only if A/C is a finiteλ-fraction. Recall that a finiteλ-fraction has the form

(r0λ,−1/r1λ,−1/r2λ, ...,−1/rnλ) = r0λ−
1

r1λ− 1
r2λ−...− 1

rnλ

, (2.3)

whereri (i ≥ 0) are positive or negative integers andr0 may be zero.
In the proof of Theorem 3, we have found that

Sn(∞) = −dn−1(λ)
dn(λ)

. (2.4)

By (2.4) we have an infinite class of parabolic points in general for any Hecke group
H(λ), λ > 2. In fact, applyingR to this class gives another class of parabolic points
given by

RSn(∞) =
dn(λ)

dn−1(λ)
.

The other parabolic points are the transforms of those already found, under the
elements ofH(λ). Therefore the polynomialsdn(λ) play a very important role in
determining the parabolic points ofH(λ).

ForH(λ), λ > 2, the set of limit points (i.e. the closure of the set of parabolic
points) is a perfect nowhere dense subset of the real axis. Our aim now is to
determine the parabolic points ofH(λ), λ > 2. If V ∈ H(λ) is of type (i), then
V (∞) = a/(cλ), and ifV is of type (ii), thenV (∞) = (a/c)λ. Then our problem
is reduced to the following question: When cana/(cλ) and (a/c)λ be written
as finiteλ-fractions? Note that we are unable to give conditions that determine
whether or nota/(cλ) or (a/c)λ is a finiteλ-fraction. We have

Lemma 4. A/C is a finiteλ-fraction if and only if there is a sequencean such that

A

C
=

an+1

an
or − an−1

an
(2.5)

for somen. The sequencean is defined by

a0 = 1,
a1 = s1λ,

an+1 = sn+1λan − an−1, n ≥ 2,
(2.6)

wheresn’s are nonzero integers.

Proof. Assume thatA/C is a finiteλ-fraction. By (2.3) we can write

A

C
= r0λ−

1
r1λ− ...rn−2λ− 1

rn−1λ− 1
rnλ

.
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Let us definea0 = 1, a1 = rnλ. We get

A

C
= r0λ−

1
r1λ− ...rn−2λ− a1

rn−1λa1−a0

.

If we write a2 = rn−1λa1 − a0, we have

A

C
= r0λ−

1
r1λ− ...rn−3λ− a2

rn−2λa2−a1

.

Then we writea3 = rn−2λa2 − a1. Proceeding from this, we obtain

A

C
=

an+1

an
,

wherean is the sequence defined asa0 = 1, a1 = rnλ, a2 = rn−1λa1− a0, and
an+1 = r0λan − an−1. If r0 = 0, we have

A

C
= −an−1

an
.

Conversely, if
A

C
=

an+1

an
,

from (2.6) we get

A

C
=

an+1

an
=

sn+1λan − an−1

an
= sn+1λ−

an−1

an

= sn+1λ−
1
an

an−1

= sn+1λ−
1

snλan−1−an−2

an−1

= sn+1λ−
1

snλ− an−2

an−1

.

Proceeding from this, we obtain a finiteλ-fraction. Similarly, if

A

C
= −an−1

an
,

we have

A

C
= −an−1

an
= − 1

an
an−1

= − 1
snλan−1−an−2

an−1

= − 1
snλ− an−2

an−1

.

Proceeding from this, we have a finiteλ-fraction (0,−1/r1, ...,−1/rn), putting
sn = r1, ..., s1 = rn.
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Notice that given a sequencean defined by (2.6), all the termsan+1/an and
−an−1/an are parabolic points of the Hecke groupH(λ), λ > 2. We can compute
these terms depending on the sequencesn. Let an = rn. This quickly reduces (2.6)
to

rn = snλrn−1 − rn−2 ⇒ r2 − snλr + 1 = 0

with the roots

r1,2 =
snλ±

√
s2
nλ2 − 4

2
.

The general solution to the equationan = rn will be all possible combinations of
rootsr1 andr2. Let us write

an = A

(
snλ +

√
s2
nλ2 − 4

2

)n

+ B

(
snλ−

√
s2
nλ2 − 4

2

)n

.

The constantsA andB can be found from the boundary conditionsa0 = 1 and
a1 = s1λ. We have

a0 = A + B = 1,

a1 = A

(
s1λ +

√
s2
1λ

2 − 4
2

)
+ B

(
s1λ−

√
s2
1λ

2 − 4
2

)
= s1λ

and so

s1λ = A

(
s1λ +

√
s2
1λ

2 − 4
2

)
+ (1−A)

(
s1λ−

√
s2
1λ

2 − 4
2

)
.

From this we compute

A =
s1λ +

√
s2
1λ

2 − 4
2
√

s2
1λ

2 − 4
, B =

√
s2
1λ

2 − 4− s1λ

2
√

s2
1λ

2 − 4
.

So we get the formula ofan as follows:

an =

(
s1λ +

√
s2
1λ

2 − 4
2
√

s2
1λ

2 − 4

)(
snλ +

√
s2
nλ2 − 4

2

)n

+

(√
s2
1λ

2 − 4− s1λ

2
√

s2
1λ

2 − 4

)(
snλ−

√
s2
nλ2 − 4

2

)n

=
1

2n+1
√

s2
1λ

2 − 4

[(
s1λ +

√
s2
1λ

2 − 4
)(

snλ +
√

s2
nλ2 − 4

)n

−
(
s1λ−

√
s2
1λ

2 − 4
)(

snλ−
√

s2
nλ2 − 4

)n
]

.
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Now we can compute all parabolic points of the Hecke groupH(λ), λ > 2, as
follows:

1
2

(
s1λ+

√
s2
1λ2−4

)(
sn+1λ+

√
s2
n+1λ2−4

)n+1
−

(
s1λ−

√
s2
1λ2−4

)(
sn+1λ−

√
s2
n+1λ2−4

)n+1(
s1λ+

√
s2
1λ2−4

)(
snλ+

√
s2
nλ2−4

)n
−

(
s1λ−

√
s2
1λ2−4

)(
snλ−

√
s2
nλ2−4

)n

and

−2

(
s1λ+

√
s2
1λ2−4

)(
sn−1λ+

√
s2
n−1λ2−4

)n−1
−

(
s1λ−

√
s2
1λ2−4

)(
sn−1λ−

√
s2
n−1λ2−4

)n−1(
s1λ+

√
s2
1λ2−4

)(
snλ+

√
s2
nλ2−4

)n
−

(
s1λ−

√
s2
1λ2−4

)(
snλ−

√
s2
nλ2−4

)n .

So we have the following proposition.

Proposition 5. All parabolic points of the Hecke groupH(λ), λ > 2, are of the
form

1
2

(
s1λ+

√
s2
1λ2−4

)(
sn+1λ+

√
s2
n+1λ2−4

)n+1
−

(
s1λ−

√
s2
1λ2−4

)(
sn+1λ−

√
s2
n+1λ2−4

)n+1(
s1λ+

√
s2
1λ2−4

)(
snλ+

√
s2
nλ2−4

)n
−

(
s1λ−

√
s2
1λ2−4

)(
snλ−

√
s2
nλ2−4

)n

or

−2

(
s1λ+

√
s2
1λ2−4

)(
sn−1λ+

√
s2
n−1λ2−4

)n−1
−

(
s1λ−

√
s2
1λ2−4

)(
sn−1λ−

√
s2
n−1λ2−4

)n−1(
s1λ+

√
s2
1λ2−4

)(
snλ+

√
s2
nλ2−4

)n
−

(
s1λ−

√
s2
1λ2−4

)(
snλ−

√
s2
nλ2−4

)n

wheresn’s are nonzero integers.

For example, if we takeλ =
√

5 andsn = 1 for all n, we get the following
parabolic points ofH(

√
5)

1
2

(1 +
√

5)n+2 − (
√

5− 1)n+2

(1 +
√

5)n+1 − (
√

5− 1)n+1
and − 2

(1 +
√

5)n − (
√

5− 1)n

(1 +
√

5)n+1 − (
√

5− 1)n+1
.

If n is even, we get

−2
(1 +

√
5)n − (

√
5− 1)n

(1 +
√

5)n+1 − (
√

5− 1)n+1
= −2

(1 +
√

5)n − (1−
√

5)n

(1 +
√

5)n+1 + (1−
√

5)n+1

= −2
1

2n+1

[
(1 +

√
5)n − (1−

√
5)n
]

1
2n+1

[
(1 +

√
5)n+1 + (1−

√
5)n+1

]
= −

√
5

1√
5

[(
1+
√

5
2

)n
−
(

1−
√

5
2

)n][(
1+
√

5
2

)n+1
+
(

1−
√

5
2

)n+1
] = −

√
5

Fn

Ln+1
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and similarly
√

5 Fn+2/Ln+1, whereFn is thenth Fibonacci number andLn is the
nth Lucas number. Ifn is odd, we find

1√
5

Ln+2

Fn+1
and − 1√

5
Ln

Fn+1
.
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Hecke rühmaH(λ) struktuurist ja paraboolsetest punktidest

Nihal Yılmaz Özgür jȧI. Naci Cangül

On tõestatud, et Hecke rühmH(λ), λ ≥ 2, on isomorfne teist järku tsüklilise
rühma ja astakuga 1 vaba rühma vaba korrutisega. On määratud selle rühma kõik
paraboolsed punktid.
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