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Abstract. The paper presents a set-up and the stability criteria for numerical realization of the 
model of the vertical structure of thermohaline fields caused by double diffusion effects. The model 
considers the turbulence accompanying the environment layering process as rotationally isotropic 
in the sense suggested by the theory of rotationally anisotropic turbulence. It is formulated through 
the set of three nonlinear differential equations for the environment’s temperature, salinity, and 
turbulence kinetic energy. The numerical realization of the model is based on an implicit difference 
method and the uniform rectangular time-space grid. The numerical stability criterion of the 
algorithm for the model’s approximated solution is estimated by the maximum values of the 
solutions of system components. 
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1. INTRODUCTION

The layering of initially stable vertical profiles of hydrophysical fields into 
stair-like profiles is well known from oceanographic observations [1–4] and 
laboratory investigations [5–7]. The physical reason for this process proceeds from 
the difference of coefficients of molecular diffusion for different environmental 
constituents (in oceans – heat and salt, characterized by temperature and salinity 
fields). Depending on the character of initial stratification, two different scenarios 
of layering processes are possible, called salt-fingering and diffusive layering 
regimes [7,8]. 

The success of the mathematical modelling of the layering processes depends 
on the description of accompanying turbulent processes and on the skill of their 
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modelling. Our present model is a development of the model discussed in [9]. 
The latter model is based on the traditional approach in solving the “turbulent 
problems” [10,11] using the classical semiempirical theory of turbulence [12] and 
postulating the absence of a prevailing orientation of eddy rotation in turbulent 
media. In contrast, the model proposed by us considers this postulate as the 
assumption superposed on a more general situation characterized by prevailing 
orientation of eddy rotation (called the property of rotational anisotropy of the 
turbulent flow field [13–15]). The proposed approach not only involves a more 
general point of view, but also allows formulation of a new interpretation for 
mixing-length and the closing assumptions for a dissipation function and 
turbulent viscosity. 

Within the mathematical problems arising from the model of [9] (as well as 
from its earlier version [16]), the central problem is the stability of the numerical 
realization of the model. The difficulties arise from the variation of effective 
diffusion coefficients from molecular to turbulent, which differ in space and time 
by several orders of magnitude. 

The choice in favour of an implicit method is based on the fact that the 
advantage of an explicit method, improved by trivial matrix inversion and 
minimal number of arithmetic operations per time step, is counterbalanced by the 
stability and convergence conditions which impose severe restrictions on the 
admissible time step. We have chosen the implicit iterative method, as for 
nonlinear problems all approaches will necessarily be iterative [17]. It is shown 
that the variation of effective diffusion coefficients in space and time by several 
orders of magnitude cannot introduce bifurcation in stability criteria. 

 
 

2. THE  THEORY 
 

2.1. The  structure  of  the  turbulent  flow  field 
 
In the theory of rotationally anisotropic turbulence [13–15] the rotational 

isotropy of turbulence (postulated in classical semiempirical theory [12]) is 
determined by the conditions 
 

,0== ∗MM   .0== ∗
                                    (1) 

 

In (1), RvM ×′=∗  and ,2R
∗∗ = M  where ,R=R  are the instantaneous 

moment of momentum and the internal rotation velocity of the turbulent flow 
field. The brackets ⋅  denote an arbitrary averaging operator, satisfying 

Reynolds averaging rules (see, e.g., [12]). Here v ′  is the fluctuating component of 
velocity and R  is the curvature radius of the v ′  field, whereas 
 

.0=′v                                                        (2) 
 



 

 

 

51 

In terms of ∗
  and ,R  v ′  is represented as 

 

Rv ×=′ ∗
 .                                                 (3) 

 

For turbulent energy (per unit mass) K , we have 
 

,
2

1

2

1 222 ∗=′= RK ν                                       (4) 

 

where .∗∗ =   From (2) and (3) it follows that   is not correlated with R  

and the expression (4) for turbulent energy K  is represented as 
 

.
2

1 22 ∗= RK                                            (5) 
 

Defining further the characteristic length and time scales, l  and ,0t  as 
 

,2Rl =   t0 = ,
1
∗



 

 

we get from (5) 
 

.20 Ktl =                                                   (6) 
 

2.2. The  balance  equations 
 
Let the state of the environment be determined by a set of scalar state 

parameters iq  ,,,( 221 ii CqSqTq ≡≡≡ +  where T  and S  are the environment’s 

temperature and salinity; iC  are concentrations of the environment’s 
constituents; mmi ;2...,,1 −=  is the total number of state parameters) and 
turbulent kinetic energy ,K  depending on time t  and vertical coordinate ,z  i.e. 
 

( )tzqq ii ,=  and ( )., tzKK =  
 

The balance equations for iq  and K  in this case are [9,11]: 
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In (7) and (8), ik  are the coefficients of molecular diffusion of ;iq  turbk  is the 

coefficient of turbulent diffusion; ,g=g  where g  is the gravity acceleration; ψ  
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is the dissipation function for turbulent energy; 0ρ  and ( )iqρρ =  are 
characteristic and actual density of the environment; the z-axis is directed 
downwards. 

Classical semiempirical formulae for turbk  and ψ  are [12]: 
 

Kck "1
turb =  and ,2

"

KK
c=ψ                                  (9) 

 

where 1c  and 2c  are nondimensional positive coefficients and "  defines the 
mixing length. After postulating the identity 
 

,l≡"                                                          (10) 
 

according to (6), we get 
 

,turb Kctk K=  ,
1

K
tK

=ψ                                          (11) 

 

where 12cc =  and .
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1
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2

t
c

tK =  

Substituting turbk  and ψ  from (11) into Eqs. (7) and (8), we have for iq  and 
:K  
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Instead of the mixing length "  we use the characteristic time ,Kt  thus trans-

forming the classical assumptions for turbk  and ψ  in (9) into the assumptions 
(11). This is the cornerstone of the proposed model, differentiating it from earlier 
models (for example, from the model of Balmforth [11]) which proceed from the 
same initial set of balance equations. According to Eq. (13), in a uniform density 
field Kt  determines the exponential decay time of the homogeneous kinetic 

energy .K  The theory of rotationally anisotropic turbulence suggests that Kt  

should not depend on kinetic energy .K  The value of Kt  (assumed to be constant 
also in time and space) can be considered as the model parameter or determined 
from additional assumptions while c  is determined from the classical approach. 

Measuring ,,,, tqK i ρ  and z  in units of their characteristic values 

Ki tqK ,,, 00,0 ρ , and ,0z  we get Eqs. (12) and (13) in the nondimensional form: 
 



 

 

 

53 

( ) ,...,,2,1, mi
z

q
bKa

zt

q i
i

i =







+=

∂
∂

∂
∂

∂
∂

                     (14) 

 

,1 K
z

rb
z

K
K

z
b

t

K






+−








=

∂
∂ρ

∂
∂

∂
∂

∂
∂

                       (15) 

 

where 
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3. THE  MODEL  OF  THE  STAIRCASE-LIKE  VERTICAL  
STRUCTURE  OF  HYDROPHYSICAL  FIELDS 

 

3.1. Differential  form  of  the  model 
 
We now describe the layering process in the environment caused by double 

diffusive effects of temperature and salinity fields ,, 21 SqTq ==  and 

02 =+iq  for .2...,,1 −= mi  Let 0T  and 0S  be the characteristic values of 
temperature T and salinity .S  Within the linear state equation 
 

( ) ( ),111 −+−−= ST βαρ  
 

where α  and β  are measured in units 00 Tρ  and ,00 Sρ  the set of Eqs (14) 

and (15) takes the form :)( 21 adaa ==    
 

,1






















 −+−=
z
T

z
S

rbK
z
K

K
z

b
t
K

∂
∂α

∂
∂β

∂
∂

∂
∂

∂
∂

                    (17) 

 

( ) ,






 +=
z
T

bKa
zt

T
∂
∂

∂
∂

∂
∂

                                   (18) 

 

( ) .






 +=
z
S

bKd
zt

S
∂
∂

∂
∂

∂
∂

                                    (19) 

 

To demonstrate the layering process, the following initial and boundary 
conditions for Eqs. (17)–(19) are appropriate: 
at the initial time instant 
 

( ) ( )2100, −= �
b

a
zK  

and 
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[ ] [ ] ,1)0,(1)0,( CzzTzS =−−− αβ  
 

where )0,(zT  and )0,(zS  have an interface determined as a thin layer with 
relatively large temperature and/or salinity gradients in comparison with their 
gradients outside the interface. Let the integration region be determined as 

DzzDz +≤≤− ~~  and the interface be centred at zz ~=  with thickness ,2δ  
where .D<<δ  Outside the interface the profiles of )0,(zT  and )0,(zS  are 
defined as follows: 
 

at ,~~ δ−≤≤− zzDz  ,δ−≡ SS  ( ),δ
αδ +−= − z
C

TT                
(20)

 

at ,~~ δ+≥≥+ zzDz  ,δSS ≡  ( )δ
αδ −−= z
C

TT  

 

or 
 

at ,~~ δ−≤≤− zzDz  ,δ−≡TT  ( ),δ
αδ ++= − z
C

SS                  
(21)

 

at ,~~ δ+≥≥+ zzDz  ,δTT ≡  ( ).δ
αδ −+= z
C

SS  

 

Boundary conditions at Dzz ±= ~  are 
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Physical situations at the interfaces corresponding to (20) and (21), are 
classified as salt-fingering and diffusive layering regimes [6–8]. 

 
3.2. Discrete  model 

 
For the discretization of the model described by Eqs. (17)–(19) we introduce 

the rectangular time-space grid, with the time step τ  and vertical step .h  Let 
),( ji zt  denote the grid points and ,, ijij TK  and ijS  the approximate values of 

,, TK  and ,S  respectively, at these points. Here ,, 0 jhzzit ji +== τ  

....,,2,1,0...,,2,1,0 nji ==  

If the approximate values of the system variables are known at ,itt =  then 
discretization of the initial set of equations leads to the following system of 
algebraic equations for values at :1+= itt  
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Equations (24), where ,...,,1,0 nj =  present the nonlinear algebraic system 
accompanied by the following set of linear equations representing boundary 
conditions and allowing us to eliminate values of unknown functions beyond the 
grid: 
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For the case (22), 0, =−= Bh
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 and for the case (23), ,,0 h
C
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==  or 

simply 
 

,1111 ,i,i KK +−+ =      ,1111 ATT ,i,i −= +−+  ,1111 BSS ,i,i −= +−+                (25) 
 

,1111 −+++ = ,ni,ni KK  ,1111 ATT ,ni,ni += −+++   .1111 BSS ,ni,ni += −+++      (26) 
 

For ,0=t  those approximate values are considered to be exact as the initial 
conditions of the problem. 

For fixed ,i  the system (24) presents the system of model equations (17)–(19) 
in the following discrete form: 
 

,0)(
&

=xF                                                    (27) 
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where x  denotes the vector of dimension )3(3 += nN  of unknown approximate 

values, );,,,,,,,,( 101101101 ,ni,i,ni,i,ni,i SSTTKKx ++++++= ���  F  is the vector 

function determined by the system of equations (24)–(26) with the components 

,3,2,1),()()( == sxff s
j

s
j  ;,,1,0 nj �=  0

*
 is the vector of zeroes of length 

.N  Below we use also the notation ,1,,1,0,, −= NpxF pp �  for the 

components of F  or .x  
 
 

4. STABILITY  OF  THE  NUMERICAL  PROCESS 
 

4.1. The  numerical  process 
 
It is convenient to solve the nonlinear algebraic system (24)–(26) using the 

Newton iteration method. For given initial values 0x  the iteration process will be: 
 

),())(( 111 −−− =−′ mmmm xxxx FF                               (28) 
 

where m  is the iteration index and )( mxF ′  denotes the Jacobian of F  evaluated 

at ,mx  �,2,1=m  In our case the Jacobian has the 3 × 3 block structure as 
shown below: 
 

,

0

0
















AA

AA

BBA

                                              (29) 

 

where ,, BA  and 0 denote the 3-diagonal, 2-diagonal, and zero matrixes.  
The sparse structure of the Jacobian (29) makes it possible to apply a 

modification of the elimination method for solving this system to reduce the 
number of arithmetical operations. The method will be discussed elsewhere. 

In the following we investigate the conditions under which the Jacobian 

),( mxF ′  (29), has a dominant main diagonal, i.e. the problem of solvability of the 
system (28). It is well known (see, e.g., [17]) that such domination ensures the 
uniqueness of the solution of the system (24) and also stability of the elimination 
process. 

 
4.2. Nonzero  components  of  the  Jacobian 

 
Let us consider Eq. (27), 0)(

*
=xF  (here and afterwards we omit the upper 

iteration index). Equation (27) in component form is seen in (24). 
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According to (24), we find the nonzero components (see (29)) of the Jacobian 
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4.3. Stability  criterion  of  the  numerical  process 
 

In the following we show that by the choice of the size of grid steps h  and τ  
it is possible to reach the domination of the main diagonal of the Jacobian 

).(xF ′ This in turn guarantees the uniqueness of the solution of the system (24) 
and the stability of the elimination process in solving that system. Denote also 
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where .,,1,0 nj �=  
According to the formulae for the components of the Jacobian, we analyse the 

estimations 
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We consider the estimations (42) separately in three cases: for nj ,,1,0 �=  
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For case A, from (31)–(33) we find 
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So 
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For case B, from (37) we find 
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.
22

1
,

1
max2

2
2

1,11,1
,12

1,1,11,121,11,12
2

,2











 −

+++

+−+−=

−+++
+

−++++−+++
++≠

++∑

h

KK
ba

h
bKa

h

TTT
h

b
TT

h

b
f

jiji
ji

jijijijiji
njq

qnj

 

 

Using 
 

TTT
2221,1,11,121,11,12

54
2

2 h

b

h

b

h

b
TTT

h

b
TT

h

b
jijijijiji =+≤+−+− −++++−+++  

 

and 
 

,)(
2

22
,max

2

22
1

,
1

max2

2
1,11,1

,12

1,11,1
,12

Kba
hh

KK
ba

h
bKa

h

h

KK
ba

h
bKa

h

jiji
ji

jiji
ji

+<










 −

++=











 −

++

−+++
+

−+++
+

 

we have for nondiagonal elements the estimation 
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For case C, from (41) we find 
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The estimations for nondiagonal elements hold due to some elementary 
relations for real numbers. For cases B and C, the condition (42) leads to the 
following inequalities: 
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For αrh 5<  and ,5 βrh <  the inequalities (49) and (50) are true if 
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which is the final estimation to the size of grid steps to ensure the numerical 
stability of the discrete model. 

It is easy to see that for boundary equations the established estimations hold 
because of the conditions (25) and (26). 

From the right-hand side of inequality (51) it follows that variability in 
parameters S, T, K cannot introduce bifurcation in the stability criterion, as their 
estimations depend on the essential parameters b, r linearly. 
 

 
 
 
 



 

 

 

61 

5. CONCLUSIONS 
 

The set-up and the stability criteria for numerical realization of the model of 
the vertical structure of thermohaline fields caused by double diffusion effects 
were discussed. It was shown that the numerical stability of a discrete model 
based on the set of nonlinear differential equations (17)–(19) can be guaranteed 
by choosing suitable space and time steps on the time-space grids. The estimated 
criterion is sufficient for numerical stability of the formulated discrete model. 
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TERMOHALIINSETE  VÄLJADE  KIHILISE  STRUKTUURI  MUDELI  
NUMBRILINE  STABIILSUS 

 
Peep MIIDLA, Kalev RANNAT ja Jaak HEINLOO 

 
On formuleeritud temperatuuri ja soolsuse topeltdifusioonist tingitud kesk-

konna vertikaalse kihistumise diferentsiaalmudel kolmest mittelineaarsest võrran-
dist koosneva võrrandite süsteemina keskkonna turbulentse energia, temperatuuri 
ja soolsuse vertikaalse jaotuse määramiseks, mudeli võrrandite lähislahendi 
leidmise algoritm ja sellel põhineva numbrilise lahenduse stabiilsuse kriteerium. 

 


