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Abstract. The authors proceed their investigation of dual pdifs £°), where E is a
sequence spacé, is a K-space on which a sumis defined in the sense of Ruckle, afd

is the space of all corresponding factor sequences. Here, the particular case is considered that
the sums has the representatictiz) = lim, ), v,x2k (2 € S), wherel is a directed set of
indicesy and(v.)y, is afinite sequence for eaghe I'. On the basis of this representation the
S-sections of any sequenee= (x;,) and both, their convergen¢el K (.5)) and boundedness
(AB(S)) in K-spacest are studied. Further, inclusion theorems due to Bennett and Kalton
are proved in this more general situation. Following an idea of Schaefer to consider “section
convergence barrels”, the notion dfi'(.5)-barrelled K-spaces is introduced which leads to
the result that a Mackek(-spaceE containing all finite sequences 4K (S)-barrelled if and

only if E¥ C E’. The paper covers some results concerning the Kéthe—Toeplitz duals and
related section properties, for example, tH@")-dual and theST K -property (considered by
Buntinas and Meyers).

Key words: topological sequence spaces, Kéthe-Toeplitz duals, section convergence, sum
space, solid (normal) topology, inclusion theorems.

1. INTRODUCTION

In [1] the authors defined and investigated dual p&its E°), where E is
a sequence spac$, is a K-space on which a sumis defined in the sense of
Ruckle B], and E® is the space of all corresponding factor sequences. Moreover,
in generalization of theS AK -property in the case of the dual p&iF, E°) and
matrix maps, theS K-property and the quasi-matrix maps were introduced and
studied. In that general situation well-known inclusion theorems due to Bennett
and Kalton }] and Grosse-Erdmanri][were proved. The authors justified these

3


https://doi.org/10.3176/phys.math.2002.1.01

generalizations by several applications to different kinds of Kéthe—Toeplitz duals
and related section properties, for example,#(€)-dual and theST K -property
(cf. Buntinas {]).

In this note we consider dual pairs?, ES), where the sums has the
representation

= li es
s(2) lyzkszka (z€5)

andI' is a directed set of indiceg, (v,;); is a finite sequence for eache T
This representation enables us to define in Section 3tbections of any sequence
x = (x) and study inK'-spaced the propertiesi K (S) andAB(S). In Section 3
we complete an inclusion theorem which is proved'ingnd generalize a further
inclusion theorem due to Bennett and Kalto%. [ These results are applied to
certain dual pair$E, E°), whereS is cr, bur, andfs, respectively. In Section 4,
following Schaefer {], we introduce thed K (S)-barrelledness of<-spaces and
show that a Mackey<'-spaceFE containingy is AK (S)-barrelled if and only if
ES C F',i.e., the functional, defined by — s((uzy)), is continuous orF for
eachu € E°. The last result is verified for the particular cages: cs andS = /.

The terminology from the theory of locally convex spaces and summability is
standard; we refer to Wilansky'{] and Boos {].

Let w be the space of all complex (or real) sequences @rttie subspace
of all finitely nonzero sequences. Obviously, = span{e* | k& € N}, where
ek :=(0,...,0,1,0...) with 1 in the kth position, andy contains thesections
gl .= S0 xpef (n € N) of all sequences € w.

A sequence space is a subspacewoflf a sequence spac& carries a
locally convex topology such that the coordinate functional$n € N) defined
by m,(x) := x, (z € w) are continuous, theR is called aK-space Note thaty is
o(F', E)-dense in the topological du&l’ for eachK -spaceF, where we identify
¢ with span {r, | n € N}. For any K-spaceF containingy, the f-dual £/ is
defined by

E = {uf = (f(e") | feE’}.

A Fréchet (Banach)-space is said to be aiK-(B K -)space The following
BK-spaces will be important in the sequel:

m = {xew | sup |xg| <oo}, ci= {me | limz = liina:k eXiStS},
k
cO::{$€C|1iml‘:0}a bv = w€w|2|$k—$k+1’<oo}’
k
n
bs := {xew | sup,, | Y. <oo}7 cs = {x6w| Zxkconverge%,
k=1 k

E::{x€w| Doz < oo
k

Furthermorew is anF K-space under its product topology.
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For sequence spacésand F' we define
E-F .= {ux::(uk:pk) | uGE,xGF}, EF .= {uew | V:UEE:U:BGF}.

Thea-dualandg3-dualof E are defined ag® := E andE® := E. If A = (a,;)
is an infinite matrix such thatlz := (3_, anrxy), exists andAz € F for each
x € E, then the linear map

A:E—>F, v— Az (1.1

is called amatrix map
Let S be aK-space withp C S and lets € S’ be a sum orf, that is,

s(z) =) 2 foreachz € ¢
P

(cf. Ruckle B]). If E is a sequence space containinghen(E, E) is a dual pair
under the bilinear functional

(, >:E><ES—>K s (xyu) = (z,u) = s(ux).

Sincep C E° (E,o(E,E®)) is a K-space. E is called anSK-spaceif
E = Egg, where

Esx:={x € E|VfeE : upxes and f(z) = s(usx)}.
For example(FE, 7(E, E®)) is anSK-space. If we put
S :=c¢s and s(z) := Z zr (2 € cs), (1.2)
k
then Es is the subspace of all elements Bfwhich are the weak limits of their

sections.
Let A = (a,) be an infinite matrix. We put™ := (a,;)x (n € N) and

wa =) {{M}S | ne N} .
For a sequence spaéewe define
Pai={z cwa | %o 1= (s(a"a)) € F}.
If Fis asequence space withC Fy, then the linear map

A:F— F, x+— Az

is called aguasi-matrix map



Proposition 1.1(cf. Proposition 4.2 inY])). Let £ and F be K -spaces. Each of the
following statements implies the continuity of any quasi-matrix glagy — F' :
(@ S and F are separable FK-spaces E is a Mackey space and
(E',o(E', F)) is sequentially complete.
(b) S and F' are F'K-spaces and is barrelled.

Remark 1.2. In Proposition 4.2 of [] the statements in Proposition 1.1 are
proved in a more general situation wheSeand F' are assumed to bé,- and
A,-spaces, respectively. Note that afy<-space is and,-space and each
separablel"’K-space is anL -space. For the notion af,- and A -spaces we
refer to [1°].

If S andE are (separable}’ K -spaces, topologized, respectively, by families
Q and P of seminorms, therEy is a (separablef K-space with the family of
seminorms (cf. ], Proposition 4.4 and Remark 4.5)

i By — R, x— ri(x) := |ag] (k eN),
godiag,m : By » R, 2 q(a™z) (g€ QneN),
pod: By — R, z+— p(Ax) (peP).

Here,diag, ., denotes the diagonal matrix with the diagom@ .

Obviously,p C c¢g holds if and only ifa;, := lim,, a, exists for eactk € N.
Further,A is said to be aBp;-matrixif a := (a;) = e := (1,1,...),and itis called
an Spj-matrix if, in addition, each column off belongs tobv. For example, the
summation matrixs = (o,x), with o, = 1 for £ < n ando,,;, = 0 otherwise, is
anSpj-matrix. Note that in the case of (1.2) a quasi-matrix i@ap the matrix map
A (cf. (1.1)) and we writeZ 4 instead ofEgy. It is well known that the convergence
domainc4 of any matrixA is a separablé’ K -space.

2. PROPERTIES AK(S) AND AB(S)
A typical sums on aK-spaceS has often the representation

s(z) = }YléI% sy(z) with sy(2) := Zk:%k% (z€8), (2.1)

wherel is a directed index set and, := (v.;)x, € ¢ for eachy € I'. (Note, since
s is a sum, we have = s(e*) = lim, v, (k € N).) In particular,s is of that type
if A is any directed set an is a further non-empty set, anddfsatisfies for all
z € S the condition

s(z) == %1612 v5, 2, uniformly inp € R, (2.2)
k

where(vf, ), € ¢ foré € A andp € R. (To see this, consider in (2.1) the set
I' := A x R with the natural partial order defined by thatAf)
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In the sequel we assume that the sum S’ is defined by2.1)and, in addition,
that

k

S = {z €w | thenet <Z kazk) is bounded and converge}t (2.3)
vy

We observe thats, || ||s) is a BK-space, where

Ills = sup [s,(2)] (= € 9).
~vel

Let wr denote the Hausdorff locally convex space of all scalar nets
(uy)yer equipped with the product topology. The vector subspacef all
bounded convergent nets is a Banach space with the supremum |pdmn
defined by||(uy)||sc := sup,er |uq| ((uy) € cr). Obviously, S = V~*(cr) and
II'lls =l lloo © V, whereV is the continuous linear map

Viw—wr, z+—(5/(2)).

By Theorem 5 of [!] S, together with the family of seminorms
{I'ls} U{rk | k € N}, isanFK-space. Sinceup,cr |vyk| # 0 for eachk € N,
we get that .S, || ||s) is even aBK-space.

We illustrate this situation with the following examples.

Example 2.1.If " := N, then the sum (2.1) has the form

z) = limZvnkzk (z €09),
k

and from (2.3) we ge$ = cy. TherebyV = (v,) is a row-finiteSp; -matrix (cf.
Case 1inl)).

Example 2.2.We consider another important example of this situation (cf. Case 2
in [']). LetT := ®, the collection of all finite subsets ®f directed by the set
inclusion, and lef” = (t,,;;) be a row-finiteSp}-matrix. Put

$ = bur and 5(2) := lim Z ik —ticig)z (2 € bup). (2.4)
ZGF
Then the sums has the representation (2.1) withy, == >, p(tix — ti—1k)

(F € ®, keN), and the condition (2.3) is satisfied. Note tI'@,C |(T= )
(Tz)i1| = >2; 2ok ik — ti1k) 26| < oo, which impliess(z) = 3, ((Tz); —
(T'z)i—1) = lim;(T2); = limpz for eachz € buy.

In the particular case &f = X we obviously have

S =¢ and s(z _}1}3&);%_2% (z€l). (2.5)



Example 2.3.We use the notation (cf!{])

My = {y = (Ynr)n,ren | Sup [Ynr| < OO}
n,r

and

Fi= {y € M, | 3b, €K : limy,, = b, uniformlyinr e N}.
LetV = (V(’“)) be a sequence of row-finite matrices with the property

limvg}g =1 uniformly in r € N foreachk € N.

n

Foranyz = (z,) € w we putVz := (Zk vf;)zk> and use the notation

S = F = {ZEw | Vze]:},
s(z) == F-limVz := limZUf;)zk uniformly inr e N (z € S). (2.6)
k
Then the sums is defined in the sense of (2.2) and the condition (2.3) is satisfied.

Let a K-spaceS be equipped with a sum (2.1). Then, for eack- (z) and
~ € T, the sequence

Py(z) := Z”vkxkek (vel)
k
is called theyth S-sectionof z. If F is aK-space containing, we define
Eap(s) = {x €w | (Py(x))yer is a bounded net ilE} :
BEag(s) = {1: € Eaps)NE | liian(x) exists inE} .

E is said to be anAB(S)-space if E C E,p(s) and an AK(S)-space if
E = E k(s)- Obviously, lim, P,(z) =z in E for every x € E i (g). This
implies that

f(x) = li};nzvykxkf(@k) (z € Eag(s))
:

for every f € E/. From (2.3) we getE k(s - B/ C S and f(z) = s(uysx)

(z € Eag(s), f € E'). Consequentif B, o (E, £')) ax(sy = (E,0(E, E'))sk =
(E,75)sKk and(E,o(E, E9)) is an AK (S)-space. On account of (2.3) we have
Esk C Eap(s)- Therefore

v C Eag(s) C Esk C Eyp(s)-



We remark thatf? s 5(5) = (ET)S, where

S::{z6w| sup
¥

Zvn,kzk < OO}
k

The following proposition is a direct generalization of the corresponding result
in the “classical” case (1.2) (cf!q], Corollary 1 of Proposition 5). Therefore we
omit the proof.

Proposition 2.4.For a barrelled K -spaceFE containingy the following statements
are equivalent

(a) Eisan AK(S)-space.

(b) £ is anSK-space.

(c) EisanAD-and AB(S)-space.

3. INCLUSION THEOREMS

From Theorems 5.1 and 5.2 df| jwe verify the following inclusion theorems
of Bennett—Kalton type.

Theorem 3.1(cf. [!], Theorem 5.1). Let S be a separableF' K -space with a
sums € S’. For a sequence spack containingy the following statements are
equivalent

(@) (E°,0(E®, E)) is sequentially complete.

(b) Any quasi-matrix magl : (E, 7(E, E®)) — F is continuous whenever
is a separableF’ K-space.

(c) The implicationE C F = E C Fgsk holds wheneveF' is a separable
F K-space.

Theorem 3.2(cf. ['], Theorem 5.2).Let S be anF K-space with a sum € S’
For a sequence spade containingy the following statements are equivalent

(@) (E,7(E, EY)) is barrelled.

(b) Any quasi-matrix magl : (E, 7(E, E)) — F is continuous whenever
is an F K-space.

(c) The implicationF C F = E C Fsk holds whenevefF' is an F K-space.

Now we assume thaff and the suns are given by (2.1) and (2.3). This enables
us to complete Theorem 3.2.

Theorem 3.3.For any sequence spade containing, each of the statemenga),
(b), and(c) of TheorenB.2is equivalent to

(d) The implicationE C F' = E C Fyk(s) holds whenever' is an F'K-
space.

Proof. Clearly, (d) = (c). Conversely, if (c) holds, thedE,r(E, E?))
is barrelled. Thus, sinceg(E,7(E,E®)) is an SK-space, it has the
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AK(S)-property by Proposition 2.4. Therefofe C F4x (s since the inclusion
mapi : (E,7(E,E®)) — Fis continuous. O

The next theorem extends a further inclusion theorem due to Bennett and
Kalton (cf. [}], Theorem 6, and alsd{'?]).

Theorem 3.4.Suppose that & K-spaceS and a suns € S’ is defined by2.1)and
(2.3), where the index sdt contains a cofinal sequengs,,). Let S be separable.
For a sequence spadé containingy the following statements are equivalent

(@) (BE,7(E,E®)) is an AK(S)-space and(E°,o(E®, E)) is sequentially
complete.

(b) The implicationt C F' = E C Fug(s) holds whenever' is a separable
F K-space.

(c) The implicationE' C coq = E C (ca) ax(s) holds for every quasi-matrix
mapl.

Proof.

(a) = (b): By Theorem 3.1, the inclusion map: (E,7(E,E®)) — F
is continuous for each separablék-spaceF. Since (E,7(E, E®)) has the
AK(S)-property, we getl C Fla(s)-

(b) = (c) isvalid, sincey is a separablé’ K -space.

(c) = (a): We first remark that (c) implies the sequential completeness of
(E%,0(E®, E)) on account of Theorem 3.1. Assume thi#k 7(E, E®)) is not
an AK (S)-space. Then there exist anc F and an absolutely convex E°, E)-
compact subsek” ¢ E° such that

sup [s(a(z — Py, (2)))] £ 0 (n — oo).
acK

Therefore we may choose an index sequengé and a sequenda (™)) in K such
that

‘S(a(’j)(az—P%y(:I:)))’ >e>0 (veN). (3.2)

Since K is o(E®, E)-compact, it iso(E®, E)-sequentially compact (cf. '],
Theorem 3.10). Thus we may assume without loss of generality(tal) is
o(ES, E)-convergent. (Otherwise we switch over to a subsequende (6f).)
Now, if A denotes the matrix given by;, = a](;) (i,k € N), then the last
assumption gives UB C cy. From (c) we getty C (ca) ax(s) contradicting (3.1).
So(c) = (a). O

We now examine thel K (S)-property of K -spaces for certaii -spacesS. For
that, throughout this section, |1ét be a sequence space containjng

Example 3.5.Let S = ¢y ands(z) = limr 2z (z € cr), whereT = (t,,) iS a row-
finite Sp;-matrix. TheS-sections introduced above are the Toeplitz sections. Then
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the AK (cr)-property is just th&' K -property, that is th@'-sectional convergence
in the sense of Buntinas][and Meyers [’]. Recall that

Fri = {$€F| Ztnkxkek%x in (FJF)}a

k

where(F, 7r) is a K-space containing. Furthermore, we have
Eer = pAT) .= {u Ew|VzeE: limZtnkukxk exists} .
"

As a consequence of Theorem 3.3 we get:
(E,7(E, E?M)) is barrelled if and only if the implicatiol® ¢ F = E C Frx
holds for everyl’ K-spaceF.

From Theorem 3.4 we conclude:
(E,7(E, E?M)) enjoys thel K -property and E*(T) | o (EP(T) | F)) is sequential-
ly complete if and only if the implicatioR C F' = E C Fpg holds for each
separableF’ K -spaceF.

< oo} .

Moreover, theA K (bur)-property is just thé/I' K -property, which is, in turn, the
unconditionalT-sectional convergence (cf. Flemin{], DeFranza and Fleming
['9]). It is easy to establish the Inclusion Theorems 3.3 and 3.4 in this context.
We consider here the important special case of (2.5). Thers- E~ and the

AK (¢)-property is theJA K -property (cf. Semberf], Sember and Raphaét']).
Remember, for any-space F, 7r) containingy, the notation

Eyar = {xEE | Zwkek?x(TE)},

keF

Example 3.6.In the situation of (2.4) we have

Ebvr — o) .— {u cw | VeeE: Z Z(t“f —tio1 k) URTE
i |k

whereF is the collection of all finite subsets df directed by the set inclusion.

From Theorem 3.3 we derive:
(E,7(E, EY)) is barrelled if and only if the implicatiol? C F = E C Fyax
holds for everyl’ K-spaceF.

The following corollary is an immediate consequence of Theorem 3.4.

Corollary 3.7. The implicationF C F' = E C Fyak holds for every separable
FK-space F if and only if (E,7(E,E®)) has the UAK-property and
(B, o(E*, F)) is sequentially complete.
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Example 3.8.Let A be the sequence of the matricé€) = (a )) k With

, Lofr<k< —1
)::{8 Hrsiesran-—L (n,k € N).

otherwise,

We define

S:=fs —{zew | db, e K: hmZankZzz_b unlformlylnreN}

=1

and putf->", z; = b, whenz € fs. Note thatS = 7! f, wheref stands for the
BK-space of all almost convergent sequences. We have

ES = Efs = {u6w | Vo eE f—Zukxk exists},
i

and particularlypv/* = fs in the casell = bv. Now, if we puts(z) := f=>", 2
(z € fs), thens has the representation (2.6) with= (A("Y).
If F'is aK-space containing, then

r+n—1 k
Fap(rs = {TE€w | < D> me > is bounded inF
k=r =1 n.r
1r+n 1 k
:{a:€w|Vf€F’:sup x;f(e }
n,r |1
’ k=r i=1

k

inf(e) <oo} = Fyp.
i=1

We introduce the propertiesS AK and f AK with respect taF’ as follows:

= {x€w|Vf€F’ : sup
k

Frsak = Fysk
= {:z:EF|Vf€F’ urr € fs and f(r) = f — Zxkf }

Frak = Fak(ss)
r+n 1 k .
= {:E€F| Z Za:l i) — z(1R) uniformlyianN}.
k=r =1

Note that the f AK-property, that is,the almost sectional convergence
differs from the AK-property: |If, for instance,E :=cp with B:=X"1,
thene = (1,1,1,...) belongs to(cg)fax but not to (cp)ax = co. For a
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matrix A = (a,) the corresponding quasi-matrix m&pis defined by2lx =
(f=>_k ankxr)n. From Theorems 3.2 and 3.3 we conclude:

Theorem 3.9. For a sequence spadé containingy the following statements are
equivalent

(@) (E,7(E, E'%)) is barrelled.

(b) Any quasi-matrix mapl : (E,7(E, E%)) — F, v+ (f=Y_4 ankTi)n IS
continuous whenevdr is an F K-space.

(c) The implication®’ C F' = E C Fysax holds wheneveF' is anF'K-space.

(d) The implication’ C F' = E C Fyax holds wheneveF' is an F'K-space.

Remark 3.10. Theorems 3.2 and 3.3 and the corresponding assertions in Examples
3.5, 3.6, and 3.8 (including Theorem 3.9) remain true if we repldch “space”

by “A,-space”. Analogously, in Theorems 3.1 and 3.4 and in the corresponding
statements in 3.5 and 3.6 we may replace “separglilespace” by 'L -space”.

4. AK (S)-BARRELLED SPACES

If £ is a K-space, then we have C FE’, that is, more precisely,
span{m, | n € N} C E'. Moreover, if (E',o(E', E)) is sequentially complete
(in particular, if E is barrelled), thenE® c E’, that is, for eachu € EP, the
linear functional, defined by — ", uixy, is continuous orE. Obviously, the
sequential completeness OF',o(E’, E)) is not a necessary condition for that
inclusion. The aim of this section is to give a topological characterization of the
inclusionE® C E’, whereS is a BK-space equipped with a susme S’ given by
(2.1) and (2.3)In addition, we assume thatis an AK (S)-space.

Let £ be aK-space containing. Let U be a barrel inE and letEy denote
the seminormed spac¢é, pyy), wherepy; is the Minkowski functional with respect
toU.

Definition 4.1. A barrel U in a K-spaceF is called anAK (S)-barrelif Ey; is an
AK(S)-space.

Let U® denote the polar of” with respect to the dual pai#, E*), where E*
is the algebraic dual af. Then we havet,; = span U® for each barrelU in E.
Now, if U is anAK (S)-barrel, then

Vee EyVfeE;: upzesS and f(z) = s(usz).
Thus,U® c E¥ and
limy sup,cpe limper D vopur(z — Py(x))x| = lim, py(z — Py(z)) =0
for each z € F.

Let nowu € E¥ be fixed. We putB := {P,(u) | v € T} C ¢ andU := B°,
where ° stands for the polar with respect to the dual pék, E’). Since
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S is an AK(S)-space,{so P, | v € I'} is bounded in(S’,o(5’,5)). Hence
sup,, |(x, Py(u))| = sup,, |s o P, (ux)| < oo for eache € E. ThenBis o (E', E)-
bounded; thué/ is a barrel inE. Moreover,

pu(x — Fp(x)) = sup [s(y(z — Fp(x)))| = sup|s(Py(u)(z — Py(x)))|
yeBe° Y

= sup limZvnkvvkuk[:ﬁ — Py(x)]k
¥ T]GF &

= sup Zvyk[ux—Pp(ux‘)]k
Tk

= Hu:E—Pp(u:U)HS T 0

for eachr € E. Therefore[J is anAK (S)-barrel. We summarize our observations
in the following proposition.

Proposition 4.2. Let E be aK-space withp C E. Then for every, € E°, the
polar {P,(u) | v € I'}° isan AK(S)-barrel in E.

Definition 4.3. A K-spaceFE containingy is said to beA K (S)-barrelledif each
AK(S)-barrel in E is aTg-neighbourhood of0.

The following theorem answers the question stated above.

Theorem 4.4. For any K-spaceFE with ¢ C FE the following statements are
equivalent

(a) E° C FE', i.e., the functionaldefined byr — s(ux), is continuous onF/
for eachu € E°.

(b) (E,7(E,E")) is AK(S)-barrelled.

(©) {Py(u) | v € T}is7(F, E')-equicontinuous for each € E°.

Proof.

(@ = (b): Let ESCE' and let U be an AK(S)-barrel in E. Then
U° c U® c ES. We have to prove the(E®, E)-compactness of/°. Since in
K-spaces compactness and sequential compactness coincidé®{cfThgorem
3.10), it is sufficient to show thdf® is o(E*, E)-sequentially compact ifv.

Tothat end, lefa(™) with o™ = (a{""), be a sequence i°. Itis o(ES, E)-
bounded and therefore coordinatewise bounded. Thus, without loss of generality,
we may assume thau(™) converges coordinatewise to an € w. We have
sup,, |s(a™z)| < oo (z € E), thereforeE C mg, where2l is the quasi-matrix

map defined by the matriz := (a,(i”)). We show thaty C (ma() Ak (s)- Obviously,
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for everyz € mg we have
T € (ma)ak) <= () sup |s(a!™ (z — Py()))] 7 0,
O
(i)  rp(z — Py(x)) - 0 (keN).

™My — P,Y(a(”):c)HS - 0 (neN),

Thereby, condition (iii) is clearly satisfied, and (ii) holds by th& (.S)-property
of S. SinceU is anAK (.S)-barrel, condition (i) is satisfied. Namely,

s%p ‘s(a(”) (z — Py(z)))| = sup

n

. (n)
})lenll Ek: Vpkay, [ — Py(x)]k

< sup
veU®

li;n Z VpkUk[T — Py(x)]k
k

= pu(z — Py(z)) 7 0.

Altogether, E. C  (ma)ax(s) = (ca)ar(s) C (ca)sk. Thenar € S and
limy x = s(ax) for eachz € E. This impliesa € ES anda™ — a(c(E®, E)).
HencelU°® is o(E®, E)-sequentially compact.

(b) = (c): By Proposition 4.2{P,(u) | v € T'}° is an AK(S)-barrel for
eachu € E°. On account of (b) it is ar(E, E')-neighbourhood oD; thus
{Py(u) | v €T} isT(E, E')-equicontinuous.

(c)= (a): Letu € E° then{P,(u) | v € T} is 7(E, E')-equicontinuous.
For eache > 0 there exists ar(FE, E’)-neighbourhoodV of 0 in E with
1>k vykurxk| < € (x €V, v € T). Thatyields|s(ux)| = |lim,, >, vypupzr| <
e (z € V), which proves that the linear functional, defined by— s(ux), is
continuous ol E, 7(E, E")). O

It is an easy task to verify Theorem 4.4 for the particular sp&tces ¢y and
S = bup discussed above. We consider here the two most important special cases
of (1.2) and (2.5).

If S = cs, AK(S)-barrels are said to bd K-barrels (cf. Schaefef]). A
barrelU in a K-spaceF is an AK-barrel if and only ifU® ¢ E® and the series
>k ukzy, converges uniformly ine € U® for eachz € E. The AK-barrels differ
from the other barrels by their “toleration” of the sectional convergencs.itfa
neighbourhood basis 6fin £ consisting of barrels, thef is an A K-space if and
only if eachU € B is an AK-barrel. This yields that the stronge4# -topology
on a sequence spade is defined by the neighbourhood ba#s of 0, where
By := {UCE |U isao(E, E°)-AK-barrel} (cf. [°]). So we can formulate
Theorem 4.4 in the special caSe= cs.
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Theorem 4.5. For any K-spaceFE containing ¢ the following statements are
equivalent

(@ E° c E.
(b) (E,7(E,E")) is AK-barrelled.
(c) {ul™ | n € N}is 7(E, E')-equicontinuous for each ¢ E°.

In the caseS = ¢, AK(S)-barrels are called/AK-barrels. A barrelU in a

K-spaceE is aUAK-barrel if and only ifU® C E“ and the serie$ ", u,xy
converges unconditionally and uniformly ine U® for eachx € E. Obviously,
FE is aUAK-space if and only if there exists a neighbourhood basisaainsisting
of UAK-barrels. The stronges$fA K -topology on a sequence spakds defined
by the neighbourhood basis @tonsisting of alb (E, E*)-UAK-barrels. By that,
Theorem 4.4 has the following form:

Theorem 4.6. For any K-spaceFE containing ¢ the following statements are
equivalent

(@ FE~“CFE.

(b) (E,7(E,E")) is UAK-barrelled.

©) {3 perure® | F € @} isT(E, E')-equicontinuous for each € E.
(d) {ul” | n € N} is7(E, E')-equicontinuous for each € E°.
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Jadaruumide duaalsed paarid. Il

Johann Boos ja Toivo Leiger

Autorid jatkavad varasemas to04] [alustatud duaalsete paarider, £°)
uurimist. E tahistab jadaruumiS on selline K-ruum, milles on defineeritud
Ruckle’i Uldistatud summa, ja E° on vastavate faktorjadade ruum. Siinses
artiklis on vaadeldud kdige sagedamini esinevat erijuhtu, kus summa on esitatud
kujul s (2) = lim,, », vyr2k (2 € S), indeksitey hulk I' on suunatud jadv,z ),
on igay € I' puhul 16plik jada. Niisuguse esituse abil on defineeritud jadade
S-16iked ning uuritud nende koonduvuSt K (5)) ja tokestatust AB(.S)) min-
gis K-ruumis E. Selles kontekstis on tdestatud kdigepealt tuntud Bennetti—
Kaltoni sisalduvusteoreemid. Teiseks, lahtudes Schaeferi “ldikekoonduvustinni”
(section convergence barjemd@istest, on defineeritudi K (S)-tinniruumid ja
tdestatud, et Mackey -ruum E on AK (S)-tunniruum parajasti siis, kui kehtib
sisalduvuskE® C E’. Artikli pohitulemuste rakendamisel saadakse rida véiteid
Kothe—Toeplitzi kaasruumide ja IBigetega seotud omaduste kohta konkreetsetes
situatsioonides, naitek$(7")-kaasruumi jaST K -omaduse seostest (need mdisted
on tuntud Buntinase ja Meyersi toodest).
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