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Abstract. The effect of environmental instability, in the form of a three-level Markovian

noise, on the Hongler system is calculated. An explicit formula for the stationary probability
distribution is obtained. The well-known dichotomous noise can be regarded as a special case

of the trichotomous noise. As a rule, the system variable has three specific values where

the probability density distribution can be singular. The dependence of the behaviour of the

stationary probability density on the noise parameters is investigated in detail and illustrated

by a phase diagram.
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1. INTRODUCTION

Within the past two decades the behaviour of open systems depending on the

environment has received much attention. Simple physical, biological, chemical,
and other systems can take several unusual stationary states if their parameters are

affected by noise-like influence from the environment (for reference surveys see

[']). Such an influence can be rather complex, but only a few abstractions admit

exact solutions in theory. The most productive abstraction is the case of Gaussian

white noise that corresponds to a vanishing correlation time of the noise; this is

closely related to diffusion processes in physics.
Van den Broeck et al. [2] report on a simple model of a spatially distributed

system which, subject to multiplicative noise, white in space and time, can undergo
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a nonequilibrium phase transition to a symmetry-breaking state, while no such

transition exists in the absence of this noise term.

White noises have some nonphysical properties and their use requires some

care (cf. [3]). Thus, in the past decades attention has been paid to coloured noises

of finite correlation times as more physical ones. Of these, the one most frequently
used is the Gaussian coloured noise (GCN) generated by the Ornstein—Uhlenbeck

process. In applications, however, the GCN causes difficulties. It turns out that a

rather limited class of noise-driven model systems admit exact solutions at GCN

[4~6]. The Hongler model is one of this class.

In most papers addressing coloured-noise-driven systems cases of linear noises

have been investigated. As to nonlinear noises, notable results have been achieved

considering additive quadratic noise composed of coloured noise in the form of an

exponentially correlated Gaussian process [].
Another well-known noise is symmetric dichotomous noise, also called random

telegraph noise. Kitahara et al. [®:?] calculated exact stationary probability densities

for the Verhulst system coupled to dichotomous noise. They also presented a

comprehensive phase diagram to demonstrate the noise-induced transitions in the

space of noise parameters. Their success inspired us to seek for solutions of a

more general case of random three-level telegraph processes that may be called

trichotomous noise.

As dichotomous noise switches a deterministic process randomly between

two static perturbation states, the stationary probability density distribution of the

system variable remains between two distinct values, taking various extrema at the

boundaries. By configurations of those extrema the phase diagram of the noise

parameters is divided into domains.

As trichotomous noise takes, in addition, a zero value with a given probability,
the support of the probability density has also a third characteristic point that

corresponds to the unperturbed system. As can be expected, this involves a more

complex phase diagram. Interestingly, in some cases additional central maxima

occur between specific points.
In this paper one of the simplest models, the Hongler model with a linear

trichotomous noise term is considered. By this model an explicit formula can

be found for the stationary probability density distribution. A comprehensive
phase diagram is presented to demonstrate the noise-induced phase transitions.

The results can be compared with those obtained for the Hongler model at the

dichotomous noise and GCN [+lo].
As there are rather few systems known as exactly solvable in case of different

coloured noises, theresults obtained are of interest from the point of view of testing
approximate methods.

The paper is organized as follows. In Sec. 2 the model with exact equation
for the stationary probability density with its explicit solution is presented. In Sec.

3 the most general properties of the probability density in the phase space of the

noise parameters are analysed and the phase diagram is presented. In Sec. 4 the
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dependence of the phase transitions on the noise amplitude is investigated. The

last section contains some examples and concluding remarks. The results obtained

for trichotomous noises are compared with those of dichotomous noises and GCN

models.

2. THE HONGLER MODEL COUPLED TO

TRICHOTOMOUS MARKOVIAN NOISE

The deterministic Hongler model in its dimensionless form is given by the

differential equation [3-%]

dz 1 A
— = --- tanh2V2r)+———, > A2O,
dt 2/2

( z) 4cosh(2x/žw) —

where the time ¢ is measured in units of the relaxation time of the deterministic

system. This model as such does not correspond to any known process in nature.

But if z < 1, it coincides (up to members proportional to z2) with the genetic
model [4ll]:

du 1 1

ä—ž—u+)«u(l—u), u—x+ž,
which has many essential applications in genetics and chemistry.

The parameter A in (1) can be regarded as a stochastic parameter:

RN T

where (\) = Ao > 0 and f(¢) are generalized random telegraph processes [lo].
Now we explicate the idea of dichotomous noise further to a symmetric three-level

random telegraph process that may be called a trichotomous process. This is a

random stationary Markovian process that consists of jumps between three values

a = ag,o, and —ag. The jumps follow in time according to a Poisson process,
while the values occur with the stationary probabilities _

Py(a0 = Ps(—ao) = g, P;(0) = 1 — 2g.

After [l°] the transition probabilities between the states f(t) = +ao, 0 can be

obtained as follows: j

P(+ao,t+7|o,t) = P(—ag,t+7|ag,t)=Plag,t+7|—ao,t)

— q(l —B—UT)7

P(o,t+7 |+ao,t) = (1-2g9)l—e7”), 7>o,o<g<l/2, v>o.

The process is completely determined by (3) and (4). One can also calculate

the mean value (f) and the correlation function (f (¢), f(¢')):

(1)

(2)

(3)

(4)
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(ft))=o, AF@f@E))=Aa)erT] = 2gaže7".
It can be seen that v is the reciprocal of the noise correlation time:

v = l/Tcor:

The noise intensity o 2 is defined as

o 2 = 2/()oo(f(t+ 7), f(t))dT = 4qa3/v

By inserting the stochastic parameter A in (1), the following stochastic

differential equation is obtained:

dx
—

——].——
n

Äo 1

dt 2/2
ta h(2x/žx) +

4cosh(2x/ža:)
+ 4cosh(2x/2—:z:)f(t)'

The variable in (5) can be changed as follows:

y = v/25sinh(2v/2z) — g

Thus, one can get the following stochastic equation for the process y():

f(t).
dy

= -y+dt

Next the stationary solution to Eq. (7) can be found. It follows from the form

of the process f(t) that the support of the stationary probability density P(y) lies

in the interval (ag, —ag). It also follows from Eq. (7) that in the stationary state the

mean value of the process y is zero, (y)s = 0, and the dispersion equals

(y*)s =
E2%
v+ll

It should be noted that all odd moments (y2¥*l) vanish in the stationary state, and

the probability density P(y) is symmetric with respect to y = 0.

For the calculation of the probability density P(y) the results of [*2] can be

applied. Notably, it is shown there that the stationary probability density P(z) of a

process z(t) satisfying the stochastic differential equation

dz

=
= F() + G0),

where F'(z) and G(z) are deterministic functions of z and f(¢) is a generalized
random telegraph process, is a solution of the operator equation

(5)

(6)

(7)

(8)
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The angle brackets () mean averaging over the values of the random variable a, and

the operator 7! is the inverse of the operatorL, = v+ % (F(z)+aG(z)). For our

Eq. (7), F(y) = —y and G(y) = 1. Taking into account that the random variable a

takes the values ag, —ag with the probability g and the value O with the probability
1 — 2q, the following differential equation for the determination of the stationary

probability density P(y) corresponding to Eq. (7) can be obtained from (9):

d
_.I/yP +

a [(y2 — aš)P]

1 d d > » (2g — l)važd
=—L ly|- & e b el s gv—ldy{y[ vyP+77 [4° — 00) ]]}.+ v—l dy

In the case of ¢ = š (a dichotomous noise), the last term vanishes and Eq. (10) is

satisfied by every solution of the eguation

Rl ag)P] =0-vyP + @[(y 0

corresponding to Eq. (7) if f(¢) is a dichotomous noise. This has been investigated
in detail by several authors [4-%:8:9].

By the following exchange of variables,

1
A

2

z=7y°,
ag

Eq. (10) can be transformed into a hypergeometric equation:

d?
* * *

d
X %

Az(1 — z)wW(z) +[ -(a*+B*+ l)z]EW(z) — A*B*W(z) =O,

where y* =3 —gv, B*=l-—v/2, a* =3 - v/2, and W(z2) = P(y).
Two constants of integration of the general solution ofEq. (12) can be specified,

by keeping in mind that the solution P(y) = W(z) is symmetric with respect to

the point y = 0, and by the application of the normalization condition of P(y),
and of the condition (8). After quite simple but voluminous calculations it can be

obtained that -

P = z)= — fl’}’ — Ž(y) =W ] ]( )_
0 (q

-

aoB I/,(]. q)I/)l I(l q)v—l F(a »B;% )7

where B(\, k) = I'(A\)I'(k)/T'(A+ k&) is the beta function, F is the hypergeometric
function (also known as 5F}), I' is the gamma function, and 8 = a — š =

(I—2g)v/2,y = (I—g)v. Atthe values of the parameters satisfying the inequality

(10)

(11)

(12)

(13)



33

the hypergeometric series in (13) converges also at z = 0 and consequently the

form (13) can be applied to analyse the properties of the solution P(y) in the

domain of (14). In the case of

v < 1/(29),

it is practicable, by applying the properties of the hypergeometric function, to

convert solution (13) to the form

P(y) =W= (2) aoß(q2l_
X F

!

U

(fy

7(1 —

Y
—)/I;) l

1 :

|
z

%

|

”
|

—q)v

z)

g

:
3—l/2

The hypergeometric series in this equation converges at z = 0 if (15) is fulfilled.

3. PHASE TRANSITIONS

Next, we shall consider the most general properties of the probability density
P(y) in the phase space of the parameters ¢, v/, and ag. First, it should be noted that

the noise amplitude a( appears in P(y) only as a scale factor. Consequently, paying
no tribute to generality, one can take ag = 1 when investigating the behaviour of

P(y). Proceeding from Egs. (13) and (16), one can distinguish between eight
domains in the two-dimensional phase space (¢, v) (see Fig. 1):

#l. v < 1/(2q), v < 1/(1 —q). In this domain the highly probable states

are concentrated in the vicinity of the points y = —l,O, 1. There the probability
density approaches infinity.

#2. v<l/(l—gq),v>l/(2q). Here again the most probable states

are concentrated around the points y = —1,0,1. At the points y = —l,l the

probability density approaches infinity. Aty = 0 we find a local finite peak, with

the derivative approaching +ooo, if y — —O, and —oo, if y — +O, respectively.
#3. 1/(1—q) <v <2/(l—gq), v<l/(2q). The states of high probability

are concentrated in the vicinity of y = 0 where P(y) — 00. At the boundaries

P(£1) = 0, but there the derivative of the probability density is unbounded.

#.l/(1-q)<v<2/(1-gq), 1/g>v >l/(2q). P(y) has one finite peak,
situated at y = 0. At the boundaries the probability density is zero and at each of

the three points (y = 0, +1) its derivative is unbounded.

#5.1/(1—q) <v < 2/(1—q), v > 1/q. The probability density has the only
maximum, at y = 0, where its derivative is zero. At the boundaries P(+1) = 0

and the derivative is unbounded.

#6. v > 2/(1 —q), v < 1/(2q). The most probable states are near y = 0

where P(y) is unbounded. At the boundaries both the probability density and its

derivative vanish.

(15)

(16)
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#l. v > 2/(1 —q), 1/q > v > 1/(2q). The stationary probability density is

monomodal with a finite peak at y = 0. The derivative is unbounded there. At the

boundaries both P(+£l) and its derivative vanish.

#B. v > 2/(1 —q), v > 1/q. The only most probable state is at y = 0, where

the probability density is finite and its derivative vanishes. At the boundaries both

the probability density and its derivative approach zero. |
AN the singularities are integrable. Attention should be called to the fact that

the least value of the noise correlation time Tcor = 1/v, for which the three-level

value of noise is still immediately reflected in the stationary probability density,
depends on the probability g:

1

Tcorzl/u>l—q>ž.

For short correlation times 7., < 1/ay it follows from (10) that

Fig. 1. The (q,v,a?) phase diagram for the steady-state behaviour of the Hongler model

with trichotomous noise. The curves a—f correspond to the following conditions: a, v =

1/(1-—9); bb v = 2/(1-q)c,v = 1/(29); d, v = 1/g e, v = 3/(29); 1,

q =3(v* —4v + 2)/v(v? — 3v —1). The shapes of P(z) for the different domains formed

by the curves are sketched.
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2qa3 d
— x A 0 LPyP(y) = — g

(v),

whose solution is just the Gaussian distribution function

V 9
— 2Y )7P(y) = Cexp ( —4qao

where C is the normalizationcoefficient. The result is compatible with the fact that

at the limit v — 00, ag — 00, while v/(ga2) = const, our three-level telegraph
process is delta-correlated and its effect is not distinguished from the Gaussian

delta-correlated effect (white noise) if their intensity is o = 4qaš /v.
Returning to the probability density specific to our initial problem of the

stochastic eguation (5),

pla) =B b 2 ATIT 2 P,Plz)
dzx

Y

it should be noted that all attributes of P(y) by which the phase domains were

distinguished on the diagram, i.e., singularities and zeros of P(y) and its derivative

at the points y = £l, 0, also characterize the probability density P(z). -

4. THE DEPENDENCE OF PROBABILITY DENSITY

ON NOISE AMPLITUDE

In order to analyse the dependence of the structural characteristics of P(z) on

the noise amplitude ag, a symmetric model is taken, for the sake of simplicity:
Ao = 0. By denoting z = y?/a2 one can get

P(z) = 44/1 4 a22/2 W(2),

where W(z) = P(y). Investigating the extrema of function (19) near the point
y = 0, it is easy to conclude that the most probable state at the point z = 0 in

Domains #sb, #Bb, and #Bc of the phase space (v, q) [where v > 3/(2¢)] may

disappear as the noise amplitude exceeds a critical value a2.. Instead of a local

maximum ofP(z) there will be a minimum at y = 0, symmetrically to which new

local maxima are formed at both sides. These maxima move away from y = 0 as

ag continues growing. The critical noise amplitude is given by

e

2(v — 2)(v —3)
cF

2gv— 3

It is interesting to note that in Domains #sa and #Ba [l/q < v < 3/(2¢)], where

the probability density P(xz) also has a smooth maximum (the derivative is zero) at

(17)

(18)

(19)

(20)
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y = 0, there is no such local phase transition, i.e., there is no critical amplitude a.,

at which the peak-damping mechanism isreplaced by a peak-splitting one.

As ag is growing, phase transitions different from those considered can be

observed in Domains #3 to #8 of the phase space [v > 1/(1 — ¢)]. Notably, if

a 3 exceeds a critical value @2, (in general, a2, # a2,), then the probability density

P(z) can be characterized by three probability maxima on the graph. According
to this characteristic, Domain #Bc can be added to the phase diagram in Fig. 1,

separated from Domain #Bb by the curve f determined by

5_3(l/2_411-'{-'2‘), 1/251
v(v?2 —3v—l)

On the left side of this curve @2, < a2, and as the noise amplitude grows, there

will be two phase transitions: at the increasing of a 2 over a2, there is a transition

from a phase with one probability density maximum to that with three maxima,
while at a further increase over a 3 = a 2 there is a transition to a phase with two

maxima. On the right side of curve (21) a phase transition occurs between phases
with one and two maxima.

In the case of dichotomous noise, ¢ = 3, and so we have a2, = a2, = 2(v —2).
As to the interval 2 < v < 3 belonging to Domain #sa, where trichotomous noise

generates either one or three maxima to the probability density, the limit of ¢ — š
leads to the disappearance of the central maximum, even if a 3 > @2, holds.

5. DISCUSSION AND EXAMPLES

As the calculation of the critical parameter G2, in the general case requires the

solution of a transcendental equation, it is impossible to determine @2 by simple
expressions like (20). True, numerical values can be obtained by computer and

some estimations can also be made. Still, precise analysis is possible at those points
of the phase space where the probability density f’(y) is expressed by elementary
functions. This could be illustrated by the following examples:

1. On the curve v = 1/q (curve d in Fig. 1) the density P(z) takes the form

It can be seen easily that the critical parameter a2, is given by

a 2 =B(v —2)(v —1).

2. On the line v = 1 (Domain #1) it can be found that

: 2 2g—l 2x
—

P(;Ü.—.zš%”l.*.g.(l.y—l) (I—3/—2) :Tag 2 ag ag

(21)

(22)

(23)

(24)
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There is no phase transition dependent on ay.

3. For the point v = 6, ¢ = + (Domain #Bb), one can get

õi

= c/I+% (1 3D7 131 l)P(zx)=C I+2<l ao)<ao+3’
where C' is the normalizing coefficient. Three phases with the transitions at

a2, = 22.5 and a?, = 24 can be discerned.

4 Inthe pointy — 2. g = ž (see curve c in Fig. 1) the probability density

P(z) takes the form

= 1 /1 2

P(x):.ZH /1+42/21nI+vl-y*/ag
0 I—+/1-9y2%/a3

The critical parameter equals @2, ~ 27.09.

In accordance with that, on the line ¢ = % the probability distribution

approaches the form characteristic of that of the dichotomous noise.

The broad spectrum of possible behaviours of the probability density
distribution seems promising of the applicability of our results to real natural

systems, such as environmental processes, biological populations, chemical and

physical reactions, etc.

The phase diagram of the Hongler model with trichotomous noise displayed
in Fig. 1 is rather complicated, consisting of 16 different phases. Analogously,
dichotomous noise induces five phases in the phase space (ag,v), whereas a GCN

does but two [*]. However, there is a common feature for the phase transitions of

these three noise patterns at the Hongler model: a growth of the noise intensity
changes the central maximum of the probability density at y = 0 to a minimum,
i.e., the maximum is split into two (see Fig. 1,Domains #sb, #Bb, #Bc). Following
[4], one can see that in the cases of both the Hongler model with trichotomous as

well as dichotomous noises, and the GCN model, the noise correlation time 70,
influences the location of the purely noise-induced transition point at which the

stationary distribution at y = 0 switches over from a monomodal to a bimodal

behaviour. Recall that in the white noise case the critical variance at which this

phenomenon occurs is 02 = 02 = 4. In the case of GCN with the correlation

function

(47,70 =e, v= l/t

the white-noise limit corresponds to 4 — 00, v — 00, while u?/v? = o 2 is finite.

Hence, for white noise one can write

2

02=(5) =4
which has to be compared with the corresponding value for the GCN case:

(25)
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2

o 2 = (%)C s
Here the effect of the nonvanishing noise correlation time increases the

intensity, which is necessary to induce transitions [*]. In the case of dichotomous

noise, the white-noise limit corresponds to ag — 00, ¥ — 00, while 0% = 243 /v
is finite. The intensity 02, necessary to induce critical behaviour in the model,

decreases as the correlation time 7., = 1/v increases [4l:

2a2 1

Už — (——o') =4 — BTcor, Teor <2°V
/e

There is an upper limit for the noise correlation time, beyond which the critical

behaviour disappears.
In the case of trichotomous noise, the white-noise limit corresponds to

a 0 — 00, v — 00, while 0? = 4qa?/v is finite. The intensity 02, necessary to

induce critical behaviour in the model, is of the form

2 (]_ — 2q)(]. — 2Tcor):| > 4 e 87’C01.,2.— <4qao) =4[l — 27'(:01- + 37-(:01'
(2q — 37‘(:01.)a 5 —]/ :

Teor < 2/(39).

There is also an upper limit for the noise correlation time, beyond which the

critical behaviour disappears. Evidently, o 2 tends to infinity if 7cor — 2/(3q)
and g £ š It can also be seen that if ¢ < 0.3, then the critical intensity of the noise

o 2 increases monotonously as 7., increases. In this sense the model resembles the

GCN Hongler model.

If ¢ > 0.3, there is a critical value for the correlation time:

= š—[2q — V/(3 — 49)(1/2—4)]

If the correlation time is less than that, 7., < 71, then as 7., decreases, až
increases and vice versa. Thus, one can see here common features with models

with dichotomous noises.

Evidently, the method can be generalized in various ways. First, asymmetric
trichotomous noise could be studied instead of symmetric one. Second, the

phenomenological equation can be takenas a nonlinear one in the fluctuating noise:

2 = h(2) +9(2,10)),

where g(z, f) is a nonlinear odd function in f. If, in addition, the condition

9(2,a0) -h(2) = Oglz,ao) + h(2)-—g(2,00),

(26)
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where C < 0 is a constant, is fulfilled, then the solution of Eq. (26) for the

trichotomous noise considered above is reduced to the solution of Eq. (7).
We are looking forward to further considering the above generalizations and to

the application of the results to othermodels of open systems.
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KOLMEASTMELISE MÜRA POOLT INDUTSEERITUD

FAASIÜLEMINEKUD STOHHASTILISES

HONGLERI MUDELIS

Romi MANKIN, Ain AINSAAR ja Astrid HALJAS

On arvutatud keskkonna varieeruvuse kui kolmetasandilise Markovi miira

toimet Hongleri siisteemile ja saadud statsionaarse tdendosusjaotuse tapne avaldis.

Tuntud kaheastmelise miira juhtum on vaadeldav kolmeastmelise miira erijuhuna.
Reeglina on siisteemi muutujal kolm iseédralikku véartust, mille juures tGendosuse

tihedusjaotus voib olla singulaarne. Detailselt on uuritud ja vastava faasidiagrammi
abil illustreeritud statsionaarse tdendosustiheduse soltuvust miira parameetritest.
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