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Abstract. We obtainthe generalsolutionof a systemof differential equationgntroducedby
Geetal. (Phys.Rev. A, 2000,62,052110-052117)This solutionyields a classof exactly-
solvablepotentialsandcanbeusedto calculatehegroundstatefor theclassof thesepotentials.
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1. INTRODUCTION

In recenttimes exactly-solvablemodelsin quantummechanicshave been
extensivelyinvestigated Especiallyfor the nonrelativisticSchrédingerequation
numerousnethodshavebeenelaboratedo determingpotentialsfor which at least
part of the energyspectrumand the correspondingexactsolution functionscan
bedisplayedn closedform. Suchmethodsncludeintertwiningtechniqueg!'—?],
transformation®f the Schrodinger equatidf®], and othersq].

Recentlyanewmethodfor generatingolvablepotentialsvasintroducedn [7].
Given a generaHamiltonian

d2
H= X(az)@ + V(x),

where X is anarbitrary function and” denotes an arbitrary potential, one defines
a momentum operatd? via
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with the arbitrary functiond” andZ. Furthermore, define a coordinate operapor
by

1

Y= v

(X(@)2"(x) =9V (2) — aZ(x) = Y(2)V'(2))

with free constantsx and~. Provided some constrained relations between the
functionsX, Y, Z, V, Q hold which determiné), Z, andV in terms ofX andY’,
one can write the commutators betwdérand P, resp.H and@), in the form

[H,P] = Q©;+PIl,

[HvQ} = Q®2+PH27

which in turn leads to shift operators allowing computation of the ground state for
the potential/ determined by the constraints. In other words, giseandY’, one
has to solve the constraints @, Z and the potential’ to obtain the ground state
for this potential.

These constraints — a set of coupled differential equations — are givéhim [
explicit terms, but only solved exemplarily: their general solution(orZ, andV
is not given. Aiming at a particular potentitl, it is therefore difficult to choos&
andY in such a way that the constraints yield exactly the dedifed

In this note we compute the general solution of the constraint®fo#, and
V in explicit terms of X andY. To illustrate our computations, we give some
examples.

2. SOLUTION OF THE CONSTRAINED EQUATIONS

The set of constrained equations we have to solve reads explfditly [

X (2) - Q)X () — Y (2)X(2) + 2X (2)Y () =

) 0, (1)
=AY (2) + X (2)Q'(x) =

0, (2)

T~ vQ(x) — 22Z(2) + X (0)Q" (x) =
Q) + 1V () + BQE)V (1) + aZ(z) + Y (@)V'(z) — X (2)2"(x) =

()
()

—aY (z) + 2X (2)Z'(z) + X (2)Y"(z) = 0, (3)
() = 0, (4)
(z)

0. (5)

These equations are to be solved for the functiQnsZ, and V" in terms of the
functionsX, Y and the constants, 3, v, A, v, andr.
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2.1. ThecaseX’(xz) #0and 3 # 0

In order to determiné€), let us consider Egs. (1) and (2). Equation (1) yields
_ Y2 (x)  Y(2)X'(z)

whereas (2) leads to

Y(z) _Q'(x)

X(x) X (7)
Inserting the latter into (6), we come to the following equationor

_ T +2Y(e)  X'(#)Q'(x)
Qlz) = 3 B
/ o B)\ )\’7 — QY/(.ZL‘)
= Q'(z) = _X’(x) Q(z) — X/i(@’ (8)

with the general solution

Q(z) =
[ BA [ B Ny — 2Y'(z)
exp (— TUC) dk:) (Qo — /exp( X'(k) dk:) X'(@) dx), 9)
0 0

where(@), denotes a free constant.
Equation (3) can be solved fdf by integration:

) _ Y'(x)  aY(z)
2@ = =t axm
= Z(z) = —YIQ(“") +% / §EZ>) de. (10)

Simultaneously, the functiod has to fulfill Eq. (4), that is
—7 —vQ(z) + X (2)Q"(x)

Z(x) = ) . (11)
Adding the results (10) and (11), we arrive at the following expressio& for
_a [Y(x) “NY'(z) — 7 —vQ(z) + X (2)Q"(x)
Z(x)_zl/X(x) dx + 5 . (12)

The expression® and@” appearing on the right-hand side of the last equality can
be removed by inserting (9) f@p and its second derivative f@)”. We do not give
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the resulting expression fdf here because it is rather lengthy.

At last, we use Eq. (5) to determiné&

o (1HBR@)Y ) Q) +aZ(x) - X(x)2"(z)
v = - () ve Y@
= V() = eXP<— 'Y??g)(k)da <V0—/eXp< de)
0 0
x Q(f’f)+a2(§)(x—) X (2)2"(x) dx) 13

Again, we can insert the expressions (9) and (12) in order to expfdéasterms

of X andY only. We omit to give examples to this general case, because even
for the simplest function& andY we obtain very long and involved expressions.
Examples will be given in special cases below.

2.2. Thecasg3 =0
In the casg? = 0 the constrained equations (1) and (5) simplify as follows:
X (2) - V(@)X (2) +2X (2)Y'(z) = 0,  (14)
Q(z) +vV(z) + aZ(z) + Y (z)V'(z) — X (2)Z2"(z) = 0. (15)

We see from (14) that the term containidigy has vanished. Therefor@ is
determined only by (2), that is

Qz) = A / f{ii)) dz. (16)

Equation (14) therefore represents an interrelation betwéamdY . Solved for
Y we obtain

X'(2)Y (z)
2X (x)

=Y(@) = VX(z) (Yo—i—/

Y(z) = 2
(1) = 5+

~
——dzx |, 17
2/ X (x) ) 17
whereYj is a free constant.

Since the other constrained equations (2)—(4) remain invariant intasé,
the functionsZ andV are again given by (12) and (13) with= 0.
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Example: X(x) = —exp(cx), Y(x) = 1. Let us first check the inter-
relation (14) to make sure that we are able to fulfill it. We get from (14)

vexp(cx) + cexp(cx) = 0
=5 = —c

We see that the interrelation (14) is fulfilled provided the latter setting holds. Let
us now computé) via (16):

A
Q(z) = —)\/ expl(crv) dx = - exp(—czx) + Qo. (18)

Next, we use (12) to get, that is

(0%

Z(x) = —4/exp(—c:c) dx

N —7 — 1/(% exp(—cz) + Qo) — exp(cx) (Acexp(—cx))
4N

@ v —A—vQo—T  Z

= exp(—cz) (E - 2—@) + o + 5 (19)

where 7, is an integration constant. Now we can calculltevia (13); note that
~v = —c. We obtain

a2 X+ 402 — a\v

Viz) = S e~ 4+ Vpe™
_9p2 _ _
n 2c v + 8cAQq 28C¥CQV)\Q0 2aeet + dachZy . (20)
c

The results (18), (19), and (20) agree with those obtained.in [

2.3. The caseX’(x) =0
We see that in the casE’(x) = 0 the expression (9) is not defined. Let us

thus reformulate the constrained equations (1) and (2) that detefpirigetting
X (z) = X, = constant, we come to

—yXo — XoQ(x) +2XoY'(x) = 0, (21)
Y (2) + XoQ'(x) = 0. 22)
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The second equation gives

Y@ = 2w
= V(@) = 20 Q).

which we insert into (21):
2X2
—7Xo = BXoQ(w) + 2Q"(@) = 0

A A
5 Q@) — p Q) - e = 0,

The latter equation can be solved fr its general solution reads

Q) = Qiexp (w/f)ﬁo x> Qe (—\/f)?o x> - @

where(); and Q> denote free constants. Note that this solution@odoes not
depend on the functioH!

Since the other constrained equations (3)—(5) do not chahgedV” are given
by (12) and (13) withX (z) = Xj.

Example: X (z) = —1. We see that nowk’(z) = 0. In order to calculate),
we have to use the relation (23) wilfy = —1. We first find for the square root in
(23):

By 1 [Bx . [Bx
Vax, “iV 2 =W 2

which gives after insertion into (23)

: BA BA
Q1 <sm (\/? :c) — cos ( o> :z))
. BA BA gl
+Q2 (sm (\/? :z) + cos (\/: x)) ~3
sin < % x) (Q1+ Q2) + cos (\/ﬁ:)\ x) (Qa— Q1) — %

The latter result agrees with the one obtainedihffr Y (z) = aexp(cx) +
bexp(—cx). Observe again that the result does not depend’onThe other
functionsZ andV are computed via (12) and (13).

Q(x)

a7



3. CONCLUDING REMARKS

In summary, we have calculated the general solution of the constraints (1)—(5)
for Q, Z, andV in explicit terms. The advantage of these solutions is that they
allow a first insight into the structure df. Regardingl” as a candidate for a
solvable potential], the search for a particular potential and its ground state can
thus be done more systematically.

Clearly, in case of involved function¥ andY it is not possible to solve the
integrals occurring in (9) and (13) symbolically. The calculations should be carried
out on a computer algebra system.
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TAPSELT LAHENDUVATE POTENTSIAALIDE KLASSI
MODELLEERIV DIFERENTSIAALVORRANDISUSTEEMI
ULDLAHEND

Axel SCHULZE-HALBERG
On tuletatud t66s]] sissetoodud diferentsiaalvdrrandisiisteemi tldlahend. See

lahend viib tapselt lahenduvate potentsiaalide klassini ja seda v8ib kasutada selle
potentsiaalide klassi pdhioleku arvutamiseks.
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