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Abstract. We consider the well-known convexity theorem proved by M. Riesz in 1923, which
gives certain convexity conditions for Riesz summability methods(R,α). Later on different
authors have extended this theorem by modifying the convexity conditions and the definition
of methods(R,α). Our aim is to extend the convexity theorem of M. Riesz to a wider class of
summability methods and, afterwards, apply it to the estimation of the speed of summability.
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1. INTRODUCTION AND PRELIMINARIES

Let us consider the functionsx = ξ(u) defined foru ≥ 0, bounded and
measurable by Lebesgue on every finite interval[0, u0]. Denote the set of these
functions byX.

SupposeA is a linear transformation of functionsx = ξ(u) ∈ X (or, in
particular, sequencesx = (ξn)) into functionsAx = η(u) ∈ X.

If the limit limu→∞ η(u) = η exists, we say thatx = ξ(u) is summable toη by
the summability methodA. If the functionη(u) is bounded, we say thatx = ξ(u)
is bounded by the methodA.

The most usual summability method for functions is an integral method defined
with the help of the transformation

η(u) =
∫ ∞

0
a(u, v)ξ(v) dv,

wherea(u, v) is a certain function of two variablesu ≥ 0 andv ≥ 0.
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Denote byωA the set of all these functionsx ∈ X, where the transformationA
is applied, and bycA the set of all functions which are summable by the methodA.

The summability methodA is said to be regular if

lim
u→∞

ξ(u) = ξ =⇒ lim
u→∞

η(u) = ξ,

wheneverx ∈ X.
Our paper concerns the well-known convexity theorem proved by Riesz in [1].

Let us present it here.
Consider the Riesz methodsAα = (R,α) defined for the functions

x = ξ(u) ∈ X by the transformation

ηα(u) =
α

uα

∫ u

0
(u− v)α−1ξ(v) dv (u > 0),

whereα > 0 (see [2], Section 5.14). We denote

ξα(u) =
∫ u

0
(u− v)α−1ξ(v) dv, (1.1)

wherex = ξ(u) ∈ X. So, we haveξα(u) = (uα/α)ηα(u).
Suppose everywhere in this paper thatU = U(u) and V = V (u) are two

positive, monotonically increasing functions on the interval[0,∞) and denote

Wβα(u) = [U(u)]1−α/β[V (u)]α/β (1.2)

for β > α > 0.

Theorem A (Convexity theorem of M. Riesz).For the family of methods(R, α)
the implications1

(1) ξ(u) = O(1)U(u), ξβ(u) = O(1)V (u) =⇒ ξα(u) = O(1)Wβα(u),

(2) ξ(u) = O(1)U(u), ξβ(u) = o(1)V (u) =⇒ ξα(u) = o(1)Wβα(u),
and

(3) ξ(u) = o(1)U(u), ξβ(u) = O(1)V (u) =⇒ ξα(u) = o(1)Wβα(u)

are true for allβ > α > 0 andx = ξ(u) ∈ X asu →∞.

The original proof of this theorem is given in [1], but its English version can
be found in [3]. Later on Convexity Theorem A was generalized and modified
by several authors. The modifications of this theorem with different weaker
restrictions on the functionsU = U(u) andV = V (u) can be found, for example,
in [4−7].

1 Throughout our paper the coefficients inO(1) ando(1) conditions may depend on values
of the parametersα, β (andγ). We do not point it out with indices without special need.
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In the present paper we are not going to improve the conditions on the
functionsU = U(u) andV = V (u). Also, we do not consider the modifications
of Theorem A for matrix methods (see [8]). We focus ourselves on widening the
class of the considered summability methods and on possible applications of this
theorem. We shall extend Theorem A to a wider class of summability methods –
the Riesz-type families – and apply it to the estimation of speeds of summability.
Next we will introduce (see [9,10]) the notions of convergence, boundedness, and
summability of functions with speed.

Supposeλ = λ(u) is some positive, monotonically increasing function defined
on the interval[0,∞[. In the sequel we need the following notations2:

m = {x = ξ(u) ∈ X | ξ(u) = O(1)},
c = {x = ξ(u) ∈ X | lim

u→∞
ξ(u) exists},

c0 = {x = ξ(u) ∈ X | lim
u→∞

ξ(u) = 0},

mλ = {x = ξ(u) ∈ c | λ(u)[ξ(u)− lim
u→∞

ξ(u)] ∈ m},

cλ = {x = ξ(u) ∈ c | λ(u)[ξ(u)− lim
u→∞

ξ(u)] ∈ c},

cλ
0 = {x = ξ(u) ∈ c | λ(u)[ξ(u)− lim

u→∞
ξ(u)] ∈ c0}.

A functionx = ξ(u) is said to be summable by the methodA with the speedλ
(shortlyAλ-summable) ifAx ∈ cλ. A functionx = ξ(u) is said to beAλ-bounded
if Ax ∈ mλ.

2. RIESZ-TYPE FAMILIES OF SUMMABILITY METHODS

Let {Aα} be a family of summability methodsAα given by linear trans-
formations of functionsx = ξ(u) ∈ ωAα ⊂ X into functionsAαx = ηα(u) ∈ X,
whereα is a continuous parameter with valuesα > α0 (α0 is a fixed number).
Suppose in the sequel thatωAα ⊂ ωAβ for all β > α > α0.

Definition 1. A family{Aα} (α > α0) is said to be a Riesz-type family if for every
x = ξ(u) ∈ ωAα ⊂ X andβ > α > α0 the methodsAα andAβ are connected by
the relation

ηβ(u) =
Mαβ

bβ(u)

∫ u

0
(u− v)β−α−1bα(v)ηα(v) dv (u > 0), (2.1)

wherebα(u) ∈ X, bα(u) > 0, andMαβ is a constant depending onα andβ.

2 The notationsm, c, c0, mλ, cλ, andcλ
0 are usually used for sets of sequences (see [10]),

but by analogy we use them here for functions.
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In other words, a Riesz-type family{Aα} is a family where every two methods
Aα andAβ are connected by the relation

Aβ = Dαβ ◦Aα (β > α > α0), (2.2)

whereDαβ is an integral method defined with the help of the functions

dαβ(u, v) =


Mαβ

bβ(u)
(u− v)β−α−1bα(v), if 0 ≤ v < u,

0, if v ≥ u.
(2.3)

Notice that the Riesz summability methodsAα = (R,α) form a Riesz-type
family with bα(u) = uα, α > 0, and

Mαβ =
Γ(β + 1)

Γ(α + 1)Γ(β − α)
, (2.4)

whereΓ(·) is the gamma-function.
Indeed, it is known that the methods(R,α) and(R, β) are connected by the

relation

ηβ(u) =
Mαβ

uβ

∫ u

0
(u− v)β−α−1vαηα(v) dv (β > α > 0)

(see [2], Section 5.14).
Also, the family of integral Nörlund methodsAα = (N, pα(u), q(u)) (α > 0),

defined with the help of the positive functionsp(u) ∈ X andq(u) ∈ X (see [11]),
can be considered as a Riesz-type family.

A function x = ξ(u) ∈ X is said to be summable by the integral Nörlund
methodAα = (N, pα(u), q(u)) if the limit

lim
u→∞

ηα(u) = η

exists, where

ηα(u) =
1

Pα(u)

∫ u

0
pα(u− v)q(v)ξ(v) dv (u > 0), (2.5)

α > 0, and

pα(u) =
∫ u

0
(u− v)α−1p(v) dv

and

Pα(u) =
∫ u

0
pα(u− v)q(v) dv.
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Notice that hereωAα = X for all α > 0.
If p(u) = q(u) ≡ 1, then Nörlund methods(N, pα(u), q(u)) become Riesz

methods(R,α + 1).
It is known (see [11]) that the Nörlund methodsAα = (N, pα(u), q(u)) and

Aβ = (N, pβ(u), q(u)) are connected by the relation

ηβ(u) =
Mα−1,β−1

Pβ(u)

∫ u

0
(u− v)β−α−1Pα(v)ηα(v) dv (β > α > 0) (2.6)

and the functionsPα(u) andPβ(u) are connected by the relation

Pβ(u) = Mα−1,β−1

∫ u

0
(u− v)β−α−1Pα(v) dv (β > α > 0),

whereMα−1,β−1 is defined by the formula (2.4).
The relations (2.1) and (2.6) show that the family of Nörlund summability

methods forms the Riesz-type family withbα(u) = Pα(u).
A survey of the research on integral Nörlund methods(N, p(u),1) can be found

in recent papers [12] and [13].

Remark 1. Note that further Riesz-type families can be constructed, for example,
as follows:

(i) Let {Aα} be a Riesz-type family andA be a summability method such
that Ax ∈ ωAα for all x ∈ ωA andα > α0. Then also the family{Bα} with
Bα = Aα ◦ A is a Riesz-type family. In particular, this way the normal Riesz
methodsBα = (R, ρ, α) (α > 0) for summing sequencesx = (ξn) can be defined
(see [2], Section 4.16). HereBαx = Aα(Ax) with

Ax = η(u) =

{∑n
k=0 ξk, if ρn < u ≤ ρn+1,

0, if u ≤ ρ0,

where0 ≤ ρ0 < ρ1 < ρ2 < ρ3 · · · < ρn →∞ andAα = (R,α).
(ii) Let Dαβ be the integral methods defined by (2.3), andDαβx ∈ X (x ∈ X)

for all β > α > α0, and A be a summability method. Fixα and define
Aβ = Dαβ ◦A. Then{Aβ} is a Riesz-type family withβ > α.

(iii) Let {Aα} be a Riesz-type family andcα(u) be some functions with
cα(u) ∈ X, cα(u) > 0 andbα(u)/cα(u) ∈ X. Then the family{Bα}, where
Bαx = cα(u)ηα(u) andηα(u) = Aαx, is a Riesz-type family too.

Proposition 1 gives us the conditions for regularity of methodsDαβ .
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Proposition 1. Let Dαβ (β > α > α0) be the integral methods defined by(2.3),
wherebα(u) ∈ X andbα(u) > 0. If for all β > α > α0 the equality

bβ(u) = Mαβ

∫ u

0
(u− v)β−α−1bα(v) dv (u > 0) (2.7)

holds, then all methodsDαβ are regular.

Proof. Due to Theorem 6 in [2], it is sufficient to verify that the conditions

lim
u→∞

∫ v0

0
dαβ(u, v) dv = 0 (2.8)

for every finitev0 > 0,

lim
u→∞

∫ u

0
dαβ(u, v) dv = 1, (2.9)

and ∫ u

0
dαβ(u, v) dv = O(1) (u > 0) (2.10)

are fulfilled for the methodsDαβ .
Notice that the conditions (2.9) and (2.10) are satisfied due to (2.7).
So we need to verify only the condition (2.8). Fixingα′ = (α + α0)/2 and

supposingv ≤ v0 < u, we have by the condition (2.7) that

dαβ(u, v) =
Mαβ(u− v)β−α−1bα(v)

bβ(u)
=

Mαβ(u− v)β−α−1bα(v)
Mα′β

∫ u
0 (u− v)β−α′−1bα′(v) dv

= O(1)
(u− v)β−α−1bα(v)∫ v0

0 (u− v)β−α′−1bα′(v) dv +
∫ u
v0

(u− v)β−α′−1bα′(v) dv

= O(1)
(u− v)β−α−1bα(v)∫ v0

0 (u− v)β−α′−1bα′(v) dv

= Ov0(1)
(u− v)β−α−1bα(v)
uβ−α′−1bα′+1(v0)

= Ov0(1)
(
1− v

u

)β−α−1 1
uα−α′ → 0

(uniformly for v ≤ v0 asu →∞). Hence, the condition (2.8) is also fulfilled.
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The next result follows directly from Proposition 1 and the relation (2.2).

Proposition 2. Let{Aα} (α > α0) be a Riesz-type family. If the condition(2.7) is
fulfilled, then the inclusion

cAα ⊂ cAβ (β > α > α0) (2.11)

is true, i.e. the implication

lim
u→∞

ηα(u) = η =⇒ lim
u→∞

ηβ(u) = η (β > α > α0)

holds for everyx ∈ cAα.

Notice that for the methodsAα = (R,α) andAα = (N, pα(u), q(u)) (α > 0)
the conditions of the last proposition are satisfied withbα(u) = uα andbα(u) =
Pα(u), respectively, and thus (2.11) holds.

3. CONVEXITY THEOREMS FOR A RIESZ-TYPE FAMILY

In this section we will extend Theorem A to a Riesz-type family and interpret
it from the point of view of summability with speed.

Theorem 1. Let {Aα} (α > α0) be a Riesz-type family andWαβγ(u) be defined
by

Wαβγ(u) = [U(u)](β−γ)/(β−α)[V (u)](γ−α)/(β−α) (α0 < α < γ < β). (3.1)

Then the implications
(1) bα(u)ηα(u) = O(1)U(u) and bβ(u)ηβ(u) = O(1)V (u) imply

bγ(u)ηγ(u) = O(1)Wαβγ(u),

(2) bα(u)ηα(u) = O(1)U(u) and bβ(u)ηβ(u) = o(1)V (u) imply
bγ(u)ηγ(u) = o(1)Wαβγ(u),

and

(3) bα(u)ηα(u) = o(1)U(u) and bβ(u)ηβ(u) = O(1)V (u) imply
bγ(u)ηγ(u) = o(1)Wαβγ(u)

are true for allβ > γ > α > α0 andx ∈ ωAα asu →∞.
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Proof. Theorem 1 will be proved with the help of Theorem A. Denote first

ζ(u) = bα(u)ηα(u), (3.2)

µ = β − α, ϕ = γ − α and afterwards (cf. (1.1))

ξµ(u) =
∫ u

0
(u− v)µ−1ζ(v) dv (3.3)

and

ξϕ(u) =
∫ u

0
(u− v)ϕ−1ζ(v) dv. (3.4)

Now we can apply Theorem A toζ(u) andµ > ϕ > 0 (instead ofξ(u) and
β > α > 0).

Let us prove our implication(1). Implication(1) of Theorem A gives us:

ζ(u) = O(1)U(u), ξµ(u) = O(1)V (u) =⇒ ξϕ(u) = O(1)Wµϕ(u), (3.5)

where the functionWµϕ(u) has by (1.2) the form

Wµϕ(u) = [U(u)]1−ϕ/µ[V (u)]ϕ/µ = [U(u)](β−γ)/(β−α)[V (u)](γ−α)/(β−α)

= Wαβγ(u) (α0 < α < γ < β).

Now we shall show that the implication (3.5) can be rewritten as implication
(1) of our theorem. Really, by (2.1), (3.2), and (3.3) we get that

bβ(u)ηβ(u) = Mαβ

∫ u

0
(u− v)β−α−1ζ(v) dv

= Mα,α+µ

∫ u

0
(u− v)µ−1ζ(v) dv = Mα,α+µξµ(u).

Analogically, by (3.4) we get

bγ(u)ηγ(u) = Mα,α+ϕξϕ(u).

Thus, the implication (3.5) can be seen as our statement(1). The other two
implications can be proved in the same way with the help of implications(2) and
(3) of Theorem A.

Convexity Theorem 1 can be applied to the estimation of speeds of summability
in a Riesz-type family.
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Let us denote

λα(u) =
bα(u)
U(u)

, (3.6)

µβ(u) =
bβ(u)
V (u)

, (3.7)

and

Ψαβγ(u) =
bγ(u)

Wαβγ(u)
, (3.8)

where bδ(u) ∈ X are functions defined by the Riesz-type family{Aα} and
Wαβγ(u) is defined by (3.1).

Theorem 2. Let {Aα} (α > α0) be a Riesz-type family satisfying, for all
β > α > α0, the relation(2.7). Suppose the functionsλα(u), µβ(u), andΨαβγ(u),
defined by formulas(3.6)–(3.8),are monotonically increasing for someβ > γ > α.
Then the implications

(1) Aαx ∈ mλα , Aβx ∈ mµβ =⇒ Aγx ∈ mΨαβγ ,

(2) Aαx ∈ mλα , Aβx ∈ c
µβ

0 =⇒ Aγx ∈ c
Ψαβγ

0 ,
and

(3) Aαx ∈ cλα
0 , Aβx ∈ mµβ =⇒ Aγx ∈ c

Ψαβγ

0

are true.

For proof of this theorem we need

Proposition 3. Let {Aα} (α > α0) be a Riesz-type family satisfying, for all
β > α > α0, the relation(2.7) and the functionsλα(u), µβ(u), and Ψαβγ(u)
be defined by(3.6)–(3.8). Then the implications

(1) λα(u)[ηα(u) − η] = O(1) and µβ(u)[ηβ(u) − η] = O(1) imply
Ψαβγ(u)[ηγ(u)− η] = O(1),

(2) λα(u)[ηα(u) − η] = O(1) and µβ(u)[ηβ(u) − η] = o(1) imply
Ψαβγ(u)[ηγ(u)− η] = o(1),
and

(3) λα(u)[ηα(u) − η] = o(1) and µβ(u)[ηβ(u) − η] = O(1) imply
Ψαβγ(u)[ηγ(u)− η] = o(1)
are true for allβ > γ > α > α0, η ∈ IR andx ∈ ωAα asu →∞.
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Proof. Here we will use Theorem A again. Let us denote

ζ(u) = bα(u)[ηα(u)− η], (3.9)

µ = β − α andϕ = γ − α. Using the relations (2.7) and (3.9), we get

bβ(u)[ηβ(u)− η] = bβ(u)ηβ(u)− bβ(u)η

= Mαβ

(∫ u

0
(u− v)β−α−1bα(v)ηα(v) dv −

∫ u

0
(u− v)β−α−1bα(v)η dv

)
= Mαβ

∫ u

0
(u− v)β−α−1ζ(v) dv = Mα,α+µ

∫ u

0
(u− v)µ−1ζ(v) dv

= Mα,α+µξµ(u).

Now we can apply Theorem A toζ(u) andµ > ϕ > 0.
Implication (1) of Theorem A says that (3.5) holds, withξµ(u) and ξϕ(u)

defined by (3.3) and (3.4).
By (3.9) and (2.7) we get

bγ(u)[ηγ(u)− η] = Mα,α+ϕξϕ(u).

Thus, the implication (3.5) can be rewritten as implication(1) of our Proposition 3.
Implications(2) and(3) can be proved in the same way by using implications(2)
and(3) of Theorem A.

Now we are able to prove Theorem 2.

Proof of Theorem2. Notice first that implications (1)–(3) of Proposition 3 are true.
If Aαx ∈ mλα or Aαx ∈ cλα

0 , then the limitlimu→∞ ηα(u) exists, and

λα(u)[ηα(u)− lim
u→∞

ηα(u)] = O(1)

or
λα(u)[ηα(u)− lim

u→∞
ηα(u)] = o(1),

respectively. By Proposition 2 alsolimu→∞ ηβ(u) andlimu→∞ ηγ(u) exist, which
are equal tolimu→∞ ηα(u). To prove Theorem 2, it remains to apply implications
(1)–(3) of Proposition 3 with

η = lim
u→∞

ηα(u) = lim
u→∞

ηβ(u) = lim
u→∞

ηγ(u).

Remark 2. As we have already told, the restrictions on the functionsU(u) and
V (u) in Theorem A have been modified by different authors. Although our paper
is not focussed on improving conditions on the functionsU(u) and V (u), our
discussion above shows that Theorems 1 and 2 remain true whenever Theorem A
remains true. In other words, our theorems remain true for all these conditions on
the functionsU(u) andV (u) which are available (for implications) in Theorem A.
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4. THE COMPARATIVE INEQUALITIES FOR SPEEDS OF
SUMMABILITY

Suppose{Aα} (α > α0) is a Riesz-type family andλα(u), µβ(u), andΨαβγ(u)
are functions defined by (3.6)–(3.8).

In this section we shall prove some comparative estimations for these functions.

Proposition 4. Let {Aα} (α > α0) be a Riesz-type family satisfying, for all
β > α > α0, the condition(2.7). Let the functionbα(u) be monotonically
increasing for allα > α0 and the functionsλα(u), µβ(u), andΨαβγ(u) (u > 0)
be defined by(3.6)–(3.8). Then the inequalities

Sγβuγ−β

[
V (u)
U(u)

](β−γ)/(β−α)

µβ(u) ≤ Ψαβγ(u)

≤ Tαγuγ−α

[
U(u)
V (u)

](γ−α)/(β−α)

λα(u)

(4.1)

hold for all β > γ > α > α0 and u > 0 (Sγβ and Tαγ are suitable positive
constants).

Proof. Using the relation (2.7) and monotony of the functionbα(u), we get

bβ(u) ≤
Mαβ

(β − α)
bα(u)uβ−α. (4.2)

Let us prove the right-sided inequality in (4.1) with the help of inequality (4.2):

Ψαβγ(u) =
bγ(u)

Wαβγ(u)
≤ Mαγbα(u)uγ−α

(γ − α)[U(u)](β−γ)/(β−α)[V (u)](γ−α)/(β−α)

U(u)
U(u)

= Tαγuγ−α

[
U(u)
V (u)

](γ−α)/(β−α)

λα(u).

Using again the inequality (4.2), we can prove also the left-sided inequality in (4.1):

Ψαβγ(u) =
bγ(u)

Wαβγ(u)
≥

bβ(u)(β − γ)
Mγβuβ−γ [U(u)](β−γ)/(β−α)[V (u)](γ−α)/(β−α)

V (u)
V (u)

= Sγβuγ−β

[
V (u)
U(u)

](β−γ)/(β−α)

µβ(u).
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Proposition 5. Let {Aα} (α > α0) be a Riesz-type family satisfying, for all
β > α > α0 andu > 0, the condition

Kαβuβ−α ≤
bβ(u)
bα(u)

≤ Nαβuβ−α. (4.3)

Then the functionsλα(u), µβ(u), andΨαβγ(u), defined by(3.6)–(3.8),satisfy
the inequalities

Kαβγ [λα(u)](β−γ)/(β−α) [µβ(u)](γ−α)/(β−α)

≤ Ψαβγ(u) ≤ Nαβγ [λα(u)](β−γ)/(β−α) [µβ(u)](γ−α)/(β−α) (4.4)

for all β > α > α0 andu > 0.

Proof. It follows from the relations (3.6)–(3.8) that

Ψαβγ(u)

= [λα(u)](β−γ)/(β−α)[µβ(u)](γ−α)/(β−α) bγ(u)
[bα(u)](β−γ)/(β−α)[bβ(u)](γ−α)/(β−α)

.

The condition (4.3) implies the inequalities

Kαβγ ≤
bγ(u)

[bα(u)](β−γ)/(β−α)[bβ(u)](γ−α)/(β−α)
≤ Nαβγ

and therefore the condition (4.4) is satisfied for allβ > γ > α > α0.

Proposition 6. Let {Aα} (α > α0) be a Riesz-type family satisfying, for all
β > α > α0, the relation(2.7). Let the functionbα(u) be monotonically increasing
for everyα > α0 and the functionsU(u) andV (u) satisfy the condition

V (u) ≥ MU(u)uδ (u > 0) (4.5)

with someδ > 0. Then the functionsλα(u), µβ(u), and Ψαβγ(u), defined by
(3.6)–(3.8),satisfy the inequalities

Kαβγµβ(u) ≤ Ψαβγ(u) ≤ Nαβγλα(u) (u > 0) (4.6)

for all α + δ = β > γ > α > α0.
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Proof. Using (3.6)–(3.8), (2.7), and (4.5), we get

Ψαβγ(u) = λα(u)
bγ(u)
bα(u)

[
U(u)
V (u)

](γ−α)/(β−α)

≤ λα(u)
Mαγ

(γ − α)
uγ−α

[
U(u)

MU(u)uβ−α

](γ−α)/(β−α)

= Nαβγλα(u).

Thus, the right-sided inequality in (4.6) is proved. The left-sided inequality in (4.6)
can be proved analogically:

Ψαβγ(u) = µβ(u)
bγ(u)
bβ(u)

[
V (u)
U(u)

](β−γ)/(β−α)

≥ µβ(u)
(β − γ)

Mγβuβ−γ

[
MU(u)uβ−α

U(u)

](β−γ)/(β−α)

= Kαβγµβ(u).

Remark 3. Propositions 3, 4, 5, 6, and Theorem 2 remain true if we replace
the functionsλα(u), µβ(u), andΨαβγ(u), defined by (3.6)–(3.8), by those which
satisfy the inequalities

Mα
bα(u)
U(u)

≤ λα(u) ≤ Nα
bα(u)
U(u)

,

Rβ
bβ(u)
V (u)

≤ µβ(u) ≤ Qβ
bβ(u)
V (u)

,

and

Sαβγ
bγ(u)

Wαβγ(u)
≤ Ψαβγ(u) ≤ Tαβγ

bγ(u)
Wαβγ(u)

,

whereα0 < α < γ < β andu > 0.

5. SOME EXAMPLES ON ESTIMATION OF SPEEDS OF
SUMMABILITY

To complete our paper, we give some numerical examples as illustrations to our
results.

Let {Aα} be a Riesz-type family obeying (2.7) for allβ > α > α0, and
λ = λ(u) andµ = µ(u) be any two speeds of summability. For example, statement
(2) in Theorem 2 can be reformulated in the form of the following proposition if
we takeλ = λα(u) andµ = µβ(u).
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Proposition 7. Suppose that for some functionx = ξ(u) and numbersα and β
(β > α) we have

Aαx ∈ mλ

and
Aβx ∈ cµ

0 ,

whereλ = λ(u) andµ = µ(u) are such speeds that the functions

U(u) =
bα(u)
λ(u)

(5.1)

and

V (u) =
bβ(u)
µ(u)

(5.2)

are monotonically increasing foru ∈ [0,∞). Then

Aγx ∈ c
Ψαβγ

0

for γ ∈ (α, β) provided that Ψαβγ(u), defined by(3.8), is monotonically
increasing.

Example 1.
(a) Let us consider two Riesz methods(R,α) and(R, β), where0 < α < β

and two speeds of summabilityλ = λ(u) andµ = µ(u).
Suppose that

Aαx ∈ mλ, Aβx ∈ cµ
0

for some functionx = ξ(u).
We will estimate the speed of summing functionx by the method(R, γ), where

γ ∈ (α, β).
As bα(u) = uα for Riesz methods, by (5.1) and (5.2) we get

U(u) =
uα

λ(u)

and

V (u) =
uβ

µ(u)
.

If the functionsU = U(u) andV = V (u) are monotonically increasing, we
have by Proposition 7 that

Aγx ∈ c
Ψαβγ

0

for γ ∈ (α, β), where

Ψαβγ(u) = [λ(u)](β−γ)/(β−α)[µ(u)](γ−α)/(β−α) (5.3)

by (3.8) (see also Proposition 5).
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(b) For a numerical example we choose first the speedsλ(u) = u8 and
µ(u) = u8 log u and afterwards the numbersα = 8, β = 11, andγ = 10. In
this case we have the monotonically increasing functions

U(u) ≡ 1

and

V (u) =
u3

log u
.

So, we have
A8x ∈ mλ, A11x ∈ cµ

0 =⇒ A10x ∈ c
Ψ8,11,10

0 ,

where
Ψ8,11,10(u) = u8 log2/3 u

by (5.3).
This example illustrates also Propositions 4 and 5.

Example 2. Here we consider the Nörlund methodsAα = (N, pα(u), q(u)) (see
(2.5)), wherep(u) = u andq(u) =

√
u.

(a) Let us have two methodsAα = (N, pα(u), q(u)) and Aβ =
(N, pβ(u), q(u)) with 0 < α < β and two speeds of summabilityλ = λ(u)
andµ = µ(u).

Suppose that
Aαx ∈ mλ, Aβx ∈ cµ

0

for some functionx = ξ(u).
Estimate the speed of summability of functionx by the method

Aγ = (N, pγ(u), q(u)), whereγ ∈ (α, β). We will use Proposition 7 again.
First we find the functionspα(u) andPα(u) (α > 0). Integrating by parts we

get

pα(u) =
∫ u

0
(u− v)α−1p(v) dv =

∫ u

0
(u− v)α−1v dv =

uα+1

α(α + 1)
.

Now we can find the functionPα(u):

Pα(u) =
∫ u

0
pα(u− v)q(v) dv

=
∫ u

0

(u− v)α+1

α(α + 1)
√

v dv = B
(

3
2
, α + 2

)
uα+5/2

α(α + 1)
,

whereB(·, ·) is the beta-function.
As bα(u) = Pα(u), by (5.1) and (5.2) we can take

U(u) =
uα+5/2

λ(u)
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and

V (u) =
uβ+5/2

µ(u)
.

If the functionsU = U(u) andV = V (u) are monotonically increasing, by
Proposition 7 we have

Aγx ∈ c
Ψαβγ

0

for γ ∈ (α, β), whereΨαβγ(u) is defined by (5.3).
(b) In particular, choosing the speedsλ(u) = u4 andµ(u) = u5 log u and

afterwards the numbersα = 3, β = 6, andγ = 4, we get the monotonically
increasing functions

U(u) =
u3+5/2

u4
= u3/2

and

V (u) =
u6+5/2

u5 log u
=

u7/2

log u
.

Thus, we have

A3x ∈ mλ, A6x ∈ cµ
0 =⇒ A4x ∈ c

Ψ3,6,4

0 ,

where
Ψ3,6,4(u) = u13/3 log1/3 u,

by (5.3).
This example illustrates also Propositions 4 and 5.
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M. Rieszi kumerusteoreemist

Veera Pavlova ja Anne Tali

On vaadeldud tuntud kumerusteoreemi, mille tõestas M. Riesz oma töös [1].
See teoreem annab teatavad kumerustingimused Rieszi menetluste(R,α) jaoks.
Hiljem on mitmed autorid Rieszi kumerusteoreemi üldistanud, modifitseerides
kumerustingimusi (nt [4] ja [5]) ja ka menetluste(R,α) definitsiooni (nt [6] ja [7]).

Artiklis on üldistatud Rieszi kumerusteoreemi laiemale summeerimis-
menetluste klassile ja rakendatud seda summeerimiskiiruste hindamisel. Põhi-
tulemusteks on teoreemid 1 ja 2 koos lausetega 4–6.
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