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ON THE CONSTRUCTION OF SMOOTHING

SPLINES BY QUADRATIC PROGRAMMING
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Abstract. The problem of minimization ofa smoothing functional under inequality constraints,
which has a solution in the form of a natural spline, is reduced to the problem of quadratic
programming with a positive semidefinite matrix. Using the results of quadratic programming,
we obtain the modified simplex method for the solution of this problem by adding—-removing
interpolating knots of a spline.
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1. INTRODUCTION

We consider the problem of approximation of an unknown function g by the

information z = (21,... ,2n) given at knots Ap : a < t < t 3 < ... < p <b
when the information is imprecise:

l9(ti)-zi| <£ei, i=1,...,n

As approximation of g we take the solution of the minimization problem

b

JU) = / (FO@)2dt — — min
a feW%[a,b],

[f(t;)—z;|<e;,i=l,...,n,

where W 1 [a, b] is the Sobolev space.
If n < g, then any polynomial p of degree (¢ —1), which satisfies the

conditions p(t;)= ,i = 1,. .. ,n, gives the Solution of the problem (1). If

n> ¢ and no algebraic polynomial of degree (¢ —1) satisfies the inequalities

(1)
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h;=s(tj)- (2j— ej);j=1. ,n. (4)
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Ip(t;) — zi| < €1 =1,...,n, then the unique solution of the problem (1) exists.

This solution is a natural spline of degree (2g —1), which minimizes the functional

J(f) under the restraints (see, e.g., [']). We assume in the sequel the uniqueness
of the solution of (1).

Let S;(A,) be the space of all natural splines of degree (2¢ —1) over the grid
Ap. Itis known that s € S;(A,,) if and only if s can be written as

q—l n

dj 29—1=Yot +3A(t- ),

where the coefficients d; satisfy the equalities

» d;tš=jt
=

2-

j=o k=0,...,g—-1

If we denote by s; € Sy(Ay,) the spline interpolating the value (d;s)7_; (d;; is

the Kronecker symbol), then sy, ...

, s, constitute a basis of the space 5;(4,,) and

any spline s € S4(A,) can be written in the form

s(t) = ) wisi(t),
2=

where y; = s(t;).

2. THE SMOOTHING PROBLEM AS THE PROBLEM OF

QUADRATIC PROGRAMMING

Taking into account that the solution of the problem (1) is a spline, we can

restrict the class of functions W{[a, b] by Sq(Ay) and restate the problem (1) as

follows:

b

=
(4) (332 N ,118 /a,(s e s€Se(An),

Is(¢;)—2slL€;, i=15...4m.

Differently from the problem (1) we have now the minimization problem in the

n-dimensional space. Let us rewrite the smoothing functional J as a function of n

variables. Any spline s can be uniquely defined by the n-dimensional vector of its

values [see (2)]. Let us consider the new parameters of a spline s

(2)

(3)
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We shall obtain an expression for the smoothing functional J with respect to h

by using a well-known equality.

Lemma 2.1 (['], p. 153). For any function f € W2[a, b] and any natural spline s

there holds "

/ POW (1) dt = (<l7 3 de(1)
a =1

Here d; are the coefficients of the spline s.

Let us express a spline s with respect to A by using (2) and (4):

s(t) =

:

ži —š(a e; +h;)s;(t)

We get its coefficients

d; =

:

(z. — -

-

j €J+hj)dij,>

where (d;;)i; are the coefficients of the basis spline s;. Now, by Lemma 2.1 we

obtain

J(h) = /b(s<q> (t))? dt = (—1)! ž:(zz— — e;+hi)di = (-1)! ž: ž: hih;di;
a i=l i=l j=l

+2(—l)q z z hidij(z]' — Ej) + (—l)q z Z(ZZ — Ei)(zj — Ej)d,;j.
i=l j=l i=] j=l

We introduce the matrix D = ((—1)dy;);i, n and the vectorc={er,... ;¢ul;
n

where c; = (—-1)? $° (z2; — e;)di;, to rewrite the problem (3) in the matrix form

j=l

J(h) = hDh' +2ch" — min
heR" h<2e

Note thath< 2e means h; < 2e;, i = 1,... ,n.

The problem (7) is a problem of quadratic programming under linear

restrictions.

Lemma 2.2. The matrix D is symmetric and positive semidefinite.

Proof. The transformations of the expressions for d;; = d;(s;) and dj; = d;(s;) on

the basis of Lemma 2.1

n b

di =DO dels)silti) = °[sAd,
k=l a

(5)

(6)

(7)
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n b

di = O delsi)silte) = 1)| AHO at

k=l &

prove the equality d;; = d;;.
The inequality hDhT > 0 for any vector h € R™ is proved by the identity

hDRT —/b—

(

J

(Shq)(t))2 dt

where s, 1s the interpolating spline for a vector h. The equality (8) is obtained by
direct transformation j

RDRT = (-1)?) B Y hjdi = (-1)!ž hidi(sp) = /b(sgn (t))? dt.

I=l 7=l 2=t a

3. THE EQUIVALENT PROBLEM OF “ALMOST” LINEAR

PROGRAMMING

We use the results of quadratic programming for the solution of our problem in

the form (7). We start with the Lagrangian function

F(h,X) = hDRT +2ch" +Mh-2e)T,

where A = (A1,...,\,) is a vector of Lagrange multipliers.
A necessary condition for A to be a solution of the minimum problem (7) (see

[2], p. 119) is the existence of some ) such that » and ) satisfy the conditions

VaF(h,X)>o, V,F(h, h" =O, h2>o;

VaF(h,X)<o, VaF(h, AY =O, A2>o.

Taking into account that

ViF(h,X) =2DhT L 2c4-2, VaF(h,)=h-2e,

by introducing slack nonnegative variables p = (u1,...,pun) and h =

(hl7°" 7;"11.):

/J,iZZ(DhT)i+26i+)\i, Bi=26i—hi, 1=1,... ,n,

we have the system of equations

2DHE + 2¢t + A= u =O,

h+h=2e uTh=o, XTh=o.

(8)

(9)
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The existence of a nonnegative solution of this system follows from the existence

of a solution of the problem (7).
The solution of the nonlinear system (9) is reduced to the solution of the

“almost” linear programming problem of minimization of an auxiliary nonnegative
variable w:

u — min

2Dh' +2c" +X-u+uE =O,

h+h=2e, uTh=o, ATh=o,
h>o,h>o,XA>o,u>o,u>o,

where E is any vector with 0,1, and —l. The existence of a nonnegative solution

of (9) implies that zero is the solution of the problem (10).

Theorem 3.1. Let the problem (1) have the unique solution. Then it is equivalent
to the problem (10), i.e.

— the problem (10) has the unique solution too,

— the solution of(1) determines the solution of(10) by (4) and (9),

— the solution of (10) determines the solution of(1) by (5).

Proof. As was proved, the problem (1) can be reduced to the problem (10), i.e.

the vector h, which is obtained by (4) using the solution of (1), together with the

additional variables h, A, u [uniquely determined by h by (9)] satisfies the system
of restrictions (10) when v = 0. To prove the uniqueness of this solution of (10),
let us take any combination of h, h, A, s satisfying (10) with » = 0. The values of

h determine a spline s € S,(A,) by (6). To prove that this spline gives a solution

of (1) we check the conditions

d;=o it [slg)—zl< e,

(=l)%d; <0 f o s(t)-x=«c.

As is known ([3], p. 66), these conditions are necessary and sufficient for s to be a

solution of the problem (1).
According to (6), we have

(—-I)qdi = (_l)q ž hjdij + (_l)q ž(z] — Ej)dij = (DhT + CT)Z'.
=l I=l

Then, from (10) with u = 0, we obtain

(=l)%d; = p;—X, i=1,... ,n.

(10)

(11)
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Now it is easy to verify the conditions (11):

If |s(t;) — 2| < &;,I.e. h; # 0, h; # 0, then A; = pi = 0 and so (—l)%d; = 0.

If s(t;) —2; = —ei, I.e. hi =O, h; = 2¢;,then A; = 0, p; > oandso (—l)%d; > 0.

If s(t;) —z; = €;,l.e. h; = 2¢;, h; =O, then A; > 0, pu; = 0 and so (—l)4d; < 0.

Therefore any solution of the problem (10) gives the unique solution of the

problem (1). This proves also the uniqueness of the solution of (10).

4. CONSTRUCTION BY THE WOLFE-DAUGAVET METHOD

The problem (10) differs from problems of linear programming in having two

simple nonlinear conditions A= 0 and ATh =O. We solve this problem
by using a modification of the simplex method which takes those conditions into

account and which Wolfe and Daugavet suggested for such type of problems ([*]).
We give a short description of this algorithm. As an initial solution we take a

spline which passes through the lower and the upper boundaries of the restrictions,
l.e. s(t;) =ži + ei; 1= 1,... ,n. Let ;={Z : S(ti) =Ži —6,}, Db = {'L :
s(t;)+e;); note that 1 U > =(1,... ,n+. This choice corresponds to h; = 0 for

i € I and h; = 0 fori€ L. Then we have the initial values \; = 0 fori € I; and

ui = O 0 for ¢ € 1,. To obtain the values for other variables we consider

pi =2(DhY +¢h);,i=l,...,n, and I 3 = {i : p; >o}, Iy = {i : p; <o}.

We take

u = maz{ |p:| 1t € (L 1 Ea)lsh(L2 Ty L 3 ) b= |pis.Ao D ki =0

i = 2(DRT+cT)i+u for s € Nly M=-2(Dh"+c")i+u for i € LNI;

pi = 2(DhT +¢T); for ie L Nlz, XA = —2(DhT + ch); for i€LN L.

The initial solution in the case h; = 2¢;, h; = 0, i = 1,... ,n (the initial spline

passes through the upper boundaries in all knots) is shown in Table 1.

hi,i € I3 -1 0 0 0 0 0

h;, i € Ia 0 -1 0 0 0 0

iyt € I3s\{ip} 1 0 0 0

Ai,1 € Iy i 0 1 -1 1

o 0 0 si 1

Table 1. The initial table of the algorithm
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Each step of the method is a transformation of this table and hence also of the

corresponding spline by adding and removing interpolating knots.

There are three possibilities of the location of h; and h; in the table (note that

h; and h; cannot be in the upper part of the table simultaneously):
—h; is in the upper part, it means that the spline passes through the upper

boundary of therestriction in the knot #;: s(¢;) = z; + €;;

—h; is in the upper part, it means that the spline passes through the lower

boundary of the restriction in the knot ¢;: s(¢;) = ži — €i;

—h; and h; are in the lower part, it means that the spline passes between the

boundaries of the restriction in the knot ¢;: |s(t;) — zi| < &;.

Transformations of the table imply the following changes of the spline:
—if a new variable h; or h; appears in the upper part, then the spline is attracted

to the lower boundary (if h; appears) or to the upper boundary (if h; appears) in the

knot ¢;;
— in another case, if a new variable h; or h; appears in the lower part, then the

spline is released in the knot %;.
The algorithm completes its work when the variable u appears in the upper part

of the table. As was proved by Daugavet (see []), this occurs in a finite number of

steps when the matrix D is positive semidefinite.
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SILUVATE SPLAINIDE LEIDMINE RUUTPLANEERIMISÜLESANNET
LAHENDADES

Natalia BUDKINA

Toketega silumisiilesanne, mis on teatavasti samavéddrne ruutplaneerimis-
iilesandega, on esitatud kujul, kus minimiseeritavat funktsionaali iseloomustav

maatriks on siimmeetriline jamittenegatiivne. Kasutades minimiseerimisiilesande

Lagrange’i funktsiooni omadusi on nididatud ruutplaneerimisiilesande sama-

vadrsust lineaarse funktsionaaliga minimiseerimisiilesandega, milles kitsendused

on lineaarsed voi sisaldavad ainult tundmatute vektorite skalaarkorrutisi. Selliseid

lineaarplaneerimisiilesannetele ldhedasi iilesandeid saab lahendada Wolfe’i—

Daugaveti meetodiga, mis antud juhul annab lahendi 16pliku arvu sammudega.
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