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Abstract. The paper presents a set-up and the stability criteria for numerical realization of the
model of the vertical structure of thermohaline fields caused by double diffusion effects. The model
considers the turbulence accompanying the environment layering process as rotationally isotropic
in the sense suggested by the theory of rotationally anisotropic turbulence. It is formulated through
the set of three nonlinear differential equations for the environment’s temperature, sainity, and
turbulence kinetic energy. The numerical realization of the model is based on an implicit difference
method and the uniform rectangular time-space grid. The numerical stability criterion of the
algorithm for the model’s approximated solution is estimated by the maximum vaues of the
solutions of system components.

Key words: turbulence, double diffusion, numerical stability.

1. INTRODUCTION

The layering of initialy stable vertical profiles of hydrophysical fields into
stair-like profiles is well known from oceanographic observations [ and
laboratory investigations [>]. The physical reason for this process proceeds from
the difference of coefficients of molecular diffusion for different environmental
constituents (in oceans — heat and salt, characterized by temperature and salinity
fields). Depending on the character of initial stratification, two different scenarios
of layering processes are possible, called salt-fingering and diffusive layering
regimes["].

The success of the mathematical modelling of the layering processes depends
on the description of accompanying turbulent processes and on the skill of their
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modelling. Our present model is a development of the model discussed in [7].
The latter model is based on the traditional approach in solving the “turbulent
problems’ [**™] using the classical semiempirical theory of turbulence [**] and
postulating the absence of a prevailing orientation of eddy rotation in turbulent
media. In contrast, the model proposed by us considers this postulate as the
assumption superposed on a more general situation characterized by prevailing
orientation of eddy rotation (called the property of rotational anisotropy of the
turbulent flow field [**°]). The proposed approach not only involves a more
general point of view, but aso alows formulation of a new interpretation for
mixing-length and the closing assumptions for a dissipation function and
turbulent viscosity.

Within the mathematical problems arising from the model of [°] (as well as
from its earlier version [*9]), the central problem is the stability of the numerical
realization of the model. The difficulties arise from the variation of effective
diffusion coefficients from molecular to turbulent, which differ in space and time
by several orders of magnitude.

The choice in favour of an implicit method is based on the fact that the
advantage of an explicit method, improved by trivial matrix inversion and
minimal number of arithmetic operations per time step, is counterbalanced by the
stability and convergence conditions which impose severe restrictions on the
admissible time step. We have chosen the implicit iterative method, as for
nonlinear problems all approaches will necessarily be iterative [*]. It is shown
that the variation of effective diffusion coefficients in space and time by severa
orders of magnitude cannot introduce bifurcation in stability criteria.

2. THE THEORY
2.1. The structure of the turbulent flow field

In the theory of rotationally anisotropic turbulence [*™] the rotational
isotropy of turbulence (postulated in classical semiempirical theory [Y]) is
determined by the conditions

M=<MD>=O, .Q=<QD>=0. (1)

In (1), M"=v'xR and Q"=M"/R?, whereR=|R], are the instantaneous
moment of momentum and the internal rotation velocity of the turbulent flow
field. The brackets ([J denote an arbitrary averaging operator, satisfying

Reynolds averaging rules (see, e.g., [?]). Here V' isthe fluctuating component of
velocity and R isthe curvature radius of the v' field, whereas

(V)=0. 2)
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Intermsof Q" and R, V' isrepresented as
vV =0"%R. (3

For turbulent energy (per unit mass) K , we have
_Llypon 1/ 0 P
K—§<v >—§<RQ > (4)

where Q" =

.QD|. From (2) and (3) it follows that © is not correlated with R
and the expression (4) for turbulent energy K isrepresented as

_1/0 ?
K —§<R ><Q > (5)
Defining further the characteristic length and time scales, | and t,, as
| =+vR , tO:iv
=
we get from (5)
| =ty 2K. (6)

2.2. The balance equations

Let the state of the environment be determined by a set of scalar state
parameters g, (4, =T, 0, =S, ¢, =C;, where T and S are the environment’s
temperature and sdinity; C;, are concentrations of the environment’s
constituents; i =1,....,m—-2; m is the tota number of state parameters) and
turbulent kinetic energy K, depending ontime t and vertical coordinate z, i.e.

g =q (z,t) and K = K(z,t).

The balance equationsfor g; and K in this case are [*"]:
ﬂ:i K; +kwfb)ﬂ% (7)
ot oz Jdz
OK 0 0o KD o 0
IR =0 G 2oy - Sy P ©
t Jdzp oz Po oz
In (7) and (8), k; are the coefficients of molecular diffusion of q,; k™® isthe

coefficient of turbulent diffusion; g =|g|, where g isthe gravity acceleration; @
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is the dissipation function for turbulent energy; p, and p=p(q) are

characteristic and actual density of the environment; the z-axis is directed
downwards.

Classical semiempirical formulae for k"™ and ¢ are|

ur KVK
kY =c /K and ¢ =c, *é_ 9)

12] :

where ¢, and ¢, are nondimensional positive coefficients and ¢ defines the
mixing length. After postulating the identity

¢ =1, (10)
according to (6), we get

k" =ct, K, wztiK, (11)

K

1
where c=+/2c, and t, =—=t,.
G K \/ECZ 0
Substituting k™™ and ¢ from (11) into Egs. (7) and (8), we have for g, and
K:
Jq _9d Jgt .
—_— = +Ct K - = 2,...,m, 12
at m@" K )azE’ 1=t 12
é’_K:C,[Ki %E— 1 +%d_p . (13)
ot oz 9z Py 02

Instead of the mixing length ¢ we use the characteristic time t,, thus trans-

forming the classical assumptions for k™™ and ¢ in (9) into the assumptions
(11). Thisisthe cornerstone of the proposed model, differentiating it from earlier
models (for example, from the model of Balmforth [*]) which proceed from the
same initial set of balance equations. According to Eg. (13), in auniform density
field t, determines the exponential decay time of the homogeneous kinetic
energy K. The theory of rotationally anisotropic turbulence suggests that t,
should not depend on kinetic energy K. Thevalueof t, (assumed to be constant

aso in time and space) can be considered as the model parameter or determined
from additional assumptionswhile c is determined from the classical approach.

Measuring K,q,,p,t, and z in units of their characteristic values
Ko:0io: Poty » and z,, we get Egs. (12) and (13) in the nondimensional form:
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dqi [ 0q| H
A =2 Ha +bK)Zg i=12,...m, 14
T ChL Ve (14)
oK bl K XEHip® (15)
ot 07ZD dZD
where
2
a =k X p=clkfo g% (16)
Zy Zy Ko

3. THE MODEL OF THE STAIRCASE-LIKE VERTICAL
STRUCTURE OF HYDROPHYSICAL FIELDS

3.1. Differential form of the model

We now describe the layering process in the environment caused by double
diffusive effects of temperature and sdlinity fields g, =T, ¢,=S, and

Q., =0 for i=1..m-2 Let T, and S, be the characteristic values of
temperature T and salinity S. Within the linear state equation

p=1-a(T -1)+ B(S-1),

where o and B are measured in units p, /T, and p,/S,, the set of Egs (14)
and (15) takestheform (a=a, >=>d =a,):

P2 IRk enfp2S- a

oT _ 9 4T O
91 -9 Ha+bK)% 18
ot azR0 )azE’ (18)
oS _ 9 9SO

——=__ +bK )— 1
gt gz fatP )dzE (19)

To demonstrate the layering process, the following initial and boundary
conditions for Egs. (17)—(19) are appropriate:
at theinitial time instant

K(z, o)=%0(10‘2)

and

53



B[S(z 0)-1-a[T(z.0)-1 =Cz,

where T(z,0) and S(z,0) have an interface determined as a thin layer with

relatively large temperature and/or salinity gradients in comparison with their
gradients outside the interface. Let the integration region be determined as
Z-D<z<7Z+D and the interface be centred at z=7Z with thickness 29,

where d <<D. Outside the interface the profiles of T(z,0) and S(z, 0) are
defined asfollows:

at Z-D<z<7-93, S=S, T=T, —E(z+5),
a (20)

aZ+D22>7+3, S=S;, T=T; —9(2—5)
a

or
- - _ C
a7-D<z<7-3, T=T5, S=S,;+=(z+9),
a (21)
- - _ C
az+D=2z27+9, T=Ty, S=SJ+—(Z—5).
a
Boundary conditionsat z=Z+ D are
E:o, a__c¢c (22)
0z Jdz a
or
9s_c a_, 23)
oz B Oz

Physical situations at the interfaces corresponding to (20) and (21), are
classified as salt-fingering and diffusive layering regimes [*].

3.2. Discrete mode

For the discretization of the model described by Egs. (17)—<19) we introduce
the rectangular time-space grid, with the time step 7 and vertical step h. Let
(t,z;) denote the grid points and K, T;, and S; the approximate values of
K,T, and S, respectively, a these points. Here t =it, Zz;=2+ jh,
i=0,42,.., j=012..,n

If the approximate values of the system variables are known at t =t;, then

discretization of the initial set of equations leads to the following system of
algebraic equations for valuesat t =t,,; :
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f.(1)= Ki+1,j _Ki,j _bHKi+Lj+1‘Ki+1,j—1 “bK. Ki+1,j+1_2Ki+:Lj +Ki+:Lj—1
i = T B 2h i+1,] h2

H +1,j+ _S+ j— T‘+ i+ _T‘+ j—
+Ki+l’ju+rb%}Sle |l,Jl_a i+1,j+1 |L11%:0;
& 2h 2h

f_(2) ETi+1,j =T, _h+b Kivpjn = Kisgjoa Hlisjen ~ Tisaja (24)
: T 2h H 2h
T'+1,‘+1 _2T‘+],' +T'+1,'—1
—(a+bKi, ) — fl12 S —==t10

fA(3) = S|+1,j _Sl,j _ +b Ki+1,j+1 - Ki+1,j—l HS+LJ+1 _S|+1,j—l

: T 2h H 2h

S|+1,'+1_28|+1,' +S|+:L'—l
—(d+bKi,y ) ; " ] = =-o.

Equations (24), where j =0,1,...,n, present the nonlinear algebraic system
accompanied by the following set of linear equations representing boundary
conditions and allowing us to eliminate values of unknown functions beyond the
grid:

T —Tia1 _ A S+11-S41_ B

Ki+1,1 - Ki+1,—1 =0

2h ' 2h 2h 2h 2h
Ki+1,n+1 ~ Ki+1,n—1 =0 Ti+1,n+1 “livin1 _ A S1+1,n+1 ~ S+1,n—1 — E
2h ’ 2h 2h’ 2h 2h’
C C
For the case (22), A:_Eh’ B=0 and for the case (23), A=0, B:Eh, or
simply

Kina =Kz Taa =Tan — A Sia=Sa1~B (29)
Kiszni = Kisgna Tz = Tisgna T A Sitnin =S ¥ B (26)

For t =0, those approximate values are considered to be exact as the initial
conditions of the problem.

For fixed i, the system (24) presents the system of model equations (17)—19)
in the following discrete form:

F(x) =0, (27)
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where x denotes the vector of dimension N =3(n+3) of unknown approximate
values, X=(Ki,10,---» Kisan Tiszore-or Tiasrnr Siagr---0 Saapn )i F 1S the vector
function determined by the system of equations (24)—(26) with the components
fj(s) = fj(s)(x), $s=1,23 j=0,1....,n: O isthe vector of zeroes of length
N. Below we use dso the notation Foi X, P=0,1...,N-1, for the
componentsof F or x.

4.STABILITY OF THE NUMERICAL PROCESS
4.1. The numerical process

It is convenient to solve the nonlinear algebraic system (24)—26) using the
Newton iteration method. For given initial values x° theiteration process will be:

F'(xX™H(x™ - x™) =F (x™), (28)
where m istheiterationindex and F'(x™) denotesthe Jacobian of F evaluated
a x", m=12,... In our case the Jacobian has the 3 x 3 block structure as
shown below:

B B
A A 00 (29)

o0 Af

where A, B, and 0 denote the 3-diagonal, 2-diagonal, and zero matrixes.

The sparse structure of the Jacobian (29) makes it possible to apply a
modification of the eimination method for solving this system to reduce the
number of arithmetical operations. The method will be discussed el sewhere.

In the following we investigate the conditions under which the Jacobian

F'(x™), (29), has adominant main diagonal, i.e. the problem of solvability of the

system (28). It is well known (see, eg., ['']) that such domination ensures the
uniqueness of the solution of the system (24) and aso stability of the elimination
process.

4.2. Nonzero components of the Jacobian

Let us consider Eq. (27), F(x)=0 (here and afterwards we omit the upper
iteration index). Equation (27) in component formis seen in (24).
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According to (24), we find the nonzero components (see (29)) of the Jacobian

f =% =0,1,.. foll
= e , N aSTOIIOWS!
P4 axq 1=
Kigivg = 2K +Kiyoo
fjjzl_b i+1,j+1 |21,] |l,]l+2_t2)Ki+lj
, I h h ’
|:| T j _T j +1, |+ +1 j—
+D,+rb a i+1,j+1 |+1,J—1+B |1]1 Sljl
B 2h 2h
— 1 — Ki+1,j+1_ Ki+1j_1
ijiil__bFKHl,j Tb on? ,
1
fj,j+n+3 ]]+n+l BrbK|+1] 2h,
1
fj'j+2n+4 fJ ]+2n+2 O'I’bKHl] 2h,
f —_f __b Tiigjr ~Tiagja
jtn+2,j+1 T jHn+2,j-1 — ET,
f __bTi+1,j+1_2Ti+1,j + T ja
jtn+2,j T h2 y
=1 1 Kivgjr = Kisja
fj+n+2,j+n+2il__F(a+bKi+Lj)i%%+b oh

1, 2
fj+n+2,j+n+2 =?+?(a+bKi+Lj)v

b S+1,j+1 - S+1<j—1

f i f =—1T; . = —
+2n+3,j+1 +2n+3,j-1
I I J i oh 2h

SI+1,i+1 B 23|+1,j + S|+1,j—1
h2

fj+2n+3,j =

1 Kivgion — Kissja
s o =~ (A #BK ) 2 —h%m St E

1 2
fj+2n+3,j+2n+3 =? +F(d + bKi+Lj )

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)
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4.3. Stability criterion of the numerical process

In the following we show that by the choice of the size of grid steps h and 1
it is possible to reach the domination of the main diagona of the Jacobian
F'(x). This in turn guarantees the uniqueness of the solution of the system (24)

and the stability of the elimination process in solving that system. Denote also

K =maX\Ki+1,,~\, T =max
j j

Ti+1,j ‘l and S= mjax‘sul,j"

where j=0,1,...,n.
According to the formulae for the components of the Jacobian, we analyse the
estimations

Z\fj,quj,j\, j=0,1...,N-1. (42)
%]

We consider the estimations (42) separately in three cases: for j=0,1,...,n
(caseA), j=n+Ln+2,...,2n+2 (caseB),andfor j=2n+3,2n+4,...,N-1

(case C).
For case A, from (30) we find
1 b 2b o
‘fj,j‘: ?_F(Ki+l,j+l_2Ki+l,j + Ki+1,j—1)+F Kisg,j s
1 1
+rbBE(S+Lj+1_S+Lj—1)_rba%(-riﬂjﬂ_ i+Lj—l)
1 b
2?_?(Ki+l,j+l_4Ki+l,j +Ki+:Lj—1) (43)
+rb S+;Lj+1_3+1,j—1 _aTi+;Lj+1_Ti+:Lj—1
2h 2h
16, 1B rtha
T h? h h
For case A, from (31)—33) we find
b b
Z‘fj,q‘:F‘Kiﬂ,jﬂ"'ZKiﬂLj _Ki+1,j—1‘+W‘Ki+l,j+l_2Ki+Lj _Ki+1,j—1‘

a#)

+ rb(ah+ ﬂ) ‘KH—L]‘

:h—bzmaXHKiﬂ,jﬂ_ Ki+1,j—1‘ ’Z‘Kiﬂ,j‘ ﬁ"’M;—B)‘KHLj‘

Ob  rb(a+B)0
K - 7
h? 2n

<2
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pb(a + B)0
Z‘qu‘<2KHT oh H (44)

For case B, from (37) we find

1 1 2a
‘fl+n+2]+n+2 T +_(a+bK|+1] T +F
or
1
‘fJ+n+21+n+2 T +_(a+bK|+LJ) (45)
and from (34)—(36) it follows that
Z‘ J+n+2q‘ hz‘ i+, ]+l +1,J—1‘ 2’T+1,J+1 i+1, ] T+1J‘1‘
g# | +n+2
Kin =Ko
+2max§hl2‘a+bKi+1,j‘,%a+b I+LJ+12h +1] 1|E
Using
b b b 4b 5b
WTHLM _Ti+1,j—1‘+FTi+1,j+1 = 2Ty, +-|-i+Lj—1‘SFT +FT =FT
and
axE a+bKi,q i ‘ a+b Kivgjn = Kisa |
QT I 2h
_ 2 h Ki+1,j+1_K|+lj—1|E
we have for nondiagonal elements the estimation
5b
> [finezal< T+—(a+bK) (46)
gz j+n+2
For case C, from (41) we find
1 2
‘fj+2n+3,j+2n+3 = ?+F(d +bKi+1,j)‘ (47)

and from (38)—(40) we get
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b b
Z|fj+2n+3,q| = |S1+1,j+1 - S+:Lj—1| +—2|S1+1,j+1 =234 * Si+1,j—1|
g% j+2n+3 2h h

d+bKi+1,j+1_Ki+1,j—l|E (48)
2h

+2max§hi2|d +bKi+l’j|,%

5b 2
S?S+F(d +bK).

The estimations for nondiagonal elements hold due to some elementary
relations for real numbers. For cases B and C, the condition (42) leads to the
following inequalities:

1>5_bT+@K, 1>5_bs+@
T h®> R T h® n?
Both of these are satisfied if

1_5b 5b 2b

K.

—=>—T+—S+—K. 49
T h? h? h? (49)
In case A the condition (42) holdsiif
1 6b rbg rba Ob  rb(a+B)0O
—-—K-—/—S-—T>2K +—
T h? h h 2 2n
or
£>@S+rb_aT+E8b+—rb(a+B)§<. (50)
T h h 2 h

For h<5/ra and h<5/rf3, theinequalities (49) and (50) are true if

2
L [8b+ hrb(a + B)]K, (51)
T

which is the final estimation to the size of grid steps to ensure the numerical
stability of the discrete model.

It is easy to see that for boundary equations the established estimations hold
because of the conditions (25) and (26).

From the right-hand side of inequality (51) it follows that variability in
parameters S, T, K cannot introduce bifurcation in the stability criterion, as their
estimations depend on the essential parameters b, r linearly.
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5. CONCLUSIONS

The set-up and the stability criteria for numerical realization of the model of
the vertical structure of thermohaline fields caused by double diffusion effects
were discussed. It was shown that the numerical stability of a discrete model
based on the set of nonlinear differential equations (17)—(19) can be guaranteed
by choosing suitable space and time steps on the time-space grids. The estimated
criterion is sufficient for numerical stability of the formulated discrete model.

ACKNOWLEDGEMENTS

The work was supported by grants Nos. 3157 and 3926 of the Estonian
Science Foundation.

REFERENCES

1. Schmitt, R. W., Perkins, H., Boyd, J. D. and Stalcup, M. C. C-SALT: an investigation of the
thermohaine staircase in the western tropical North Atlantic. Deep-Sea Res., 1987, 34,
1655-1665.

2. Muench, R. D., Fernando, H. J. S. and Stegen, G. R. Temperature and salinity staircases in the
Northwestern Weddell Sea. J. Phys. Oceanogr., 1990, 20, 295-306.

3. Marmorino, G. O. “Turbulent mixing” in a salt finger staircase. J. Geophys. Res., 1990, 95, C8,
12983-12994.

4. Zodidtis, G. and Gasparini, G. P. Thermohaline staircase formations in the Tyrrhenian Sea
Deep-Sea Res., 1996, 43, 655-678.

5. Fernando, H. J. S. Buoyancy transfer across a diffusive interface. J. Fluid Mech., 1989, 209,
1-34.

6. Turner, J. S. Multicomponent convection. Ann. Rev. Fluid Mech., 1985, 17, 11-44.

7. Turner, J. S. Laboratory models of double-diffusive processes, double diffusive convection. In
Geophysical Monograph 94 (Brandt, A. and Fernando, H. J. S, eds.). AGU, 1995, 11-30.

8. Feodorov, K. N. Thermohaline Ocean Fine Structure. Gidrometeoizdat, Leningrad, 1976 (in
Russian).

9. Rannat, K. and Heinloo, J. Model of vertica transport in stratified turbulent environment,
considered as rotationally isotropic. Estonian Marine Institute, Rep. Series, 1999, 10,
15-18.

10. Barenblatt, G. I., Bertsch, M., Dal Passo, R., Prostokishin, V. M. and Ughi, M. A mathematical
model of turbulent heat and mass transfer in stable stratified shear flow. J. Fluid Mech.,
1993, 253, 341-358.

11. Balmforth, N. J., Llewellyn Smith, S. G. and Young, W. R. Dynamics of interfaces and layers
in astratified turbulent fluid. J. Fluid Mech., 1998, 355, 329-358.

12. Monin, A. S. and Yaglom, A. M. Satistical Hydromechanics.. Mechanics of Turbulence.
Nauka, Moscow, 1967 (in Russian).

13. Nemirovski, J. V. and Heinloo, J. Local-Eddy Theory of Turbulent Flows. Novosibirskij gos.
un-t, Novosibirsk, 1980 (in Russian).

14. Heinloo, J. Phenomenological Mechanics of Turbulence. Valgus, Talinn, 1984 (in Russian).

15. Heinloo, J. Turbulence Mechanics: Introduction to the General Theory of Turbulence. Akad.
nauk. Estonii, Tallinn, 1999 (in Russian).

61



16. Vdsumaa, U. and Heinloo, J. Evolution model of the vertical structure of the turbulent active
layer of the sea. J. Geophys. Res., 1996, 101, C10, 25635-25646.
17. Stoer, J. and Bulirsh, R. Introduction to Numerical Analysis. Springer-Verlag, New Y ork, 1993.

TERMOHALIINSETE VALJADE KIHILISE STRUKTUURI MUDELI
NUMBRILINE STABIILSUS

Peep MIIDLA, Kalev RANNAT ja Jaak HEINLOO

On formuleeritud temperatuuri ja soolsuse topeltdifusioonist tingitud kesk-
konna vertikaal se kihistumise diferentsiaalmudel kolmest mittelineaarsest vorran-
dist koosneva varrandite stisteemina keskkonna turbulentse energia, temperatuuri
ja soolsuse vertikaalse jaotuse madramiseks, mudeli vorrandite lahislahendi
leidmise algoritm ja sellel pdhineva numbrilise lahenduse stabiilsuse kriteerium.
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