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Abstract. We consider the well-known convexity theorem proved by M. Riesz in 1923, which
gives certain convexity conditions for Riesz summability meth@@lsa). Later on different
authors have extended this theorem by modifying the convexity conditions and the definition
of methodq R, o). Our aim is to extend the convexity theorem of M. Riesz to a wider class of
summability methods and, afterwards, apply it to the estimation of the speed of summability.
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1. INTRODUCTION AND PRELIMINARIES

Let us consider the functions = ¢(u) defined foru > 0, bounded and
measurable by Lebesgue on every finite intefal,,]. Denote the set of these
functions byX.

SupposeA is a linear transformation of functions = ¢£(u) € X (or, in
particular, sequences= (¢,)) into functionsAz = n(u) € X.

If the limit lim,, .o, n(u) = n exists, we say that = £(u) is summable te by
the summability method!. If the functionn(u) is bounded, we say that= &(u)
is bounded by the methadl.

The most usual summability method for functions is an integral method defined
with the help of the transformation

o) = [ alwv)é) o
wherea(u, v) is a certain function of two variables> 0 andv > 0.
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Denote byw A the set of all these functionse X, where the transformatios
is applied, and by A the set of all functions which are summable by the method
The summability method! is said to be regular if

lim {(u) =§ = uhjglo n(u) =&,

U—00

whenever: € X.

Our paper concerns the well-known convexity theorem proved by Riesg in [
Let us present it here.

Consider the Riesz methodsl, = (R,«) defined for the functions
z = &(u) € X by the transformation

«

Na(u) = — /Ou(u — ) Y (v) dv (u>0),

UO(

wherea > 0 (see [], Section 5.14). We denote

€alu) = /0 (u— U)a_lﬁ(v) dv, (1.2)
wherez = £(u) € X. So, we havé, (u) = (u*/a)n.(u).

Suppose everywhere in this paper that= U(u) andV = V(u) are two

positive, monotonically increasing functions on the inteflabo) and denote

Wa(u) = [U(u)]' = OV ()]*/? (1.2)
forg > a > 0.

Theorem A (Convexity theorem of M. Riesz)For the family of method§R, «)
the implication$

(1) &u) = O0M)U(u), &a(u) = OV (1) = &alu) = O(1)Wga(u),
(2) &(u) = O(M)U(u), &p(u) = o)V (u) = &alu) = o(1)Wpa(u),
3) &(u) =o(MU(u), &p(u) = OV (u) = &alu) = o(1)Wpa(u)

are true forallg > o > 0andx = £(u) € X asu — oc.

and

The original proof of this theorem is given in][ but its English version can
be found in $]. Later on Convexity Theorem A was generalized and modified
by several authors. The modifications of this theorem with different weaker
restrictions on the functions = U(u) andV = V' (u) can be found, for example,
in[*7].

1 Throughout our paper the coefficients@{1) ando(1) conditions may depend on values
of the parametersa, 5 (and~v). We do not point it out with indices without special need.
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In the present paper we are not going to improve the conditions on the
functionsU = U(u) andV = V(u). Also, we do not consider the modifications
of Theorem A for matrix methods (se&]). We focus ourselves on widening the
class of the considered summability methods and on possible applications of this
theorem. We shall extend Theorem A to a wider class of summability methods —
the Riesz-type families — and apply it to the estimation of speeds of summability.
Next we will introduce (se€’['?]) the notions of convergence, boundedness, and
summability of functions with speed.

Suppose\ = A(u) is some positive, monotonically increasing function defined
on the interval0, oc[. In the sequel we need the following notatiéns

= &) e X | £(u) =0()},

=¢(u) € X | Jim. £(u) exists},
co={z=¢&() e X | lim {(u) =0},
m = {z =€) € ¢ | Aw)l&(w) — lim £(u)] € m},
t={z=¢(u) €c | M) - lim &(u)] € c},
co = {z = ¢&(u)

A functionz = £(u) is said to be summable by the methddvith the speec

(shortly A*-summable) ifAz € ¢*. A functionz = £(u) is said to bed*-bounded
if Az € m?.

w) € e | MwlE(u) — lim &) € co}.

2. RIESZ-TYPE FAMILIES OF SUMMABILITY METHODS

Let {A,} be a family of summability methodsl, given by linear trans-
formations of functions: = £(u) € wA, C X into functionsA,z = 7o (u) € X,
where« is a continuous parameter with values> «g («g is a fixed number).
Suppose in the sequel thatl, C wAg forall 5 > a > «y.

Definition 1. A family{A,} (o > «yp) is said to be a Riesz-type family if for every
z=¢&(u) € wA, C X andf > a > «op the methodsl,, and Ag are connected by
the relation

) = 5% [ eme e w0, @Y

whereb, (u) € X, bo(u) > 0,and M, is a constant depending enand 3.

2 The notationsn, ¢, ¢y, m*, ¢*, andc are usually used for sets of sequences (58 [
but by analogy we use them here for functions.
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In other words, a Riesz-type fami{y4d,, } is a family where every two methods
A, and Ag are connected by the relation

Ag = Dypo A, (B> a>a), (2.2)

whereD, is an integral method defined with the help of the functions

M
o (u—v)" b, (v), if 0<w<u,
dap(u,v) = { bp(u) (2.3)
0, if v>u.

Notice that the Riesz summability methods = (R, «) form a Riesz-type
family with b, (u) = u®, a > 0, and

rp+1)
MNa+1)I'(B—a)

My = (2.4)

whereI'(-) is the gamma-function.
Indeed, it is known that the method®, «) and (R, 3) are connected by the
relation

ng(u) = ]Zg /Ou(u — v)ﬂ*aflvana(v) dv (6>a>0)

(see F], Section 5.14).

Also, the family of integral Noérlund method$, = (IV, pa(u), ¢(u)) (o > 0),
defined with the help of the positive functiopéu) € X andq(u) € X (see []),
can be considered as a Riesz-type family.

A functionz = £(u) € X is said to be summable by the integral Norlund
methodA, = (N, pa(u), g(u)) if the limit

i ) =
exists, where
() = o | polu— e @0, @8
a > 0, and
Palu) = /0 (u— )2 p(v) do
and
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Notice that herevA, = X forall o > 0.

If p(u) = ¢(u) = 1, then Norlund method§N, p,(u), ¢(u)) become Riesz
methody R, a + 1).

It is known (see ']) that the Norlund methoddl, = (N, ps(u), ¢(v)) and
Ag = (N,pg(u),q(u)) are connected by the relation

) = St [ R ) de (3> a>0) @

and the functions®, (u) and Pg(u) are connected by the relation

Po(w) = Morsen [ w0 Ra0) e (5> 0> 0),

whereM,_1 g is defined by the formula (2.4).

The relations (2.1) and (2.6) show that the family of Nérlund summability
methods forms the Riesz-type family with(u) = P, (u).

A survey of the research on integral Nérlund meth@sisp(u), 1) can be found
in recent papers'f] and ['3].

Remark 1. Note that further Riesz-type families can be constructed, for example,
as follows:

(i) Let {A,} be a Riesz-type family andl be a summability method such
that Az € wA, forall z € wA anda > «ap. Then also the family{ B, } with
B, = A, o Ais a Riesz-type family. In particular, this way the normal Riesz
methodsB,, = (R, p, @) (o > 0) for summing sequences= (&, ) can be defined
(see ], Section 4.16). Herd,z = A, (Ax) with

Axr = n(u) — ZZZO §k7 if Pn < U < Pn+1,
0, it u < po,

where0 < pp < p1 < p2 < p3--- < pp, — o0 andA4, = (R, a).

(i) Let D, be the integral methods defined by (2.3), dhxr € X (z € X)
forall 3 > a > ap, and A be a summability method. Fix and define
Ag = D,p30 A. Then{Az} is a Riesz-type family witht > .

(i) Let {A,} be a Riesz-type family and,(u) be some functions with
ca(u) € X, co(u) > 0 andb,(u)/co(u) € X. Then the family{B,}, where
Bax = co(u)ne(u) andny (u) = Aqz, is a Riesz-type family too.

Proposition 1 gives us the conditions for regularity of methbds.
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Proposition 1. Let D,g (8 > a > ag) be the integral methods defined (3),
whereb,, (u) € X andb,(u) > 0. If forall 5 > a > «g the equality

bg(u) = Mg /Ou(u — )P by (v) dv (u>0) (2.7)

holds then all method®,, 3 are regular.

Proof. Due to Theorem 6 in?], it is sufficient to verify that the conditions

Vo

uan;O ; dop(u,v)dv =0 (2.8)
for every finitevy > 0,
ull)rgo Ou dop(u,v)dv =1, (2.9)
and
/Ou dop(u,v)dv = 0(1) (u>0) (2.10)

are fulfilled for the method®,,s.

Notice that the conditions (2.9) and (2.10) are satisfied due to (2.7).

So we need to verify only the condition (2.8). Fixiad = (o + «p)/2 and
supposing < vy < u, we have by the condition (2.7) that

Mp(u— v)B= 1, (v) _ Myp(u — v)B= 1, (v)
bs(u) Myg [o (u— )= "1by (v) dv

daﬁ(u, ’U) =

(u — v)P= by (v)
Jo (u—v)B=2"=1byr (v) dv + [} (u —v)B="Lby (v) dv

(u— )" by (v)
f(;uo (u —v)B="—1p (v) dv

(u— )7~ 1ba (v)

= O, (1 ;
O( ) uﬂ—a _1boc’+1(7)0)

vyp-a-1l 1
= O (1) (1_E> ga—a 0

(uniformly for v < vy asu — o). Hence, the condition (2.8) is also fulfilled.d
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The next result follows directly from Proposition 1 and the relation (2.2).

Proposition 2. Let{A,} (a > «p) be a Riesz-type family. If the conditi¢®7)is
fulfilled, then the inclusion

cAy C cAg (B >a>a) (2.11)
is true, i.e. the implication

lim no(u) =n = lim ng(u) =17 (B>a>a)

U—00

holds for everyr € cA,.

Notice that for the methodd,, = (R, «) andA, = (N, pa(u), q(u)) (> 0)
the conditions of the last proposition are satisfied Wijtkw) = v® andb, (u) =
P, (u), respectively, and thus (2.11) holds.

3. CONVEXITY THEOREMS FOR A RIESZ-TYPE FAMILY

In this section we will extend Theorem A to a Riesz-type family and interpret
it from the point of view of summability with speed.

Theorem 1. Let {A.} (o > o) be a Riesz-type family arid,z,(u) be defined
by

Wagn(w) = [U ()] /O ()] 0701070 (ag < a <y < ). (3.2)

Then the implications
(1) ba(u)na(u) =01)U(w) and  bg(u)ng(u) =O(1)V(u)  imply
by (u)ny(u) = O(1)Wagy (u)
(2 ba(wna(u) =0()U(u) and  bg(u)ns(u) =o(1)V(u)  imply
by (w)ny(u) = o(1)Wagy (u)
and
() ba(u)na(u) =o(1)U(u) and  ba(u)ng(u) = O(1)V(u)  imply
by (w)ny(u) = o(1)Wagy (u)
aretrue forallg > v > a > agandxz € wA, asu — oo.

)

)
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Proof. Theorem 1 will be proved with the help of Theorem A. Denote first
C(u> = ba(“)ﬂa(“% (32)
uw=p—«a,p=+—«and afterwards (cf. (1.1))
) = [ =0y do (3.3)

and

() = /0 (= 0)* ¢ () do. (3.4)

Now we can apply Theorem A t¢(u) andp > ¢ > 0 (instead of¢(u) and
6> a>0).
Let us prove our implicatioiil). Implication(1) of Theorem A gives us:

¢(u) = 0M)U(u), &u(u) = O(L)V(u) = &u(u) = O(1)Wyp(u),  (3.5)
where the functionV,,(u) has by (1.2) the form
W (1) = [U ()] 1=V ()] = [U ()] P~/ B0 [y (1)) =0/ (=)
= Wapy(u) (a0 <a <y <f).

Now we shall show that the implication (3.5) can be rewritten as implication
(1) of our theorem. Really, by (2.1), (3.2), and (3.3) we get that

bg(u)ns(u) = Mag /Ou(u - v)ﬁ_o‘_lg(v) dv

= Mo [ (=07 0) do = Moyl
Analogically, by (3.4) we get

by (u)ny(u) = Mo ato€p(u).
Thus, the implication (3.5) can be seen as our staterient The other two

implications can be proved in the same way with the help of implicati@hsind
(3) of Theorem A. O

Convexity Theorem 1 can be applied to the estimation of speeds of summability
in a Riesz-type family.
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Let us denote

Aalu) = 1;;((3)) (3.6)
sl = 2. 37)

and
Wopy(u) = V;:;j()u), (3.8)

where bs(u) € X are functions defined by the Riesz-type familyl,} and
Wags+(u) is defined by (3.1).

Theorem 2. Let {A,.} (o > ap) be a Riesz-type family satisfyindor all
B > a > ap, therelation(2.7). Suppose the functions, (u), pg(u), and ¥,z (u),
defined by formulag3.6)—(3.8) are monotonically increasing for sornge> ~ > «.
Then the implications

(1) Ay € mie, Agr e mt® — Az € mYes,

(2) Apz € mie, Agx € cgﬁ == Az € cgl“’(”,
and

(3) Az € CS‘”, Agremh? — Axc cgjaﬁ"
are true.

For proof of this theorem we need

Proposition 3. Let {A,} (o« > «ag) be a Riesz-type family satisfyintpr all
B > a > ag, the relation(2.7) and the functions\, (), ps(u), and ¥,z (u)
be defined by3.6)—(3.8) Then the implications

(D) Aa(w)[na(u) —n] = O() and  pg(u)[ng(u) —n] = O(1) imply
Wapy (u)ny(u) —n) = O(1),

(2) Aa(W)[na(u) —n] = O@1) and  pg(u)[ng(u) —n] = o(1) imply
Wagy(u)[ny(u) —n] = o(1),
and

(3) Aa(w)[na(u) — 1] = o(1) and  ps(u)[ns(u) — n] = O(1) imply
Yagy(u)[ny(u) — 1] = o(1)
are true forallg > v > a > ag,n € Randz € wA, asu — oc.
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Proof. Here we will use Theorem A again. Let us denote

¢(u) = ba(u)[na(u) —nl, (3.9)
i =3 —«aandp =+ — a. Using the relations (2.7) and (3.9), we get

bg(u)ns(u) —n] = bg(u)ns(u) — bs(u)n

= Mg </Ou(u —0)P7 0 by (V) (v) dv — /Ou(u — )7 1, (v)n dv)

= Mg /Ou(u — v)ﬁ—a—lg(v) dv = Ma,atp /Ou(u — o)L (v) do

= Maa+p€pu(w).

Now we can apply Theorem A Q(u) andu > ¢ > 0.

Implication (1) of Theorem A says that (3.5) holds, with (u) and {,(u)
defined by (3.3) and (3.4).

By (3.9) and (2.7) we get

by (W) [y (u) — N = Maa+p8p(u).

Thus, the implication (3.5) can be rewritten as implicatjopof our Proposition 3.
Implications(2) and(3) can be proved in the same way by using implicati¢®s
and(3) of Theorem A. O

Now we are able to prove Theorem 2.

Proof of Theoren2. Notice first that implications (1)—(3) of Proposition 3 are true.
If Ayz € m*= or Ayz € ¢)*, then the limitlim,, o, 1 (u) exists, and

Ao () 1) — lim 7o (w)] = O(1)
or
No (1) (1) — lim 70 ()] = o(1),

respectively. By Proposition 2 al$in,, . 1g(«) andlim,, .« 7+ (u) exist, which
are equal tdim,,_,~ 1, (u). To prove Theorem 2, it remains to apply implications
(1)—(3) of Proposition 3 with

n= lim ne(u) = lim ng(u) = lim 7, (u).

uU— 00 uU— 00 U—0o0

Remark 2. As we have already told, the restrictions on the functibiis) and
V(u) in Theorem A have been modified by different authors. Although our paper
is not focussed on improving conditions on the functidn&:) and V' (u), our
discussion above shows that Theorems 1 and 2 remain true whenever Theorem A
remains true. In other words, our theorems remain true for all these conditions on
the functiond/ (u) andV (u) which are available (for implications) in Theorem A.
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4. THE COMPARATIVE INEQUALITIES FOR SPEEDS OF
SUMMABILITY

Supposg A, } (o > «g) is a Riesz-type family andl, (u), pg(u), and¥ g ()
are functions defined by (3.6)—(3.8).
In this section we shall prove some comparative estimations for these functions.

Proposition 4. Let {A,} (¢« > «p) be a Riesz-type family satisfyintpr all
B > a > «p, the condition(2.7). Let the functionb,(u) be monotonically
increasing for alla > o9 and the functions\, (u), pg(u), and ¥,z (u) (u > 0)
be defined by3.6)—(3.8) Then the inequalities

7 B-/(5—a)
4 )] () < Vo ()

5007 [0

4.1)

hold forall 3 > v > a > ap andu > 0 (S,3 and T, are suitable positive
constants.

Proof. Using the relation (2.7) and monotony of the functigriu), we get

M,p _
ba(u) < b (u)uf . 4.2
p(u) < G- (u) (4.2)
Let us prove the right-sided inequality in (4.1) with the help of inequality (4.2):
50 (1) = by (u) < Morbo (w)u? = U(u)
ST Wy (w) = (3 = a)[U ()] F=0/G=o)V ()] 6=)/(B=0) U (u)
L [U() (v—a)/(B—)
= oo
Toyu [V(u)] Aa(u).

Using again the inequality (4.2), we can prove also the left-sided inequality in (4.1):

by(w) by()(B ) V(w)

Wapy(u) = Wagy(w) = MyauP=7[U(u)] 5=/ (=) [V (u)| =)/ (B=) V (u)

V(u)] (B=7)/(B—a)

=507 |70

pp(w).
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Proposition 5. Let {A,} (@« > «p) be a Riesz-type family satisfyintpr all
6 > a > ag andu > 0, the condition

=
~—

Ka ﬁ—a < ﬂ(u
P = ()

Then the functiong (u), ps(u), and ¥, (u), defined by(3.6)—(3.8) satisfy
the inequalities

< Naﬁuﬂ_a' (43)

KO‘ﬁ'Y P\a (u)](ﬁ—’Y)/(ﬂ—a) [#ﬁ(u)](w—a)/(ﬁ—a)
< Uopy(u) < Nagy [)\a(u)}(ﬁfv)/(ﬁfa) [Mﬁ(u)](%a)/(&a) (4.4)

forall 8 > a > ap andu > 0.

Proof. It follows from the relations (3.6)—(3.8) that

\Ijaﬂ’y (u)

—y —a Y—a —o b (U)
= P ()] g )]0 )[ba(u)](ﬁ—w)/(ﬁ—z)[bﬁ(u)](w—a)/(ﬁ—a)'

The condition (4.3) implies the inequalities

b'Y (U) < Naﬁ'y

Ry S B [T [y ()] 6= =) =

and therefore the condition (4.4) is satisfied for@atk v > a > «y. O

Proposition 6. Let {A,} (@« > «p) be a Riesz-type family satisfyintpr all
B > a > ap, the relation(2.7). Let the functiorb, () be monotonically increasing
for everya > «ag and the function$/(u) and V' (u) satisfy the condition

Vu) > MU@u)u’  (u>0) (4.5)

with somes > 0. Then the functions,(u), ug(u), and ¥,z (u), defined by
(3.6)—(3.8) satisfy the inequalities

Kapyps(u) < Wapy(u) < NagyAa(u) (u>0) (4.6)

foralla+d6d=0>v>a> ap.
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Proof. Using (3.6)—(3.8), (2.7), and (4.5), we get

0 [ () 70—/ (B—2)
W (1) = Ao () 1) [U( )}

ba(u) |V (u)
M, . U(u) (y—a)/(B—a)
R ey [MU(u)uﬁ} = Negralu).

Thus, the right-sided inequality in (4.6) is proved. The left-sided inequality in (4.6)
can be proved analogically:

0 [V ()] (B—7)/(8-0)
Vagy(u) = pp(u) Z;Eu; [ZEU;]

(ﬁ _ '}/) MU(u)uﬁfa (B=7)/(B—)
My guP= [ U(u) }

> jigu) — Ko pis(u).

O
Remark 3. Propositions 3, 4, 5, 6, and Theorem 2 remain true if we replace

the functionsh\, (u), ng(u), and¥ s, (u), defined by (3.6)—(3.8), by those which
satisfy the inequalities

and

by(w)
» Wagy(w)

whereqy < a < v < gandu > 0.

by (u)

Sy —
o Wagsy (u)

< \I/ozﬁ’y(u) <7,

5. SOME EXAMPLES ON ESTIMATION OF SPEEDS OF
SUMMABILITY

To complete our paper, we give some numerical examples as illustrations to our
results.

Let {A,} be a Riesz-type family obeying (2.7) for &l > o« > ap, and
A = A(u) andu = p(u) be any two speeds of summability. For example, statement
(2) in Theorem 2 can be reformulated in the form of the following proposition if
we takel = A\, (u) andp = pg(u).
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Proposition 7. Suppose that for some function= £(u) and numbersy and 3

(8 > a) we have
A

Az €m
and
Ag.%' < Cg,
whereX = A\(u) andp = p(u) are such speeds that the functions
ba (w)
U(u) = ) (5.1)
and
bs(u)
V(u) = 5.2
W) =~ (5.2)

are monotonically increasing far € [0, c0). Then
L2
Az €y

for v € (a,B) provided that¥.g,(u), defined by(3.8), is monotonically
increasing.

Example 1.
(a) Let us consider two Riesz methads, o) and(R, 3), whered < a < f3
and two speeds of summability= A(u) andu = p(u).
Suppose that
Agz € m?, Agz € cff

for some functionr = £(u).
We will estimate the speed of summing functioby the method R, ), where

7 € (o, 8).
As b, (u) = u® for Riesz methods, by (5.1) and (5.2) we get
uO{
Y= 3w
and
B
u
Vu)= ——
(u) e

If the functionsU = U(u) andV = V(u
have by Proposition 7 that

are monotonically increasing, we

Ayx € CO‘IJC“B7
forv € («a, 3), where
Uop,(u) = [A(w)] B0/ B=e) [ ()] =)/ (B=e) (5.3)
by (3.8) (see also Proposition 5).

31



(b) For a numerical example we choose first the spegds = «® and
w(u) = udlogu and afterwards the numbers = 8, 3 = 11, andy = 10. In
this case we have the monotonically increasing functions

Uu) =1
and
3
U
|4 = .
() log u
So, we have
Agz € m?, Ajz € = Az € 051/8,11,107
where
W 11.10(w) = u®log?3 u
by (5.3).

This example illustrates also Propositions 4 and 5.

Example 2. Here we consider the Norlund methodg = (V, pa(u), g(u)) (see
(2.5)), wherep(u) = w andg(u) = /u.

(@) Let us have two methodsd, = (N,pa(u),q(u)) and Ag =
(N,pg(u),q(u)) with 0 < a < [ and two speeds of summability = A(u)
andu = p(u).

Suppose that

Agz € m), Agz € cff

for some functione = £(u).
Estimate the speed of summability of functiom by the method
A, = (N,py(u),q(u)), wherey € (a, 5). We will use Proposition 7 again.
First we find the functiong, (u) and P, (u) (o« > 0). Integrating by parts we
get
U U ua+1
Palu) = /0 (u —v)* p(v) dv = /0 (u— ) todo = aatl)

Now we can find the functiod®, (u):
Pai) = [ palu=vato) o
B u (u _ U)a—H B § ua+5/2
_/0 ala+1) Vodv =B 2,a+2 ala+1)’

whereB(-, -) is the beta-function.
AS by (u) = Py(u), by (5.1) and (5.2) we can take

u®t5/2
Au)

Uu) =
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and
uB+5/2

p(u)

If the functionsU = U(u) andV = V(u) are monotonically increasing, by
Proposition 7 we have

Vasy
Az € ¢y

for vy € (o, 8), whereW¥ 5., (u) is defined by (5.3).
(b) In particular, choosing the speedéu) = u* and u(u) = u°logu and
afterwards the numbers = 3, 5 = 6, andy = 4, we get the monotonically

increasing functions
34+5/2
u
Ulu) = —— = u®/?
(W) = =
and
ub+5/2 W2

Viu) = = .
() ulogu  logu

Thus, we have

v
Azz € m, Agz € df = Ayx € ¢y,

where
\11376,4 (u) = u13/3 10g1/3 u,

by (5.3).
This example illustrates also Propositions 4 and 5.
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M. Rieszi kumerusteoreemist

Veera Pavlova ja Anne Tali

On vaadeldud tuntud kumerusteoreemi, mille tGestas M. Riesz oma'fpos [
See teoreem annab teatavad kumerustingimused Rieszi mené¢fRuste jaoks.
Hillem on mitmed autorid Rieszi kumerusteoreemi Uldistanud, modifitseerides
kumerustingimusi (ntY] ja []) ja ka menetlustéR, ) definitsiooni (nt f]ja []).

Artiklis on Uldistatud Rieszi kumerusteoreemi laiemale summeerimis-
menetluste klassile ja rakendatud seda summeerimiskiiruste hindamisel. Pdhi-
tulemusteks on teoreemid 1 ja 2 koos lausetega 4—6.
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