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Abstract. Semiparallel submanifolds M™ in Euclidean space E™ are the second-order

envelopes of symmetric orbits, which are determined by the system Vh = 0 of differential

equations with integrability conditions Roh = (0. The last system characterizes the

semiparallel submanifold M™ in E™. In the paper a function describing the reducibility
properties of the second-order envelopes M* of a normally non-flat, reducible symmetric orbit

V2(rl) x SU(r2) x S*(r3) with a Veronese component, which is a Veronese surface in E°,
is introduced and some geometrical properties of the M 4 are pointed out.
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1. INTRODUCTION

Let M™ be a smooth submanifold in Euclidean space E™ with a second

fundamental form A and van der Waerden—Bortolotti connection V = V @ V+
(the pair of the Levi—Civita connection V and the normal connection Ny AE

Vh = 0, then M™ is said to be a parallel submanifold in E™ [“?]. A complete
parallel submanifold M™ is a symmetric orbit, i.e., an orbit of a Lie group which

acts in E™ by isometries [>]. Moreover, the submanifold M™ is symmetric with

respect to any of its normal subspaces [*]. All normally flat symmetric orbits

M™ in E™ are the products of a plane and some spheres or circles. They can

be represented as F™o x'S™(pry) x
...

x S (rs), mo + mi +...+ ms; = m

[°]. According to [>*6], the general symmetric orbits in E™ are also products
eSO oAN () SIS (gY-. X SUrs4+9g). Here ™o (1) dre
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the standard embedded symmetric R-spaces with m, > 1,0 € {1,...,5}. They
are said to be the main components of the product.

The integrability condition of the system VA = ois R o h = 0, where R is

the curvature operator of V. A submanifold M™ in E is said to be semiparallel
[7] or (extrinsically) semisymmetric [®:] if the condition R o h = 0 is satisfied. It

is shown in [l°] that M™ in E™ is semiparallel iffM™ is a second-order envelope
of the symmetric orbits. In more detail, at every point x € M™ of semiparallel
M™ there exists a symmetric orbit with the same tangent subspace and with the

same second fundamental form 4 (see also [}!]). There arises the problem of the

description of all second-order envelopes of symmetric orbits. The first known

results pertain to some low dimensions (m = 1,2,3) ["*!?] and codimensions

(m =n — 2,n —1) [**!4] and also for all normally flat M™, i.e., for cases with

flat connection V+ [%ls]. Surveys of the early results have been given by Deprez
[l6] up to 1989 and by Lumiste [°] up to 1990.

The description of a normally flat semiparallel M in E" is based on the

fact that for the case mg = ¢ = o,s = 1, N(r1) = 5% (r,). the second-

order envelope consists of umbilical points only and therefore is an open part of

a sphere. If the main components N (r;) are the Segre orbits without circular

generators [17:18], Pliicker orbits [l°] or Veronese—-Grassmann orbits [l°~2l], then

their second-order envelopes are also open parts of a single N (r;). The main

components N (ry) with such a property are said to be umbilical-like; their

second-order envelopes are trivial. The Segre orbits with circular generators
and Veronese orbits are non-umbilical-like; they have non-trivial second-order

envelopes [17?223], Some more general cases with at least two components as

products, including a main component, are discussed in [12425], A special case

of mg =o,s =l, g = 2 with N™(r;) = V?(rq) is considered in the present

paper. It is the last among four-dimensional, reducible, normally non-flat parallel
submanifolds whose second-orderenvelopes are not yet completely clarified.

The semiparallel M™ in E™ with m =1,2,3 are described in [7B].
Investigations have also been based on the following lists of parallel submanifolds

[2s];
m = 1: straight lines E! C E™ and circles S*(r) in planes E? C E".

m = 2 ["]: products of two lines from the previous list, i.e., planes
F' x E} = E? c E", cylinders E* x S'(r) C E™, Clifford tori in 3-spheres
St(ry) x S'(ry) c S3(R) c E™; spheres S%(r) C E* CE" and Veronese

surfaces V2(r) c S*(R) c E® C E".

m = 3 [*?]: products of the lines and the surfaces from the previous lists,

i.e, IxF= BB c E*, P x SUr)c E*,E' x S(r)c B*, B x SUri) x

SU(ro) c E*, E' xV(r) c E*, S(r1) x S(r2)) c E*, Vž(rl) x SU(r2) C

E", S'(rl) x SU(r2) x SU(r3) c E”, spheres S*(r) c E", Veronese surfaces

V3(r) c SÕ(R) c E?° c EY*, and Segre submanifolds Sa,2y(r) C SŠ(R) c

E$ c E*.
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The description has been continued for m = 4 [15:24=26], As the normally flat

semiparallel submanifolds were described in general in [°], onlya list of normally
non-flat parallel submanifolds is presented here. For all possible values of my, s, g

it is as follows:

m = 4 [?°]: reducible ones (i) E? x V2(r), (ii) E' x V3(r), (iii) V2(r) x

V2(ra), (v) V2(ry) x S%(rg), (v) V3(rl) x SY(rg), (vi) E' x Sy 9)(r), (vii)

5(1,2)(7"1) X 51(7‘2), (viii) V2(T‘l) X 51(7‘2) X 51(7'3), (ix) s V2(7‘l) X 51(7‘2);
known irreducible ones: Segre orbit Sép’fi) (r) (p + p = 4), Pliicker orbit G(3 4)(7),

Veronese orbit V*(r), Veronese-Grassmann orbitVG(54 (7).

Remark. It is not yet known whether the above list of irreducible parallel
submanifolds M* in E™ is exhaustive or not. Except for SE‘I 3) (r) and V4(r), which

have nontrivial second-order envelopes, the irreducible S)’/mmetric submanifolds

listed above are umbilical-like.

The second-order envelopes of Veronese cylinders (i), (ii) are considered in

['°]. The cases corresponding to (iii), (iv), (vi), (vii) and an even more general
case than (v), namely V™(r1 x S*(ry), are completely described in [?°]. Some

first results about second-order envelopes of the submanifolds of the last types
(viii) and (ix) are given in [2°]. It means that mq =O, s =l, q = 2 (viii) and

its special cases m;=l, s=l, g=l(ix), m = 2,s = I,g = 0 (i) have

already been considered. In particular, if M* is a second-order envelope of the

reducible symmetric submanifold V2(rl) x S'(r2) x S'(r3) c E? with a Veronese

component VŽ(ril), which is a Veronese surface in E°Š, then for r 3 = oo or

ra = r 3 = oo the cases (ix) and (i) will arise, respectively. In [?°] the following
results were proved.

Proposition 1. The tangentdistributions TV?(ry) and T'S*(r3) x TS(r3 on M*
are foliations with integral submanifolds, which are said to be a Veronese leafM,
and Clifford leaf M,.s, respectively.

Proposition 2. The Veronese leaf M\z,er is the most general semiparallel surface
with non-flat Levi—Civita and non-flat normal connections, and the Clifford leaf

MC2)liff is a surface withflat van der Waerden—Bortolotti connection.

In this paper a function on the above manifold M* € E" (n > 9) will be

introduced, which describes the reducibility properties of M*. Some further details

of geometrical properties of Veronese and Clifford leaves will then be described

with the help of this function.

T 2. PRELIMINARIES AND APPARATUS

Let a semiparallel submanifold M/ in Euclidean space E™ be a second-order

envelope of the normally non-flat reducible symmetric submanifold V?(r;) x



6

S'(rq) x Sl(r3) with a Veronese component V2(r;), which is a Veronese surface

in E5. Let the reduced orthonormal frame bundle O(M*,E™) at every point
r € M* be specialized so that &, &, belong to T, V?2(r1), €3 to TS(r2 and

€y to TS (r3 Further, let €5, €, &7 determine the first normal space NV?(r;)
and €3, € determinethe normal spaces N, S*(ry) and N 1 S (r3 respectively. Let

the remaining frame vectors be denoted by €z, £ = 10, ...,
n. In the formulae of the

infinitesimal displacement of such a subbundle O(M*, E™),

FA ]I - — —

dž=w.Erl, ;00T :wlgeK,

with wf( + wf( = 0, where I, K, ...
= 1, ..., n, and also in the structure equations

dw!=w* Nrwhk, dwk=wkhuwl,

we have

w=wl =0 =l=0 =uwf =O,

w§=w§=w§=w§=o, £ = 10,...,n.

Due to the product structure of the symmetric submanifold V2(r;) x S(rg) x

Sl(r3), which by assumption has second-order tangency with M* at every point
x € M*, the following equations are satisfied: -

8.. ~8
—

,9....,,9
—

5—.,,6 — oG
—wi =wy, =wj] =wy; =O, Ww=W=wWw;=w;=o,

5...6—,7,8—
wi =wl =wy =w; =O.

A further adaption of the frame part {&,€, €5, €, €7} to V2(rl), as has been done

in [%°], leads to

Bl6— 1 e 2
= Plx/šw > WI =PII , Wy =plW,

5 2 6 2 7 1

w5 = plx/šw
, W9=-pWwW, W =pW,

8 3 9 4
W3 = p2W., W4 = p3W4d,

(6)

where py = r7', po = 73!, p 3 = r3'. Letus suppose that p 3 and p 3 do not vanish,

i.e., the circles S'(ry), S'(r3) do not become straight lines. The semiparallel
submanifold M* under consideration is determined by the system (3)—(6) of Pfaff

equations.
Due to the structure equations (2) and the Cartan lemma, exterior differentiation

of the equations of the system (3)—(6) leads to the system

w% = plcwla wš — ,01Cw2, wš — _(\/g)_lplcw3’ (z)g =wš —o’

wil = p2Dwl, w% = p2DL«J2, wš = —(\/g)_lp2Dw3, wg — (.U?] —O7
(7)

(1)

(2)

(3)

(4)

(5)
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and the following consequences:

wš = Aša)l + AšwZ, wš = Ašwl + Ažw2,

wh = (V3AS + AS)w! + (VBAS — As)w?,

wš = Bšw°, wš = Cw*,

wi = PElw® — p3Faw?, Wi = poßow® — p3Eiw?,

wg = V3\w! + \/§A2w2, wg = --V3Xw' + x/šÄle,

wi = 2wl — sXzw' — sXlw°*,
dlnp; = —2Aw! + 2X9w? + plCw? + pyDuw?,

dpa = 73w3 + pšElw4, dps = pšE2w3 + ’y4w4.

After the exterior differentiation of (7) there arise, in particular, the expressions

dC = 2\ Cw! —209Cw? + poDE w? — p3DEzxw*,

dD = 24Dw' — 2X Dw*
— p CElw* + p3CEow*.

If we denote

S =Cwi+Dw*, öY =MMw'- Ao @3 = p2Elw3 — p3E2w4, (10)

then it follows from (9) that

dC =2007 4+D03% dD=2Do"-COo%

and the exterior differentiation of (10), in conjunction with the structure equations
(2), leads to

da =207 AO3 dot? =O, do*t=o.

3. RESULTS

As by Proposition 1 the tangent distributions 7V?2(rl) and T'S* (ry) x T'S* (r3
on M* are foliations, then let us denote their integral submanifolds by M2, =

M*(modw?,w*) and MZ.. = M*(modw',w?). Here M, is the second-

order envelope of Veronese surfaces (Veronese leaf) and Mäiff is the second-order

envelope of the Clifford tori (Clifford leaf). °
Due to the result of [?®], the Veronese leaf at each point 2z € M* is a second-

order envelope of the 1-parameter family of congruent Veronese surfaces iff in (8)
we have A 1 = Ay = 0. On each such leaf p; = const, and let such leaves be

denoted by K M2, and the corresponding M* by KM*. In general, it follows

from (8) that on KM* we have dp; = p?@3.

(8)

(9)

(11)
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3.1. Function of reducibility

The following propositions will describe the geometrical meaning of the

function y* = C? + D?, which shall be called thefunction ofreducibility.

Proposition 3. Along every Clifford leaf of a general M* the function of
reducibility v> = C? 4+ D? turns into a constant, and its vanishing on an M?*

is a criterion for this M* to reduce into a product of Veronese and Clifford leaves.

If v does not vanish on an M* but one of the parameters C or D vanishes, then

this M* reduces into a product ofsecond-order envelopes ofparallel submanifolds
V2(rl) x SY(rq) and S*(r3) or V2(rl) x S*(r3) and S'(r3), respectively.

Proof. For each Clifford leaf Mg, it follows from (10) and (11) that &'? = 0,
dC = D%, dD = —C&?4, and since ydy = CdC + DdD, we get ydy = 0.

If vy # 0, then dy = 0 (mod w', w?), which proves the first assertion of the

proposition. If v = 0, i.e., C = D = 0, the forms (7) vanish and the submanifold

M* reduces into the product of Veronese and Clifford leaves by the composition
theorems proved in [327]. Ify# oand C # 0, D = oor C = 0, D # 0, then

among the forms (7) either w} = wi = Wi =lO orw? = wi. = ws = 0. Inthe

first case dD = 0, which leads to @3* = 0 due to (11). Then, by (10), we have

paElw? — p3Eaw* = 0. Under the assumption py # 0, p 3 # 0 we must inevitably
have E; = E; = 0, as the forms w3, w* are linearly independent. This leads to

w 3 = w 3 = 0, and the reducibility of the M* into the envelopes ofV2(rl) x S*(r3)
and S'(r3) follows from the decomposition theorems proved in [%27]. The case

C =O, D # 0, which leads to dC' = 0, is analogous.

Proposition 4. The second-order envelope M* of the reducible symmetric
submanifold V*(rl) x S'(rq) x S'(r3) of the most general case when neither

of the circles S'(rs), S'(r3) becomes a straight line is irreducible iffneither ofthe

parameters C and D vanishes.

Proof. The assertion follows from Eqgs. (7) under the decomposition theorems of

[8,27].

Remark. The last propositions justify the designation of the function y° =

C? + D? as thefunction of reducibility.

Conclusion 1. The reducibility function is constant on the whole submanifold
KM*. .

Proof. Due to ydy = CdC + DdD and (11), we have dy = 2y2'2, and under our

assumption the Veronese leaves of the manifold KM* are 1-parameter families of

congruent Veronese surfaces. By the result from [26] we have \; = A» = 0, and

then &'? = 0 by (10). So, dy = 0 on the whole of KM*.

Remark. Although the function of reducibility is constant on M* or on a part
thereof, the parameters C and D need not be constant simultaneously. There arises

the following result. ;
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Proposition 5. On each leaf KM\z,er of KM* the parameters C and D are

constant.

Proof. The result follows from (11), because on each leaf KM2. the forms w1
and &3¢ vanish. Consequently, dC' = 0 and dD = 0 on each KM*.

3.2. On geometry of the leaves of %

Further, let us consider the second-order envelopes V2(r;) x S(ry) x S(r3)
with C' # 0, D #O.

Proposition 6. If along every Clifford leaf on M* neither of the parameters C and

D vanishes but they are both constant on the leaf Mäiff, then the leafreduces into

a single Clifford torus.

Proof. On each Clifford leaf dC = D@34, dD = —C@&?*, due to (11). Under

our assumption @3* = 0, and by (10) this leads to poEw 3 — p3Fsw* = 0,
where py # 0, p 3 # 0 and the Pfaff forms w3, w* are linearly independent. Thus

E, = E, = 0, which gives w 3 = wg = 0 by (8). From the decomposition theorems

proved in [>%7] it follows that MZ.. = S'(r2) x S*(r3), as was asserted.

Conclusion 2. If the function ofreducibility and parameters C # 0 and D # 0 are

simultaneously constant on M*, then each Veronese leaf of M* is a second-order

envelope of congruent Veronese surfaces and each Clifford leaf of M* is a single
Clifford torus.

Proof. Under our assumptions dy = dC = dD = 0 on M* and as dy = 2y&'2,
it follows that @'? = 0. Then, by (10), A\; = Ay = 0. This means that the M* is

actually a KM* with Clifford leaves being reduced into a single Clifford torus.

In conjunction with the results above we can clarify Proposition 5 from [%9].

Proposition 7. For each Veronese leafK M\z,er ofKM* there exists a point

E=2Z+k™l(Cés + Déy)

withdé =o,k = p172 # 0, dk = dC = dD = 0 (mod w?,w?) and a direction

€4l = —Dé3 + Céy with dey = 0.

Proof. Recall that for KM%, we have &'? = 0 and dp; = 0. Then it follows from

(11) that dy = 0, dC = 0, dD = 0. Moreover, due to (1), (7), and (8), we obtain

d(Cé3 + déy) = —pl7y2dE (mod w?, w?),

d(—D€3 + d€4) = õ

Now it is obvious that ¢and €, described in the proposition satisfy the conditions
stated therein.
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ÜHE NELJAMÕÕTMELISTE POOLPARALLEELSETE

ALAMMUUTKONDADE KLASSI TAANDUVUSFUNKTSIOONIST

Kaarin RIIVES

Eukleidilise ruumi E™ poolparalleelsed alammuutkonnad M™ on diferentsiaal-

vorrandite siisteemiga Vh = 0 midratud siimmeetriliste orbiitide teist jarku
mahkijateks. To6os on vaadeldud iihe Veronese komponendiga normaalselt

mittetasase siimmeetrilise orbiidi V?(r;) x Sl(rg) x S(r3) teist jarku mihki-

jal M* defineeritud funktsiooni, mis kirjeldab niisuguste poolparalleelsete
alammuutkondade M* geomeetrilisi ja taanduvusomadusi.
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