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Abstract. Accurate numerical solutions are presented for the radiation field in a semi-infinite,
two-dimensional, plane-parallel, absorbing—emitting but nonscattering grey atmosphere
subjected to cosine varying collimated incident boundary radiation. The kernel of the

integral equation for the emissive power is approximated by a sum of exponents. After this

approximation the integral equation can be solved exactly. The solution contains the well-

known Ambarzumian—Chandrasekhar H-function. Some methods to determine this function

are considered in detail.

This approach allowed of finding the accurate values for the emissive power and the radiative

flux at arbitrary optical depths in the atmosphere. The calculations show that the radiative flux

may have a maximum at certain values of the spatial frequency in the atmosphere and that the

region where the emissivepower reaches a constant value may lie very deep in the atmosphere.
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1. INTRODUCTION

The one-dimensional model for radiative transfer in different media has been

extensively studied. Many problems in one-dimensional transfer allow of rigorous
mathematical solutions which may serve as benchmarks for more complicated
cases or as first approximations to two-dimensional problems.

However, many problems are encountered in astrophysics, meteorology, fluid

mechanics, gas dynamics, and energy transfer between surfaces where the results

of the one-dimensional model of radiative transfer are not accurate enough and

we have to apply models of two- or three-dimensional radiative transfer. This

enormously complicates the solution and thus only a few exact studies exist which
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deal mostly with scattering of a narrow pencil of radiation incident on a scattering
medium [l7°].

There is a group of two-dimensional problems, though, to which an exact

solution can be found. Such problems are connected with nonscattering media

with the following types of boundary radiation: (1) cosine varying collimated

radiation, (2) strip of collimated radiation, (3) cosine varying diffuse radiation,
and (4) constant temperature strip. In those cases the two-dimensional problem
can be reduced to one-dimensional integral equations by the method of separation
of variables. These problems are considered in a series of papers by Breig and

Crosbie [6~ll] where also a good review of literature on the subject is given. Their

approach allowed determination of only the external radiation field.

Mueller and Crosbie ['2] carried the investigation further by considering three-

dimensional radiative transfer with polarization and multiple scattering. This paper

gives a very good review of the latest studies in multi-dimensional transfer.

In the present paper we try to generalize the results of Breig and Crosbie by
applying the method of approximating the kernel of the integral equation to the

Sobolev resolvent function (which essentially is the regular part of the respective
Green function) by a series of exponents. The resultant approximate equation has

an exact solution which is also represented by a series of exponents. This allows us

to define the auxiliary functions g and h through the resolvent function ® and thus

to define all the relevant functions.

In one-dimensional media the described approach has given very accurate

results ['3]. Although for the problem in hand the characteristic function of

radiative transfer is not an even polynomial as in the case of one-dimensional

transfer, it still has retained an essential feature — its evenness in angular variable.

This allowed us to expect accurate results also for the problem under investigation.
It appeared that this really was the case, and we were able to find both the external

and the internal radiation field in a simple and concise way for a semi-infinite, two-

dimensional, plane-parallel, absorbing—emitting but nonscattering grey atmosphere
subjected to cosine varying collimated incident radiation.

2. SOLUTION OF THE EQUATION OF RADIATIVE TRANSFER

We are looking for the emissive power in a homogeneous, nonscattering,
plane-parallel, two-dimensional, grey atmosphere which is in local thermodynamic
equilibrium. The radiative transfer in such an atmosphere is described by the

equation

I I T

oS 9-—B—— + sin0sin qSö— +l= zT4,
OT, ÕTy T

where I is the intensity, is the polar angle measured from the inward normal

to the atmosphere, ¢ is the azimuthal angle measured from the 7,.-axis, @ is the

(1)
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Stefan-Boltzmann constant, 7" is the temperature in the atmosphere, 77 is the

emissive power. The optical depth 7, is measured downward from the boundary of

the atmosphere and, together with 7, and 7y, it forms a right-hand rectangular co-

ordinate system. We require that the energy should be transferred only by radiation,

1.e., there should be no heat conduction or convection in the atmosphere.
Applying integrating factor techniques to Eq. (1), we obtain the formal solution

to the intensities of downward and upward moving radiation in the form

I+(Tya'rz’,“)
1 f"

= I exp(—re/i) += [ T 1)explo(r = 7)) drL/s

S

L
Iy meb)= |ST ) exp(=(et = 7))t

Tz - :

where 'r; = 7y — T, tanfsin¢, 7'3’, =ly + (7, — ;) tan@sin ¢, p = cos 0, and I
is the intensity incident on the boundary of the atmosphere [!].

As we require the atmosphere to be in radiative equilibrium, we may write

45T4(Ty,Tz)=/ Idw
47

where w is the solid angle.
Substituting Eqs. (2) and (3) into Eq. (4), we obtain the equation for the

emissive power

4ET4(7-y77'z) = /2 Ig—(TZj—) eXp(—Tz/'LL)dw

1 27 1 00

+?/ / / 7T (1), 7;)exp(— |7z =7| /p)dr;du/udg.
0 0 JO

According to our assumption, the incident intensity may be expressed as

If (7,F) = Io [1 + eexp(ißr;")] 6(1 — pO)6(),

where Iy is a constant, (49 = cosfy,p) defines the direction of the incident

collimated radiation, € is the amplitude of the cosine wave, and § is the Dirac
delta function. Boundary condition (6) shows that the top of the atmosphere is

illuminated stripwise by a parallel beam at an angle of 6, while the strips are

parallel to the z-axis and their widths are defined by the spatial frequency 3 as

7/ in units of optical length ’l';_ .
The illumination in the direction parallel to the

y-axis varies according to the cosine law. Next we apply the concept of separation
of variables to Eq. (5) by assuming that

and

(2)

(3)

4)

(5)

©
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where Bjy is the dimensionless emissive power and 7 = 7,. Using Eq. (7) in Eg.
(5) gives us a simple integral equation for By in the form

1 o 0
Bg (7, po) = exp(—7/po) + ž/o EI(T — T)Bp(T po)dr'

where the generalized exponential integral £; is defined as [2]

eln,B) = [ e (-l VELE) —F%
By substituting jeo for (2 + 42)~/2 in Eq. (8) and multiplying both sides of it by

dt//t2 + 32, and last, integrating from 1 to co, we arrive at the integral equation
for the resolvent function @4 in the form

]' °° / f /õp(r) = 301n,8)+3| Eulr = )Bp()ar

where

1 ooßfi(T,\/l?Q—-_l-—,_B—i)dt%)=5] Aa

Next we introduce two functions, hg(7, 1) and gg(7, u), as follows [*3]:

halr,u) =l+ / B(t) exp(—(t — 7)/p)dt

and

95(7, 1) = exp(—7/p) + /OT Õp(t) exp(—(7 — t)/u)dt.

In the following we need two equations which connect these functions with each

other

ol +gp(r,p) = pp(7).—a

Equations (14) and (15) can easily be found from Egs. (12) and (13) by
differentiating them with respect to 7.

(8)

)

(10)

(11)

(12)

(13)

(14)

{15)
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Sobolev [l4] has shown that the solution to Eq. (8) may be written in the form

Ba(r, o) = B(0,) [expl—r/po) +[ S) exp(-(r - /o)),
or, in our notation,

8,8(T7 ,U,()) — Bfl(ohu'O)gfl (T 7 /“0) :

Formally this completes the solution of the problem of determining the

temperature distribution in a semi-infinite atmosphere subjected to collimated

cosine varying radiation.

Next we show how to find the emissive power at the boundary Bg(0, uo) and

the function gg(7, 1) at an arbitrary optical depth.
It is obvious that if 8 = 0, then Eq. (8) reduces to the equation describing

radiation transfer in a one-dimensional medium, which has been successfully
solved by introducing the Sobolev resolvent function [?] and then approximating it

by a sum of exponents. Since Eq. (8) is linear and the kernel is a sum of exponents,
we may try to use the same technique.

First we change the variable u = (243%)~1/2 in Eq. (9) to reduce this formula

to a more familiar form j

P exp(—7/u)duEl(7, B) =/0 x/——l———W a

wherep= (1 4+ 82)7V2.
To solve Eq. (10) we express the generalized exponential integral in Eq. (18)

as a sum of exponents

N

E1(1,8) =2 wrpyUkexp(—7/p),
k=lL

where the characteristic function is expressed as

1
Py Btiy

24/1 — 8%p2

In Eq. (19) wx and uy are the weights and points of a Gaussian quadrature rule

in the interval (o,p) and N is the order of the quadrature [3]. The characteristic

function W (different from that which appears in the analysis by Breig and Crosbie

[7] but nevertheless giving accurate results!) is not a polynomial but it has retained

another important quality —it still is an even function of z.

(16)

(17)

(18)

(19)

(20)
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If we have approximated the general exponential integral as a sum of exponents,
then Eq. (10) accepts an exact solution as a sum of exponents [l3]

N

Õp(7) = z a; exp(—s;T).
—1

In order to determine the coefficients a; and s; in Eq. (21), we use Eq. (21) in Eq.
(10) and by equating the similar exponents, we obtain the characteristic equation

N

1—22; 1 — p2s? ”
1=

and a linear algebraic system for coefficients ay

N
a

zl—;—%——ui—lzü, Z=].„N
ki

HiSk

It is evident that Eq. (22) has exactly NV pairs of nonzero solutions sy, if only
B # o.lf B = 0, then s; = £0 is also a solution, but as this takes us back to the

thoroughly studied one-dimensional case, we shall not consider it here.

The roots of the characteristic equation satisfy the following inequalities:

o<|slil <ux' <lsal <urli <- < r <ur'.

As the roots are bracketed, we may use any of the well-recommended root-finding
algorithm, e.g., Brent’s method [l°].

In our approximation the functions hg(7, ;1) and gg(7, ) [Egs. (12) and (13)]

may be written in the form

N
a; exp(—s;7)

halr,u) =l+p)Y ) ——

s
ll+sip

and

X
;T) — EXDPI—T

ga(ry) = exp(—r/p) +p 5 )HAL—
i=]l ?

In certain cases we may observe the apparent singularity at s;u = 1, but it

can simply be removed by substituting the respective term in the sum for

a;T exp(—T/p).
Since the formula for the emissive power at the boundary is given by Sobolev

[l4] in the form

21

(22)

(23)

(24)

(05)
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—

õslr)exp(-r/uo)dr, (26)
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we have in our approximation

N
a;B 0 ) = ooy m—.5(0, o) ”šl+siuo

This concludes the solution of Eq. (8).

3. THE H-FUNCTION .

In this section we describe two more methods of determining the emissive

power at the boundary with the intention to use them in estimation of the accuracy
of the results for the emissive power at arbitrary optical depths obtained by our

approximation method.

First, Breig and Crosbie have shown that the emissive power at the boundary
satisfies the well-known Ambarzumian—Chandrasekharnonlinear integral equation
for the H-function in the form [']

? Uz, B)Hp()dsHylp) = 1+ i)| ,

where the H-function isclosely connected with the emissivepower at the boundary,

Hg(u) = Bg(0,),

hfl(()’ u) = B,Ü(Oa u).

Equation (28) may be solved by successive approximation which is a standard

iterative technique in solving integral equations but, according to Chandrasekhar

[l6], the equation must be modified in order to get a rapidly converging scheme.

The modified equation has the form

1 g
1

?sU,B Holo)dt —Hfl—l(fl) = l:l— šarcsin W} +/0 —————lB—FM

We approximate the integral in Eq. (31) by a finite sum using a Gaussian quadrature
rule in the interval (0, p). Then we start the iteration process by taking Hg(u) = 1

(27)

(28)

(29)

(30)

131



Iu, B) = l/M2
N 0

F(9)d (39)
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as the zeroth approximation. The iteration process may be substantially accelerated

if we take the average of two subsequent approximations as the next approximation.
Last but not least, we may use the explicit solution to Eq. (28) given by

Chandrasekhar [l6]:

u
°

8)
zdw

lan(u) =

% [Zoo lnT(w,
w2- '1,1,2,

where

2
(7 ¥, f)dp.

According to Kourganoff and Busbridge [!7], the complex integral in Eq. (32)
can be transformed into a real integral by the substitution w = 7 cot Y. Using this

substitution in Egs. (32) and (33), we obtain

cos ¥ v/ 32 + sin? ¥
T(fi,fl) —

m
arctan

cos Y

and

/2 mT(B,6)dyu nT(B,
i )o Bl YRS -Dn Ho(p) 7r/0 cos29+ p? sin?9

Stibbs and Weir ['®] calculated H-functions for isotropic scattering by direct

quadrature of Eq. (35) after having carefully removed all the singularities of the

integrand. We closely follow their example. For the problem in hand there is only
one case whichrequires special analysis and which follows from the fact that

liiOoHpg/0p — 00.

For small values of p the integrand in Eq. (35) displays a sharp minimum when

¥ approaches 7/2 and reaches zero at ¢ = 7/2. Stibbs and Weir eliminated this

minimum by integrating by parts and so do we. They noticed that

d —1

i jäsmg57 aretan(utand),

and the integrated part vanishes. If we write [cf. Eq. (35)]

Hg(p) =exp[l (1, B)],

we obtain

(32)

(33)

(34)

(35)

(36)

(37)

(38)
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where

f(9) = [O„%InT(Ü,B)] arctan(u tan 9)

and

0

59 2T,0)
» 1 (1+82) sinv

aretan
/32 + sin? ¥

>

cosisinv
—

T(8,B) ([32 + sin 2 19)3/2 cos v B +sin'B|

This unwieldy function is nevertheless a well-behaved monotonic function of 9

apart from the fact that its first derivative at ¢ = 7/2 is large when p is small. We

may eliminate this unpleasant feature by introducing a new function

N
1) = —arctan(utan Y9),

and considering the function

1/2 r /2

TB)== [ 0)-s0]a0+3 |—99 = u(u, )+T, ).

Now we can find the function I; (u, 6) with reasonable accuracy using the Gaussian

quadrature, since the integrand is a well-behaved function. Stibbs and Weir [lB]
showed that the second function may be evaluated by using the series expansions

! I—p 00_&
, O<pu<l,

1

—lnulnl+u+z(2n+l)2
or

2HI „:0(2„+1>2(m) }’°<“§l’(4
while Eq. (44) should be used for p < /2 —1 and Eg. (45) for u > /2 —-1.

Because of Eg. (36), the determination of the H-function at small values of j still

remains a problem, and it would be desirable to have an approximation formula

the accuracy of which would improve with u — 0. This formula can simply be

obtained by letting H(1) = 1 on the right-hand side of Eq. (28) and integrating it

in a straightforward way. The result is

bm AA— o(1d).HB(H)=l+2 T n’u(l+\/m_2_)

(40)

(41)

(42)

(43)

(44)

5)

(46)
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There is another critical region when w — 00. When using any of the three

methods of determining the H-function, we observe a rapid deterioration in

accuracy in this region. This difficulty may be overcome by writing Eq. (18) for

large values of y in the form

Hp(p) =l+ H(u) [ho (B) — hi (B) u7' + ha (B) u7° — ha (B) p +..]

where

1

b (8) = / “ B) Holp)u"

Hence, for large values of u we may use the formula

00 —1

Hp(p) = [1 -> (-1)" hn (8) u—"]
n=o

As a special case we have

Hg(oo) = [1 —ho (B)]*.
There is a problem, though, since for large values of the parameter (3 the

characteristic function increases very rapidly if 4 — 1 and we encounter a rapid
loss in accuracy when using Eq. (48). This problem may be bypassed by using
a well-recommended way: in Eq. (48) we subtract the maximum value of the

integrand and, since this can be integrated analytically, add it later. As a result we

obtain

1

b (8) = |9l,)a0 = Hp(l)] s+ Ha(oiha (6),

where the nth moment of the characteristic function is as follows:

¥ (B) = /Op‘P(u,fl)u”du-
For the first four moments of the characteristic function we obtain

Yo (f) = žmin/—%?”
W (B) = %(I—\/1_;@)
»b = (-tpueinL),

For evaluating these integrals we have used the free service provided by the

Wolfram Research, Inc. at the website http://www.integrals.com/index.cgi.

47)

(48)

(49)

(50)

(5D

(52)

(53)
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4. RADIATIVE FLUX

In this section we consider the formulation of the equations for the z-

component of radiative flux in the atmosphere and respective calculations.

According to [lY], the z-component of radiative flux can be shown to satisfy the

relationship

02(7y, T7) = LoQp=oo (T, po) + eloQp (7, o) exp(ißy),

where the dimensionless radiative flux is given by

l T

Op (7,u0) = poexp (—7/po) + ž/0 €a (1—1',B) Ba(r',uo)d”

1 o0
- ž/ E 2 (7° —7,8) Bp(7',uo)dr'.

In Eq. (55) the generalized second exponential integral can be written as

) = [olma
Substituting Eq. (56) into Eq. (55), changing the order of integration and taking
Egs. (2), (3), (14), and (15) into account, we obtain

Q,B (Ta )U'O)

1o exp (—7/po) + poHpa (ko) /OpW195 (7, o) — g 5 (7, u)]

—poHp (10) /OpW 195 (T, 10) + hg(T,u) — I],

where

1
YiB) =

W
Thus, the radiative flux at the boundary of an atmosphere is

p (0,110) = o =ol (o) [ fl/’_l_(fifi@g._fl(“)@‘“‘.
0 0 u

As the problem under consideration formally coincides with the respective
problem of the one-dimensional transfer with conservative scattering, we may

expect the total radiative flux to disappear if § = 0. This happens because in a

conservative atmosphere photons are not destroyed, and since the atmosphere is

semi-infinite, all the photons incident on such an atmosphere must emerge through

(54)

(55)

(56)

6D

(58)

(59)
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the plane of incidence, thus causing the total flux of energy to disappear. This is

why in Eq. (54) we are left only with the part of the flux for which 3 # 0. At the

same time this means that because of the cosine function there occurs the change
of the sign of the flux, which means that the energy flow changes its direction to

the opposite at

Ontlr = pool2.Ty =

25

| 5. NUMERICAL RESULTS

Due to the facts that for large (3 the characteristic function W(u, 3) increases

rapidly if © — p and that the generalized exponential integral has a logarithmic
singularity at 7 —0, we have to be careful in using the Gaussian rule in

Eq. (19). To achieve higher accuracy we divided the integration range (0, p) into

four subintervals: (0,0.1p (0.1p,0.9p), (0.9p,0.99p), and (0.99p p). In each

subinterval we used the Gaussian rule with N/4 points. We admit that this division

is arbitrary and perhaps a better scheme at the same computational volume could be

found, but as this scheme at N = 84 secured at least five significant figures both for

the dimensionless flux and the emissive power in the region of 0 < 8 < 10000,
we remained content with it. Instead of a rigorous error estimation, we first

compared our results with those by Breig and Crosbie ["], which were obtained

at the boundary of the atmosphere only, and found the coincidence to be good.
Then we gradually increased the number of quadrature points and compared the

respective results in a large number ofnumerical experiments.
Figure 1 shows the behaviour of the dimensionless emissive power Bg for

u = 1.0. According to calculations for small angles of incidence, the dimensionless

emissive power decreases monotonically for all values of 3. This is not the case for

the perpendicular incidence where such a monotonous decrease is present only for

log 8 > 0.5. For smaller values of 3 the dimensionless emissive power increases

with the optical depth 7 until it reaches a maximum and only then starts to decrease.

The influence of the spatial frequency [ and the optical depth 7 (optical
coordinate in z-direction) on the dimensionless flux of energy Qg(7, = 1.0)
is illustrated in Fig. 2. The dimensionless flux decreases from its maximum value

[which is equal to p according to Eq. (55)] at large values of spatial frequency, and

small values of optical depth decrease towards smaller values of spatial frequency
and larger values of optical depth, but curiously enough there appears a maximum

in the ()s—log 7 plane in the region where log 7 > —0.75.

Figure 3 displays the flux as a function of optical coordinates 7, and T

for parameters 8 = 100.0 and x = 1.0. We may observe that the flux decreases

monotonously towards larger values of 7 until it becomes zero at log7 ~ 0.75.

At the boundary the flux is determined by the incident radiation and it changes
direction as predicted.
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Fig. 1. The dimensionless emissive power Bg as a function of the optical coordinate T and the

spatial frequency 8 at the angle of incidence o°.

Fig. 2. The dimensionless flux @) as a function of the spatial frequency 3 and the optical
coordinate 7 at the angle of incidence o°.
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The surface of the emissivepower (or the temperature distribution) as a function

of optical coordinates 7, and 7 for parameters 3 = 0.01 and u = 1.0 is presented
in Fig. 4. In this case the influence of the incident radiation disappears very deep
in the atmosphere, or, in other words, the emissive power reaches its undisturbed

state at log 7 ~ 3 only. We may recall the presence of the maxima in the run of

the dimensionless emissive power which now causes maxima also in the (total)
emissive power. The increase in the spatial frequency causes the emissive power to

reach the undisturbed state at much smaller optical depths, e.g., at 5 = 100.0 the

respective optical depth is only log 7 ~ 0.5 (Fig. 5).
When considering the oblique incidence on the atmosphere, we may observe

that the optical depth of undisturbed state is still defined by the spatial frequency,
only the value of undisturbed emissive power is smaller at smaller angles of

incidence (Fig. 6).

Fig. 3. The flux ¢, as a function of optical coordinates 7 and Ty at the spatial frequency
B = 100.0 and the angle of incidence 72°.54.
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Fig. 4. The emissive power 7' as a function of optical coordinates 7 and Ty at the spatial
frequency B = 0.01 and the angle of incidence o°.

Fig. 5. The emissive power 7' as a function of optical coordinates 7 and 7, at the spatial
frequency 8 = 100.0 and the angle of incidence o°.
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6. CONCLUSION

It has been shown that the techniques used in one-dimensional radiative

transfer, namely the approximation of the Sobolev resolvent function by a sum

of exponents, can be freely used for certain problems of two-dimensional radiative

transfer. This approximation is simple and straightforward but gives accurate and

reliable results.
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TEMPERATUURIJAOTUS POOLLÕPMATUS "ATMOSFÄÄRIS,
MILLELE LANGEB KOOSINUSSEADUSE JÄRGI MUUTUV

KOLLIMEERITUD KIIRGUS

Tonu VIIK

On vaadeldud kiirguslevi poolldpmatu optilise paksusega kahemddtmelises

tasaparalleelses mittehajutavas, kuid neelavas ja kiirgavas atmosfiiris, millele

langeb koosinusseaduse jargi muutuv kollimeeritud kiirgus. Kui oletada veel,
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et atmosfäär on hall ja ta on kiirguslikus tasakaalus, s.t. energia levib seal

vaid kiirguse teel, saab kiirguslevi vorrandi taandada integraalvorrandiks, mille

omakordasaab muutujate eraldamise teel taandada suhteliselt lihtsaks iihemddtme-

liseks integraalvorrandiks. See vOrrand erineb tavalise ithemddtmelise kiirguslevi
vorrandist karakteristliku funktsiooni poolest, mis pole enam paarisfunktsiooniline
poliinoom, vaid palju keerulisem, kuid siiski paarsuse siilitanud funktsioon.

Osutub, et selle integraalvorrandi lahendamiseks saab kasutada meetodit, kus

integraalvorrandi tuum ldhendatakse eksponentide reaga. Sellisel juhul lahendub

lahendvorrand tipselt, kusjuures lahendiks on samuti eksponentide rida, mille

koefitsiendid saab lihtsatest vorranditest leida. Edasi on defineeritud funktsioonid

h ja g nagu iihemddtmelisel juhulgi ning sellega on kiirgusvili iilalkirjeldatud
atmosfääri igas punktis leitud.

Eraldi on uuritud voimalusi H-funktsiooni numbriliseks leidmiseks, sest

see on funktsioon, mis miirab kiirgusvdoime (vOi temperatuurijaotuse) vadrtuse

atmosfairi pinnal. Kaht H-funktsiooni numbrilise leidmise meetodit on kasutatud

autori lahendusmeetodiga saadud tulemuste kontrolliks ja veendutud, et meetod

annab väga tipseid tulemusi. Numbrilised eksperimendid parameetrite erinevate

vaartuste puhul nditasid, et langeva kiirguse ruumilise sageduse teatud väärtuste

puhul voib kiirgusvoog mingitel optilistel siigavustel olla maksimaalne ja
kollimeeritud ”triipude” vahel muuta isegi suunda. Samuti selgus, et temperatuuri
jaotusfunktsioon vGib konstantse vdirtuseni jouda alles viga siligaval atmosfääri

sees, kus optiline siigavus on suurusjargus 1000.
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