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Abstract. The connections between the smoothness ofa function in the neighbourhood of a

given point and its wavelet coefficients are studied. The results presented here are localized

versions of the mainresult earlier obtained by J. Lippus [Sampling Theory and Applications
(Marvasti, F. A., ed.). Riga, 1995, 167-172].
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1. INTRODUCTION

The starting-point of this study is a result by Jaffard [!] (see also [2]) that

describes the Holder smoothness of a function at a given point via its wavelet

coefficients. We shall formulate this result at the end of Section 2.

This problem is related to localizing the singularities of a function, for example,
detecting edges in image processing. The general idea is that the coefficients

decrease rapidly near the points where the function is good and decrease slowly
near the singularities. In the present paper we study the case where the “goodness”
of the function is measured by its modulus of continuity. The main result of the

study is a localized version of the main result of [3].
The generalized Lipschitz classes of continuous functions are defined in the

following way.
We say that the function w(0d) is a majorant if w(¢) is nondecreasing, w(0) = 0,

and w(5l + (52) < w(õl) + w(52).
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Let Lip(w; C) denote the set of all continuous functions for the moduli of

continuity of which we have the estimate w(f, )¢ = O (w(d)), where

w(f,o)c = sup [[f(2+h) — f(z)|lc:
|h|<é

If w(d) = 6* (0 < a < 1), we get the usual Lipschitz classes.

About the majorant w we assume that it satisfies the so-called Bari—Stechkin

condition (see, for example, [*]):

õw 14/O%d„ö/õ %dtzo(w(a)) (0= 04),
well known in approximation theory.

2. WAVELETS

In this section we present some definitions concerning wavelet expansions.
First we define a multiresolution analysis on L?(R) (see, for example, [°] or [6])
By (-, -) we denote the inner product in L?(R.).

Definition 1. A multiresolution analysis (MRA) on L?(R) is an increasing
sequence {V;}jcz,

w 3 € Mis@ Vifd oMo a@dl @Vo o

of closed subspaces in L*(R.), where

vi={} Uv=l®)
JEZ JEZ

and the spaces V; satisfy the following additionalproperties:
1. Forall f € L°(R),j,k € Z,

f(z) € Vi— f(2z) € Vjla

and

f(z) e Vo= f(z —k) € V.

2. Thereexists a scalingfunction ¢ € Vg such that {¢;i }kez is an orthonormal

basis of Vj, where

bir(z) = 212p(27z —k)

forx € Randj,k€Z.

(1)

(2)



14

Associated with the V; spaces, W; is additionally defined to be the orthogonal
complement of V; in Vll, so that V 1 = V; & W;. Thus

L*(R) = W.

Under the assumptions of the above definition and some additional assumptions of

regularity, it can be proved (see, for example, [°] or [°]) that there exists a function

w € Wy such that {l},xez is a wavelet basis of L?(R), where

bik(z) = 2292 z k), jk€EZ.

Definition 2. For f € LP(R) (1 < p < o0), we define the following related

expansions:
1. The scaling expansion of f is defined as

fl@) ~ ) bpdlz —k)+ > ajpipin(z),
k >ok

where the coefficients aji, and by, are the L? expansion coefficients of f

bk — <f7¢( — k))a Ajk — (fa '(»bjk)

2. The wavelet expansion of f is

f(z) ~ jz’k:ajkwjk(x)a
where the coefficients a ;i are the L? expansion coefficients of f.

We note that the L? expansion coefficients in the last definition (defined

by integration against f) are defined and uniformly bounded for any f € LP,
1 <ps o 0

Definition 3. We say that the wavelet basis isr-regular if ¢ € C" and

i g

(d;v) ¢(w)lscm(l+|x,)_m
for everym > land0 < q < r. Here C,,, denotes an arbitrary constant depending
only on m (and ¢).

Definition 4. We say that a multiresolution analysis has compact support if both

the functions ¢ and 1) have compact supports.

In [3] we proved the following

4)

(5)

(6)

7

(3)
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Theorem 1. Let w(d) be a majorant. Let f be a function in Lip(w,C) with

compact support. Then, for an r-regular multiresolution analysis (r > 1) with

compact support, the scaling expansion coefficients

by — <f)¢( — n)), ümn = f Ymn)

satisfy the conditions

bal = O(1), lamal = 0 (2720 (27™)).
If the modulus of continuity w(§) is such that (1) holds, then the converse

implication is also true, that is, from (9) it follows that f € Lip(w, C).

The result of Jaffard [!] is the following

Theorem 2. Let the function w satisfy the conditions

@)l < Ca+lel2. di @l cd+ =)2.

Let f € C€ for any € > 0. Then the condition

jagul = O (279C+1A(1 + [PzO-k)), j 20,k €2,

implies

6) ~ f(an)| =0 (Jo = anl* log2 ),
and this estimate is optimal.

The optimality here is understood in respect of all wavelet bases that satisfy
the conditions of the theorem. As we show in this paper, in the case of bases with

compact support the logarithmic factor is superfluous.

3. SOME ESTIMATES FOR MAJORANTS

In this section we formulate some lemmas about abstract moduli of continuity.
For the proofs see, for example, [2], but these results were surely known already
earlier. The latter conditions of these lemmas are the terms in the Bari—Stechkin

condition (1), the former parts are the ones that we need for our present purposes.
Let w(t) be a majorant, that is, w(d) is nondecreasing, w(0) = 0, and

w(dl + 02) < w(d1) + w(ds). It is well known that we also have

(8)

)
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Lemma 1. The following estimates are equivalent:
1.

>o(F)=0(«());

0 w(t)/0 Pt = 0(w(0).
Lemma 2. Thefollowing estimates are equivalent:

1.

>() =0 (7()

1
w5/õ %dt= O(w(ö))

4. MAIN RESULT

Theorem 3. Consider a function f and an MRA with compact supports. Suppose
there exist xq, C, and € > 0 such that f is continuous in U(xg, €) and for every

T € U(CL'(), 6),

f(z) — f(zo)|] < Cw(x — z0)

Then, for-each a;y, such that zo € supp ;. C U(xo, €), we have the estimates

Bal =O(1), ~ @z = o(2—9'/%(2—3')).

Proof. Consider the scaling expansion of f on U = Uz, €),

fle) =) brd(z —k)+ ) ajphjk(a).
k 720,k

In view of the r-regularity of the multiresolution analysis, the compactness of U,
and the supports of the functions ¢ and v, the series on theright converge uniformly

2

2.

(11)

(12)

(13)

(14)

(15)
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(see [O, p. 113). Without loss of generality we may suppose that supp ¢ C [—l,l].
We may write

aa = P[l=D
= 272 [[f(e+ k27) - a 0 DD

Consider such values of the second index k when z¢ € supp v CU. In that

case we may continue

il s 22 / (64 k277) — f(zo)|p(27)dt

< 20[" A K 2 — Flao)et
—2—j

Since |t + k277 — z¢| < 2791, then in view of (15),

Considering the coefficients by, observe that for such k that supp ¢(- —k) c U

we have

el < [ 15060~ R)lde <max |7O [ 160~ B

Ifthe multiresolution analysis is r-regular as stipulated, then the last integral exists

and 1s bounded. This completes the proof of the theorem. O

Theorem 4. Let the scaling expansion coefficients of the function f satisfy the

conditions

| = @)

and

jajul = 0 (277/%w(279))
for all k such that supp 1, N\ U(zo,€) # 0. Then, if the majorant w satisfies the

condition in (1), we have

f(x) — f(zo)] = Olw(x — z0))

for every z € U(zg, €).

(16)

(17)
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Proof. Suppose that (17) holds. Let z € U(xg,€). First we have to establish that

the series in the representation (4) converge absolutely to allow rearrangement. Let

Nj(z,l) denote the set of indices & such that 1);;(z) # 0. The main point in the

proof of the theorem is to observe that, since supp ¢ C [-M, M], we have for the

number of elements of N;(z,1)) the estimate

INJ(%’J))I < 2M7

and, respectively, for the number of elements in the set N(z, ¢) — the set of indices

k such that ¢(z —k) # 0 — the estimate

|N(z,¢)| < 2M

Thus, for every z the first sum in the representation (4) is finite and

> bz — k)| < 0(1) > |p(z — k)| = O(1)
k k

In view of the r-regularity of the MRA and (17), the second sum can be majored
by

[zajkwjk(x)l < D> > läilvko)
720,k 7209 kEN; (x,)

< 2M Y0 (2792))2Pyl
j2O

= O(lileel2).
j>o

Due to (1) and Lemma 1 the last series converges. Therefore we are entitled to

rearrange the series in the representation (4).
To abbreviate the notations, let us denote N* = N(z,¢) U N(zo,) and

Nž = Nj(z, ) U Nj(zo,%). Consider the difference (2~™! < |z — zo| < 27™)

f(z) = f(zo)] = )Zbké(x—k) + 3 ajuWbiklz)
k 720,k

— >bed(mo —k) — Y ajuWjk(zo)
k 720,k

< ) Ibllg(z—k) = ¢(zo —k)|
keN*

+3 ) lagellvin(@) — Wir(zo)|.
j>o kEN*

(18)

(19)

(20)
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In view of the r-regularity of the MRA with » > 1, observe that |p(z —k) —

é(zo — k)| = O(|z — zo|). From (19) we have |[N*| < 4M. Thus the first sum is

O(lz — zol).
To estimate the second sum, let us split it into two parts:

Z Z lask||Wik(2) — Wir(zo)]|
j=o keNJr

= Z Z |lajk||¥jk(z) — Wir(zo)]|
j=o keNJr

+ 5 Y laillbk(2)—Wir(zo)]
j=m+lkGNJ'."

— Sl+s2.

Using again the r-regularity of the MRA with r > 1, we see that |l5(z) —

Yik(zo)| = 0(29/227 |z — xo|) uniformly in k. This means that, in view of (18),

2 Icezl\:f]’.“ |ajkl|%sk(z) — Yir(2)]

= O(mz—m -i

š w(2 J)23/223.|:c—:150|)
= 0(

S

w277š w(2 J)I:z:—:z;gl).
Applying Lemma 2, we get

Si = O(|z — zo|2™w(2™™)) = O(w(|z — z0])).

For the sum S5, we have

Sa= D, Y lajkllvik(@)— Wr(zo)
j=m+lk€NJ’.“

Observing again that |N*] < 4M, we obtain

$ = 3 D lõillkuz)-Yr(zo)
j=m+lk€N]?‘

= 0( » z—f”w(z—j)zmnzpuc).
j=m+l

(21)
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In view of the r-regularity of the MRA, observe that ||l||c is finite. Applying
Lemma 1, we see that

S» = 0 (w(2™™ 1)) = O(w(|z — zo|)).

Combining this estimate with (21), we get the proof of the theorem.
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ÜLDISTATUD LIPSCHITZI KLASSIDESSE KUULUVATE

FUNKTSIOONIDE LAINEKESTE KORDAJATEST

JüriLIPPUS

On vaadeldud, kuidas funktsiooni siledus mingi punkti iimbruses on seotud

tema lainekeste kordajate kahanemise kiirusega. Saadud tulemused kujutavad
endast artikli [3] tulemuste lokaalset varianti.
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