
H = X(x)
d2

dx2
+ V (x),

whereX is anarbitrary function andV denotes an arbitrary potential, one defines
a momentum operatorP via

P (x) = Y (x)
d

dx
+ Z(x),

42

Proc. Estonian Acad. Sci. Phys. Math., 2001, 50, 1, 42–48

https://doi.org/10.3176/phys.math.2001.1.04

GENERAL SOLUTION OF A SYSTEM OF
DIFFERENTIAL  EQUATIONS MODELLING A CLASS

OF EXACTL Y-SOLVABLE POTENTIALS

Axel SCHULZE-HALBERG

Department of Mathematics, Swiss Federal Institute of Technology Zürich (ETH), 
ETH-Zentrum HG E 18.4, CH-8092 Zürich, Switzerland; xbat@math.ethz.ch

Received 9 November 2000

Abstract. We obtain the general solution of a system of differential equations introduced by 
Ge et al. (Phys. Rev. A, 2000, 62, 052110–052117). This solution yields a class of exactly-
solvable potentials and can be used to calculate the ground state for the class of these potentials.
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1. INTRODUCTION

In recent times exactly-solvable models in quantum mechanics have been 
extensively investigated . Especially for the nonrelativistic Schrödinger equation 
numerous methods have been elaborated to determine potentials for which at least 
part of the energy spectrum and the corresponding exact solution functions can 
be displayed in closed form. Such methods include intertwining techniques [1−3], 
transformations of the Schrödinger equation [4,5], and others [6].

Recently a new method for generating solvable potentials was introduced in [7]. 
Given a general Hamiltonian

https://doi.org/10.3176/phys.math.2001.1.04


with the arbitrary functionsY andZ. Furthermore, define a coordinate operatorQ
by

Q(x) =
1

1 + βV (x)
(
X(x)Z ′′(x)− γV (x)− αZ(x)− Y (x)V ′(x)

)
with free constantsα and γ. Provided some constrained relations between the
functionsX, Y, Z, V, Q hold which determineQ, Z, andV in terms ofX andY ,
one can write the commutators betweenH andP , resp.H andQ, in the form

[H,P ] = Q Θ1 + P Π1,

[H,Q] = Q Θ2 + P Π2,

which in turn leads to shift operators allowing computation of the ground state for
the potentialV determined by the constraints. In other words, givenX andY , one
has to solve the constraints forQ, Z and the potentialV to obtain the ground state
for this potential.

These constraints – a set of coupled differential equations – are given in [7] in
explicit terms, but only solved exemplarily: their general solution forQ, Z, andV
is not given. Aiming at a particular potentialV , it is therefore difficult to chooseX
andY in such a way that the constraints yield exactly the desiredV .

In this note we compute the general solution of the constraints forQ, Z, and
V in explicit terms ofX andY . To illustrate our computations, we give some
examples.

2. SOLUTION OF THE CONSTRAINED EQUATIONS

The set of constrained equations we have to solve reads explicitly [7]:

−γX(x)− βQ(x)X(x)− Y (x)X ′(x) + 2X(x)Y ′(x) = 0, (1)

−λY (x) + X(x)Q′(x) = 0, (2)

−αY (x) + 2X(x)Z ′(x) + X(x)Y ′′(x) = 0, (3)

τ − νQ(x)− 2λZ(x) + X(x)Q′′(x) = 0, (4)

Q(x) + γV (x) + βQ(x)V (x) + αZ(x) + Y (x)V ′(x)−X(x)Z ′′(x) = 0. (5)

These equations are to be solved for the functionsQ, Z, andV in terms of the
functionsX, Y and the constantsα, β, γ, λ, ν, andτ .
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2.1. The caseX′(x) 6= 0 and β 6= 0

In order to determineQ, let us consider Eqs. (1) and (2). Equation (1) yields

Q(x) =
−γ + 2Y ′(x)

β
− Y (x)X ′(x)

βX(x)
, (6)

whereas (2) leads to

Y (x)
X(x)

=
Q′(x)

λ
. (7)

Inserting the latter into (6), we come to the following equation forQ:

Q(x) =
−γ + 2Y ′(x)

β
− X ′(x)Q′(x)

βλ

⇒ Q′(x) = − βλ

X ′(x)
Q(x)− λγ − 2Y ′(x)

X ′(x)
, (8)

with the general solution

Q(x) =

exp

(
−

x∫
0

βλ

X ′(k)
dk

)(
Q0 −

∫
exp

( x∫
0

βλ

X ′(k)
dk

)
λγ − 2Y ′(x)

X ′(x)
dx

)
, (9)

whereQ0 denotes a free constant.
Equation (3) can be solved forZ by integration:

Z ′(x) = −Y ′′(x)
2

+
αY (x)
2X(x)

⇒ Z(x) = −Y ′(x)
2

+
α

2

∫
Y (x)
X(x)

dx. (10)

Simultaneously, the functionZ has to fulfill Eq. (4), that is

Z(x) =
−τ − νQ(x) + X(x)Q′′(x)

2λ
. (11)

Adding the results (10) and (11), we arrive at the following expression forZ:

Z(x) =
α

4

∫
Y (x)
X(x)

dx +
−λY ′(x)− τ − νQ(x) + X(x)Q′′(x)

4λ
. (12)

The expressionsQ andQ′′ appearing on the right-hand side of the last equality can
be removed by inserting (9) forQ and its second derivative forQ′′. We do not give
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the resulting expression forZ here because it is rather lengthy.

At last, we use Eq. (5) to determineV :

V ′(x) = −
(

γ + βQ(x)
Y (x)

)
V (x)− Q(x) + αZ(x)−X(x)Z ′′(x)

Y (x)

⇒ V (x) = exp

(
−

x∫
0

γ + βQ(k)
Y (k)

dk

)(
V0 −

∫
exp

( x∫
0

γ + βQ(k)
Y (k)

dk

)

× Q(x) + αZ(x)−X(x)Z ′′(x)
Y (x)

dx

)
. (13)

Again, we can insert the expressions (9) and (12) in order to expressV in terms
of X andY only. We omit to give examples to this general case, because even
for the simplest functionsX andY we obtain very long and involved expressions.
Examples will be given in special cases below.

2.2. The caseβ = 0

In the caseβ = 0 the constrained equations (1) and (5) simplify as follows:

−γX(x)− Y (x)X ′(x) + 2X(x)Y ′(x) = 0, (14)

Q(x) + γV (x) + αZ(x) + Y (x)V ′(x)−X(x)Z ′′(x) = 0. (15)

We see from (14) that the term containingQ has vanished. ThereforeQ is
determined only by (2), that is

Q(x) = λ

∫
Y (x)
X(x)

dx. (16)

Equation (14) therefore represents an interrelation betweenX andY . Solved for
Y we obtain

Y ′(x) =
γ

2
+

X ′(x)Y (x)
2X(x)

⇒ Y (x) =
√

X(x)

(
Y0 +

∫
γ

2
√

X(x)
dx

)
, (17)

whereY0 is a free constant.
Since the other constrained equations (2)–(4) remain invariant in caseβ = 0,

the functionsZ andV are again given by (12) and (13) withβ = 0.
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Example: X(x) = − exp(cx), Y (x) = 1. Let us first check the inter-
relation (14) to make sure that we are able to fulfill it. We get from (14)

γ exp(cx) + c exp(cx) = 0
⇒ γ = −c.

We see that the interrelation (14) is fulfilled provided the latter setting holds. Let
us now computeQ via (16):

Q(x) = −λ

∫
1

exp(cx)
dx =

λ

c
exp(−cx) + Q0. (18)

Next, we use (12) to getZ, that is

Z(x) = −α

4

∫
exp(−cx) dx

+
−τ − ν(λ

c exp(−cx) + Q0)− exp(cx) (λc exp(−cx))
4λ

= exp(−cx)
( α

4c
− ν

2c

)
+
−cλ− νQ0 − τ

4λ
+

Z0

2
, (19)

whereZ0 is an integration constant. Now we can calculateV via (13); note that
γ = −c. We obtain

V (x) =
α2λ + 4λ2 − αλν

8c2λ
e−cx + V0e

cx

+
−2c2λν + 8cλQ0 − 2αcνQ0 − 2αcτ + 4αcλZ0

8c2λ
. (20)

The results (18), (19), and (20) agree with those obtained in [7].

2.3. The caseX′(x) = 0

We see that in the caseX ′(x) = 0 the expression (9) is not defined. Let us
thus reformulate the constrained equations (1) and (2) that determineQ. Setting
X(x) = X0 = constant, we come to

−γX0 − βX0Q(x) + 2X0Y
′(x) = 0, (21)

−λY (x) + X0Q
′(x) = 0. (22)
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The second equation gives

Y (x) =
X0

λ
Q′(x)

⇒ Y ′(x) =
X0

λ
Q′′(x),

which we insert into (21):

−γX0 − βX0Q(x) +
2X2

0

λ
Q′′(x) = 0

⇒ Q′′(x)− βλ

2X0
Q(x)− γλ

2X0
= 0.

The latter equation can be solved forQ; its general solution reads

Q(x) = Q1 exp

(√
βλ

2X0
x

)
+ Q2 exp

(
−
√

βλ

2X0
x

)
− γ

β
, (23)

whereQ1 andQ2 denote free constants. Note that this solution forQ does not
depend on the functionY !

Since the other constrained equations (3)–(5) do not change,Z andV are given
by (12) and (13) withX(x) = X0.

Example: X(x) = −1. We see that nowX ′(x) = 0. In order to calculateQ,
we have to use the relation (23) withX0 = −1. We first find for the square root in
(23): √

βλ

2X0
=

1
i

√
βλ

2
= −i

√
βλ

2
,

which gives after insertion into (23)

Q(x) = Q1

(
sin

(√
βλ

2
x

)
− cos

(√
βλ

2
x

))

+Q2

(
sin

(√
βλ

2
x

)
+ cos

(√
βλ

2
x

))
− γ

β

= sin

(√
βλ

2
x

)
(Q1 + Q2) + cos

(√
βλ

2
x

)
(Q2 −Q1)−

γ

β
.

The latter result agrees with the one obtained in [7] for Y (x) = a exp(cx) +
b exp(−cx). Observe again that the result does not depend onY . The other
functionsZ andV are computed via (12) and (13).
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3. CONCLUDING REMARKS

In summary, we have calculated the general solution of the constraints (1)–(5)
for Q, Z, andV in explicit terms. The advantage of these solutions is that they
allow a first insight into the structure ofV . RegardingV as a candidate for a
solvable potential [7], the search for a particular potential and its ground state can
thus be done more systematically.

Clearly, in case of involved functionsX andY it is not possible to solve the
integrals occurring in (9) and (13) symbolically. The calculations should be carried
out on a computer algebra system.
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TÄPSELT LAHENDUVATE POTENTSIAALIDE KLASSI
MODELLEERIV DIFERENTSIAALVÕRRANDISÜSTEEMI

ÜLDLAHEND

Axel SCHULZE-HALBERG

On tuletatud töös [7] sissetoodud diferentsiaalvõrrandisüsteemi üldlahend. See
lahend viib täpselt lahenduvate potentsiaalide klassini ja seda võib kasutada selle
potentsiaalide klassi põhioleku arvutamiseks.
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