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Abstract. Starting out with the mesoscopic balance equation of the orientation distribution

function (ODF) of an orientable Cosserat continuum, we eliminate the orientation change
velocity by the mesoscopic spin balance. We obtain balance equations of the second moment of

the ODF - the alignment tensor of second order — and an expression for the orientation change
velocity. The remaining balance equation of the orientation distribution is of the Fokker—Planck

type.
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1. INTRODUCTION

Liquid crystals are phases showing an orientational order of molecules which

are of elongated or plane shape, so that an orientational order of them can be

defined. Besides the orientational order, an additional spatial order of the centres

of mass of the molecules is possible, which causes a large variety of liquid crystal
phases, such as nematic, smectic, cholesteric, and a lot of other phases of different

structures. Because of thermal fluctuations the molecules are not totally aligned,
but they have a certain distribution around a “mean orientation” which can be

described by a normalized macroscopic director field. The name “macroscopic”
originates from the fact that the macroscopic director field belongs to all molecules

of a volume element, whereas a special molecule may be aligned differently. Thus

it is necessary to introduce a microscopic director which describes the alignment of

a single molecule and which is different from the local macroscopic director. Since

the microscopic director is defined on a molecular level, it is not a macroscopic
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field, but a so-calledmesoscopic variable. Here “mesoscopic”’ means that the level

of description is finer than the macroscopic level, but that no microscopic concept,
such as molecular interaction or potentials, is used.

2. MESOSCOPIC CONCEPT

As discussed above, a liquid crystal is composed of differently
orientated particles, for which we presuppose that their orientation can be described

individually by the direction of their microscopic directors. Thus, the microscopic
director n is defined as aunit vector pointing in the temporary direction of aneedle-

shaped rigid particle, or, if the particle is of plane shape, the microscopic director is

perpendicular to the particle. Because the microscopic director is normalized,

n’=l, neS?

the microscopic alignment has two degrees of freedom. Since the particles may

rotate, the microscopic director changes in time and we define the microscopic
orientation change velocity u by

u := in, with u-n=O.
dt

If we consider molecules of a volume element, the alignment of their

axes is specified by a distribution function f on the unit sphere, called the

orientation distributionfunction (ODF). The ODF describes the density generated
by intersection points on the unit sphere S? between the molecule axes and the

sphere. As, in general, the alignment of the molecules is a function of position and

time, the ODF is defined on a six-dimensional space S% x R 3 x R!

f(n,z,t)= f(), ()=(n,z,t) € S xR xR.

The five-dimensional subspace S? x R3, consisting of the orientation- and

the position-part, is called the nematic space. As there are always two points of

intersection opposite to each other on the S2, the ODF shows the so-called head—-

tail symmetry

f(—n,:c,t) = f(n7w)t)'

By this ODF a mesoscopic classification of different types of orientation, so-

called phases, becomes possible.

(1)

(2)

3)

4)



(15)
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3. ORIENTATIONAL BALANCES

In the nematic space €2 each particle is represented by its five coordinates (z, n)
at the time ?. We define the field in the nematic space as the field of orientational

mass density which is defined by

p(:) == p(z,t)f(-),

where p(z, t) is the macroscopic mass density

plz,t) = /S )a

of the considered one-component liquid crystal, p(-) describes the mass density
of the molecules having the orientation m at the position x at the time ¢. In

this interpretation v(-) is the material velocity of these molecules. Other such

orientational fields (i.e., fields defined in the nematic space) are, e.g., the external

acceleration k(-), the stress tensor T'(-), and the heat flux density g(-).
These orientational fields satisfy local balance equations which are defined on

the nematic space and which are therefore denoted as local orientational balances

[']. The general shape of these balances is

OBV + BN + Ve(0B+2()])
+ Va fpl)u()[oC)v() + 3()])

= p()K() +V. S().

For the special balances we obtain the following identities []:
mass

K() = 0, S()=0;

momentum

¢()=1, () = 0,

K(-) = k() = external acceleration,

S(-) = TT(-) = transposed stress tensor;

angular momentum

A()=xx, P) = Inxul-:),

K() = xxk()+nxg(-),

S() = [xxT()]" +n x 1();

(10)

(11)

(12)

(13)

(14)

(5)

(6)

(7)

(8)

(9)



2. V, -v(z,t)=o (23)

97

total energy

() = 1/2v(),®() = (1/2)ln x u()]* +€e(-),

K() = k() -v()+9() ul)+r(),

S(:) = v()-T()+u() =()—ql).

Here u(-) is the field of the orientational change velocity, g(-) the orientational

couple force density, 7(-) the orientational couple stress tensor, £(-) the density
of orientational internal energy, and r(-) the orientational radiation supply, I is the

constant moment of inertia of a needle-shaped molecule.

Besides the local balances of mass, momentum, angular momentum, and total

energy, we obtain from the balance of momentum by subtracting the balance of

angular momentum the orientational spin balance:

3(-): = In x u(-) = orientational spin density,

Žlt)so] + Ve-l)o()a() -(n x 1())"

+ Va -lpl)u()s()] =e:T()+p()n x 9()

(e 1s the Levi-Civita tensor). Theright-hand side of this equation indicates that one

part of the spin supply is caused by the antisymmetric part of the stress tensor.

According to the definition of the orientational mass density (5), we obtain from

the orientational mass balance an additional balance of the ODF by inserting the

definition of f(-):

9 1)+ Ve- 0O FO +Vi - ()70

L

If we introduce the macroscopic fields by their mesoscopic definitions, the

orientational balance equations are transformed into the balances for micropolar
media by integrating over the unit sphere [%].

4. APPROXIMATIONS

We now introduce some approximations: The orientational velocity does not

depend on the orientation, that means, it is equal to the barycentric velocity which

is assumed to be incompressible

1. v(-) =v(z,t),

(16)

(17)

(18)

(19)

(20)

(21)

(22)



u=G-fn, (34)
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We are interested in stationary and uniform states

0
3. =8

)=

4. Vi; =O, except V,u(-) = const.

There are no external forces

5. g =O.

If we consider these approximations and the balance of mass (5), the

orientational spin balance (20) results in

p()u(-) - Vas(:) =€ :T(-).

5. CONSTITUTIVEEQUATIONS

Taking into account that V,, is the covariant derivative

Vn := O, - n(n-dn),

We can NOW prove

Proposition 1.

wl-) -«Vns(-) = In x (u(-) - Vn)u(-).

Henceforth, forconvenience we will suppress the argument (-) denoting the nematic

space. Using Proposition 1, we obtain from (27)

Vps=o—¢e:T=O,

n-e:T =O.

From (30) we see that € : T' is homogeneous in V,s.Thus we obtain the general
constitutive equation '

e:T= pG-Vns.

Applying (31), we can prove the following

Proposition 2.

G-Vps-n=o—G=u+ pn.

Thus, we have proved that the orientation change velocity u is in accordance with

the spin balance (27) if the constitutive equation (32) holds. Equation (33) is a

constraint for w

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)



Vn-u=O3V, -Vylnp—3n-{6s Vv + Bsa}-n. (45)
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which we have to transform into an objective formulation. Introducing the local

angular velocity w of the observer with respect to the material, we can define

N:=u-wxn, H:=G-wxn,

and (34) becomes

N=H=fn=N"=H"~n.

Here * denotes the quantities belonging to another arbitrary observer, and 3, n, IN,
and H are objective quantities.

We now have to define what the domain of the constitutive equations is. This

domain is called the state space. Here, in the case of liquid crystals, the state space
is chosen so that it consists of mesoscopic and macroscopic parts

Z —

— (Zmeso , Zmacm)

zZ7%B°% = (n, N(),Vrlnp(-)),

Zmacro — (p(r,t),T(z,t)Vrv(z,t),a(x,t)).

According to the approximations (22) and (25), Vv(z,t) (the symbol ——

refers to the symmetric traceless part of a tensor) is a constant, and a(x,t) is the

macroscopic field of the alignment tensor

Si /SZ H 7 n,

We now presuppose that the constitutive equation for H is linear in all variables of

Z, except p(-) and n. Thus, we obtain with 7 functions o, j =l, ..., 5, and 7,

kE=l.2,

H() = amn+aoN+a3V,lnp+ag Vo -n

+7ln: Vyv -nn+ypn-a-nn+ asa-n.

Taking this linear ansatz forH into account, we can calculate the orientation change
velocity u by (36) and (35);.

Proposition 3. The orientation change velocity is

u = wxn+BVilnpt+P-{6 Vrv + Fsa}-n,
P := 1-nn,

B = oj/l-o;], — j=3,45.

By use of (28) we obtain for the divergence of the orientation change velocity

Proposition 4.

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(43)

(42)

(44)
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6. ALIGNMENT TENSOR DYNAMICS

Taking the approximations (22) and (23) into account, we get the differential

equation of the ODF (21)

2FO) + - Vaf() +£V u() + () - Vaf() =O,

Introducing the total time derivative

D 0

fflf = ä“f'*"v'vmf,
and inserting the relations of (42) and (45), we can prove the following statement

using a straightforward calculation (note that the terms quadratic in V,, f cancel

without any additional assumptions).

Proposition 5. The ODF satisfies a Fokker—Planck type equation

St + BsVa-Vaf = 3fn- (6 Vev +fra} n

+ [wxn+n-{fi4rv—w‘+flsa}]-vnf=o.

Multiplication of (48) by mn
, integration over the microscopic directors, and

introduction of the abbreviation

A := {4 Vv + fsa}

yields

Proposition 6.

D —— 2 b —=

fia—2wxa —6,33a+šA+"7—A'a—2A-a4
with

a 4 :—/
sa

nnn n f()d?n

7. CONCLUSIONS

Starting with the orientational balances, we derived a Fokker-Planck type
relaxation equation for the orientation distribution function. The special form

of this equation was obtained under several constraints mentioned in Section 3

(46)

(47)

(48)

(49)

(50)
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with the most restrictive conditions being concerned with the absence of external

(electric or magnetic) fields and the uniformity of the system. Nevertheless, such a

situation frequently occurs when rheological properties of freely flowing nematics

are examined. For this case we developed a relaxation equation for the alignment
tensor a in the form of Eq. (50). The left-hand side of (50) is Jaumann’s time

derivative (convected and corotational time derivative) of the alignment tensor a,

the right-hand side is the alignment production containing nonlinear terms in a

(responsible for the phase transition isotropic—nematic) and some terms which are

due to the flow field. Thus, taking into account the restrictions of Section 3, it is

possible to extract an evolution equation for the order parameters of nematic liquid
crystals from the mesoscopic balances of spin and mass and to obtain an explicit
expression for the alignment production.
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ORIENTATSIOONI JAOTUSFUNKTSIOONI MESOSKOOPILISEST
TASAKAALUST MÕJUTATUD REASTUSTENSORI DÜNAAMIKA

Wolfgang MUSCHIK, Christina PAPENFUSS ja Harald EHRENTRAUT

Cosserat’ tiitipi pideva keskkonna iseloomustamiseks on kasutatud orientat-

siooni jaotusfunktsiooni mesoskoopilise tasakaalu vorrandit, millest on elimineeri-

tud orientatsiooni muutuse kiirus mesoskoopilise spinni tasakaalu arvestades. Tule-

mus kujutab endast teist jarku reastustensori teise momendi tasakaaluvorrandeid,
millele lisanduborientatsiooni muutuse kiiruse vorrand. Orientatsiooni jaotusfunkt-
siooni tasakaal on seejuures Fokkeri—Plancki tiitipi.


	b10720984-1997-1-2 no. 1-2 01.01.1997
	PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES EESTI TEADUSTE AKADEEMIA TOIMETISED
	PHYSICS MATHEMATICS FÜÜSIKA MATEMAATIKA
	CONTENTS
	EDITORIAL
	CONTINUOUS CELLULAR AUTOMATA FOR SIMULATION OF THERMOELASTICITY
	Fig. 1. Elastic wave propagation across a solid layer: a, homogeneous; b, heterogeneous
	Fig. 2. Thermoelastic wave propagation across a solid layer: a, wave profiles; b, temperature evolution.
	PIDEVAD RAKUAUTOMAADID TERMOELASTSUSES

	INTERACTION OF MOVING SOLITONS IN A DISPERSIVE MEDIUM AND REGIMES OF THEIR RADIATIONLESS MOTION
	SOLITONIDE INTERAKTSIOON DISPERGEERUVAS KESKKONNAS JA NENDE RADIATSIOONIVABAD LIIKUMISREŽIIMID

	CONFIGURATIONAL FORCES INDUCED BY FINITE-ELEMENT DISCRETIZATION
	Fig. 1. Eshelby’s concept of a force acting on a defect
	Fig. 2. Placements of a triangular finite element
	Fig. 3. Finite elements with fixed and floating nodes
	LÕPLIKE ELEMENTIDE DISKREETSUSEST PÕHJUSTATUD KUJUJÕUDUDEST

	GROWTH AND DECAY OF WAVES IN MICROSTRUCTURED SOLIDS
	LAINETE VÕIMENDUMINE JA SUMBUMINE MIKROSTRUKTUURIGA MATERJALIDES

	NONLINEAR WAVE PHENOMENA AND NONLOCALITY
	Characteristics of main models
	3. DISCUSSION
	MITTELINEAARNE LAINELEVI JA MITTELOKAALSUS


	PROPAGATION CRITERION FOR PHASETRANSITION FRONTS IN THERMOELASTIC FERROMAGNETS
	FAASIÜLEMINEKU FRONTIDE LEVIKU KRITEERIUM TERMOELASTSETES FERROMAGNETITES

	SIGNAL PROPAGATION AND INTERNAL MEASUREMENT IN CRYSTALLINE SOLIDS
	Fig. 1. Definition of the natural standard length L, out of the kink solution
	Fig. 2. Periodical oscillation of the breather solution (5) for some ¢ values
	Fig. 3. The contraction of the moving standard length.
	Fig. 4. The moving clock goes behind.
	Fig. 5. The synchronization of the clocks U? and U,; at the event A according to the elementary principle of relativity. .
	Fig. 6. The synchronization of the moving clocks for the time ¢ = 0 in X,.
	SIGNAALI LEVI JA SISEMÕÕTMISED KRISTALSETES TAHKISTES

	ON THE USE OF LANGEVIN EQUATIONS IN DISLOCATION PATTERNING AND DEFORMATION INHOMOGENEITIES
	Fig. 1. Illustration of the correlation length £ of mobile dislocations (L and T signs) and of the characteristic wavelength A of an emerging pattern of sessile dislocations (_L and T).
	Fig. 2. Comparison of the length scales involved in chemical patterning (e.g., the spiral waves associated with the Belousov—Zhabotinski reaction) and dislocation patterning (e.g., the persistent slip band and matrix structures occurring during cyclic plastic deformation). In the latter case the mesoscopic scale where fluctuations show up is important.
	Fig. 3. The variance of the plastic strains of macroscopic specimen segments as a function of the total plastic strain, demonstrating the diffusion-like behaviour of plastic deformation by single glide (Eq. (11)); experimental data for Cu deformed at room temperature, after Diehl [l7].
	Fig. 4. Probability distributions of the total dislocation density pertinent to the formation of dislocation cell structures (see text).
	Fig. 5. Probability distributions of the dipole dislocation density pertinent to the formation of persistent slip band structures (a) and matrix structures (b); for details see text.
	Fig. 6. Phase diagram of fatigue dislocation patterning in dependence of the noise intensity o> and the dipole generation rate k. Above the cusp-like phase boundary aš , dislocation patterning occurs, since distribution functions are bimodal.
	LANGEVINI VORRANDITE KASUTAMINE DISLOKATSIOONI JAOTUSE JA DEFORMATSIOONI MITTEHOMOGEENSUSE KIRJELDAMISEKS

	NONLINEAR DUALITY BETWEEN ELASTIC WAVES AND QUASI-PARTICLES IN MICROSTRUCTURED SOLIDS
	Fig. 1. Schematic of (P, V=c) relationship for remarkable systems: a, NLS (Newtonian point mechanics); b, SG (Lorentzian—Einsteinian point mechanics); ¢, GZ (complex point mechanics); d, 6GBO equation (“rocket”-like point mechanics).
	Fig. 2. Mass, momentum, and energy for Kawahara solitons for positive fourth-order dispersion B = +1 (symbols: numerical evaluation; lines: best-fit approximation).
	Fig. 3. Head-on collision of two Kawahara solitons with V=o.B (soliton from the left) and V = -0.7 (soliton from the right).
	ELASTSETE LAINETE JA KVAASIOSAKESTE MITTELINEAARNE DUAALSUS MIKROSTRUKTUURIGA MATERJALIDES

	NONLINEAR SURFACE AND WEDGE ACOUSTIC WAVES IN THE PRESENCE OF WEAK DISPERSION
	Fig. 1. Surface elevation profile (solid curve) and displacement component parallel to the surface (dashed curve) for stationary nonlinear Rayleigh waves in the presence of weak dispersion due to a thin film. (o = qovr/(vr + Av)).
	Fig. 2. Geometry considered for the propagation of flexural waves along the tip of a slender wedge [23].
	Fig. 3. The quantities K (j) (open dots) and K'r(s)/10 (full dots), defined in the text, to leading order in © as function of the branch index j of wedge acoustic waves (A = p).
	Fig. 4. The functions F'(€, €) and F'(l, £) determined numerically for A = p.
	MITTELINEAARSED AKUSTILISED PINNALAINED JA KIILULAINED NÕRGA DISPERSIOONI KORRAL

	ALIGNMENT TENSOR DYNAMICS INDUCED BY THE MESOSCOPIC BALANCE OF THE ORIENTATION DISTRIBUTION FUNCTION
	ORIENTATSIOONI JAOTUSFUNKTSIOONI MESOSKOOPILISEST TASAKAALUST MÕJUTATUD REASTUSTENSORI DÜNAAMIKA

	SOLITONS IN A PERTURBED KORTEWEG-de VRIES SYSTEM
	Fig. 1. Regions, where different solution types are realized: a, (vl, v2)-plane; b, (a, p)-plane. Different hatch types X, /, and \ correspond to trivial solutions u(z,t) = 0, u(z,t) = vy, and u(z,t) = v 2, respectively.
	Fig. 2. Typical example of a stationary solution with one soliton (case a = 65 in Fig. 1)
	Fig. 3. Example of a dark soliton solution (case o = 128 in Fig. 1b)
	Fig. 4. Example of a double soliton solution (case & = 132 in Fig. 1b)
	Fig. 5. Example of a single soliton solution (case @ = 140 in Fig. 15). Notice how smaller solitons are suppressed (see also the next figure).
	Fig. 6. A single soliton solution (case a = 205 in Fig. 1b)
	Untitled
	Fig. 7. A double soliton solution (case o = 208 in Fig. 1b) Fig. 8. A negative soliton solution (case & = 210 in Fig. 1b).
	Fig. 9. Example of a cnoidal type soliton solution (case a = 209, p = 0.65 in Fig. 1b)
	SOLITONID HÄIRITUSEGA KORTEWEGI—de VRIESI SÜSTEEMIS

	EFFECTS OF NOISE ON LOCALIZED EXCITATIONS IN THE DISCRETE NONLINEAR SCHRODINGER SYSTEM
	Fig. 1. Evolution of an initially single-sited localized excitation. Parameter values are y = 10, 7 = 2, and D = 0.05.
	Fig. 2. Typical evolution of the initial-site probability for different values of 7, i, and D. In (a) we have n = 0, D = 0.05, and from bottom to top v = 5, 10, 15, and 20; in (b) y = 5, D = 0.05, and from bottom to topn = 0,1, 5, and 10; in (¢) ¥ = 5,7 = 1.0, and D = 0.005, 0.025, and 0.05 from top to bottom. The particular realization of the noise is the same in all cases.
	Fig. 3. Quantitative dependence of the decay rate, k, of the breather as a function of (a) noise strength D, (b) nonlinearity parameter -y, and (¢) nonlinear damping parameter 7). In (a)n = 0.1 for both curves and in (c) D = 0.05 for both curves; other parameter values are as indicated in the figures.
	MÜRAEFEKTID LOKAALSELT HÄIRITUD DISKREETSES MITTELINEAARSES SCHRODINGERI SÜSTEEMIS

	SOLITONS IN SYSTEMS WITH A QUARTIC POTENTIAL AND HIGHER-ORDER DISPERSION
	Fig. 1. Regions in the d; —b, plane, where different solution types (separated by bold lines) and subtypes (separated by dotted lines) are realized: type i — train of n solitons (i, — the number of solitons in the train is n + 1); type ü — multisoliton solution (ii,, n=1,...,4 — group of n + 1 solitons, iis — group of more than five solitons); type iii — train of n negative solitons (iii, — the number of negative solitons in the train is n + 1); type iv — chaotic solution. X-marks correspond to d, —b, pairs where the numerical integration is carried out.
	Fig. 2. Solution for d, = 2.2 and b,=2.4 (train of n solitons): a, time-slice plot; b, waveprofile maxima against the time ¢ (I, 2, 3 correspond to the first, second, and third solitons); c, time dependence of spectral amplitudes (/—4 correspond to SA|—SA,).
	Fig. 3. Solution for d;, = 0.6 and b, = 1.6 (multisoliton solution): a, time-slice plot; b, waveprofile maxima against the time ¢ (/ corresponds to the highest and 3 to the lowest soliton in the group); ¢, time dependence of spectral amplitudes (/-3 correspond to SA;—SAS); d, time dependence of the cumulative spectrum (/-9 correspond to SC,—SCy).
	Fig. 4. Solution ford, = 1.0 and b; = 3.2 (train of n negative solitons): a, time-slice plot (profiles -u(x,t) are shown); b, time dependence of the cumulative spectrum (/-7 correspond to SC,—SC,).
	Fig. 5. Solution for d; = 2.0 and b, = 3.4 (chaotic solution): a, time-slice plot; b, time dependence of spectral amplitudes (/-8 correspond to SA|—SAg).
	SOLITONID NELJANDAT JÄRKU POTENTSIAALIGA JA KÕRGEMAT JÄRKU DISPERSIOONIGA KESKKONDADES

	THEORETICAL AND PRACTICAL PROBLEMS OF HYGROTHERMALLY LOADED FIBRE REINFORCED COMPOSITES
	Fig. 1. Most frequent coupled fields of mechanics.
	Fig. 2. Dimensionless longitudinal coefficient of thermal expansion of a [6/-6 ], laminate as a function of ply angle. Ply properties: E|/Ey; = 10, v 15 =0.25, o /0 75 = 0.1; G5/E5, = 0.05, 0.5, and 4 for curves 1,2, and 3, respectively.
	Fig. 3. Longitudinal coefficient of thermal expansion (CTE) as a function of ply angle for three [6/-6 ], laminates consisting of different commercial ply materials: Kevlar-epoxy (solid line), graphite-epoxy (dashed line), and E-glass-epoxy (dash-dot line).
	Fig. 4. Longitudinal coefficient of moisture expansion (CME) as a function of ply angle for three [6/-6 ], laminates consisting of different ply materials: Kevlar-epoxy (solid line), graphite-epoxy (dashed line), and E-glass-epoxy (dash-dot line).
	Fig. 5. Longitudinal coefficient of thermal/moisture expansion (CT/ME) as a function of ply angle for a [6/-0 ], graphite-epoxy laminate.
	Number of independent coefficients
	HÜGROTERMILISELT KOORMATUD KIUDARMATUURIGA KOMPOSIITMATERJALIDEGA SEOTUD TEOREETILISI JA PRAKTILISI PROBLEEME

	MODULATIONAL INSTABILITY OF TWO COUNTER-PROPAGATING WAVES IN A THIN PLATE RESTING ON ELASTIC FOUNDATION
	Fig. 1. Sketch of the elastic structure and coordinate system.
	Fig. 2. Linear frequency spectrum: I, N =-0.425; 2, N =0; 3, N = 0.425; 4, N = 0.85; 5, N = 1.0.
	Fig. 3. Region of modulational instability
	Untitled
	Fig. 4. Time evolution of the nonlinear standing wave: a, initial state; b, birth of modulational instabilities (t = 75); ¢, formation of localized structures (¢ = 1200).
	KAHE VASTASSUUNAS LEVIVA LAINE MODULATSIOONILINE EBASTABIILSUS ELASTSEL ALUSEL LEBAVAS ÕHUKESES PLAADIS
	ANNUAL AWARD OF THE ESTONIAN PHYSICAL SOCIETY EESTI FÜÜSIKA SELTSI AASTAPREEMIA
	Corrigendum


	MATRIX MAPS INTO THE SPACE OF STATISTICALLY CONVERGENT BOUNDED SEQUENCES
	INSTRUCTIONS TO AUTHORS
	Untitled
	Untitled



	Illustrations
	Fig. 1. Elastic wave propagation across a solid layer: a, homogeneous; b, heterogeneous
	Fig. 2. Thermoelastic wave propagation across a solid layer: a, wave profiles; b, temperature evolution.
	Fig. 1. Eshelby’s concept of a force acting on a defect
	Fig. 2. Placements of a triangular finite element
	Fig. 3. Finite elements with fixed and floating nodes
	Fig. 1. Definition of the natural standard length L, out of the kink solution
	Fig. 2. Periodical oscillation of the breather solution (5) for some ¢ values
	Fig. 3. The contraction of the moving standard length.
	Fig. 4. The moving clock goes behind.
	Fig. 5. The synchronization of the clocks U? and U,; at the event A according to the elementary principle of relativity. .
	Fig. 6. The synchronization of the moving clocks for the time ¢ = 0 in X,.
	Fig. 1. Illustration of the correlation length £ of mobile dislocations (L and T signs) and of the characteristic wavelength A of an emerging pattern of sessile dislocations (_L and T).
	Fig. 2. Comparison of the length scales involved in chemical patterning (e.g., the spiral waves associated with the Belousov—Zhabotinski reaction) and dislocation patterning (e.g., the persistent slip band and matrix structures occurring during cyclic plastic deformation). In the latter case the mesoscopic scale where fluctuations show up is important.
	Fig. 3. The variance of the plastic strains of macroscopic specimen segments as a function of the total plastic strain, demonstrating the diffusion-like behaviour of plastic deformation by single glide (Eq. (11)); experimental data for Cu deformed at room temperature, after Diehl [l7].
	Fig. 4. Probability distributions of the total dislocation density pertinent to the formation of dislocation cell structures (see text).
	Fig. 5. Probability distributions of the dipole dislocation density pertinent to the formation of persistent slip band structures (a) and matrix structures (b); for details see text.
	Fig. 6. Phase diagram of fatigue dislocation patterning in dependence of the noise intensity o> and the dipole generation rate k. Above the cusp-like phase boundary aš , dislocation patterning occurs, since distribution functions are bimodal.
	Fig. 1. Schematic of (P, V=c) relationship for remarkable systems: a, NLS (Newtonian point mechanics); b, SG (Lorentzian—Einsteinian point mechanics); ¢, GZ (complex point mechanics); d, 6GBO equation (“rocket”-like point mechanics).
	Fig. 2. Mass, momentum, and energy for Kawahara solitons for positive fourth-order dispersion B = +1 (symbols: numerical evaluation; lines: best-fit approximation).
	Fig. 3. Head-on collision of two Kawahara solitons with V=o.B (soliton from the left) and V = -0.7 (soliton from the right).
	Fig. 1. Surface elevation profile (solid curve) and displacement component parallel to the surface (dashed curve) for stationary nonlinear Rayleigh waves in the presence of weak dispersion due to a thin film. (o = qovr/(vr + Av)).
	Fig. 2. Geometry considered for the propagation of flexural waves along the tip of a slender wedge [23].
	Fig. 3. The quantities K (j) (open dots) and K'r(s)/10 (full dots), defined in the text, to leading order in © as function of the branch index j of wedge acoustic waves (A = p).
	Fig. 4. The functions F'(€, €) and F'(l, £) determined numerically for A = p.
	Fig. 1. Regions, where different solution types are realized: a, (vl, v2)-plane; b, (a, p)-plane. Different hatch types X, /, and \ correspond to trivial solutions u(z,t) = 0, u(z,t) = vy, and u(z,t) = v 2, respectively.
	Fig. 2. Typical example of a stationary solution with one soliton (case a = 65 in Fig. 1)
	Fig. 3. Example of a dark soliton solution (case o = 128 in Fig. 1b)
	Fig. 4. Example of a double soliton solution (case & = 132 in Fig. 1b)
	Fig. 5. Example of a single soliton solution (case @ = 140 in Fig. 15). Notice how smaller solitons are suppressed (see also the next figure).
	Fig. 6. A single soliton solution (case a = 205 in Fig. 1b)
	Untitled
	Fig. 7. A double soliton solution (case o = 208 in Fig. 1b) Fig. 8. A negative soliton solution (case & = 210 in Fig. 1b).
	Fig. 9. Example of a cnoidal type soliton solution (case a = 209, p = 0.65 in Fig. 1b)
	Fig. 1. Evolution of an initially single-sited localized excitation. Parameter values are y = 10, 7 = 2, and D = 0.05.
	Fig. 2. Typical evolution of the initial-site probability for different values of 7, i, and D. In (a) we have n = 0, D = 0.05, and from bottom to top v = 5, 10, 15, and 20; in (b) y = 5, D = 0.05, and from bottom to topn = 0,1, 5, and 10; in (¢) ¥ = 5,7 = 1.0, and D = 0.005, 0.025, and 0.05 from top to bottom. The particular realization of the noise is the same in all cases.
	Fig. 3. Quantitative dependence of the decay rate, k, of the breather as a function of (a) noise strength D, (b) nonlinearity parameter -y, and (¢) nonlinear damping parameter 7). In (a)n = 0.1 for both curves and in (c) D = 0.05 for both curves; other parameter values are as indicated in the figures.
	Fig. 1. Regions in the d; —b, plane, where different solution types (separated by bold lines) and subtypes (separated by dotted lines) are realized: type i — train of n solitons (i, — the number of solitons in the train is n + 1); type ü — multisoliton solution (ii,, n=1,...,4 — group of n + 1 solitons, iis — group of more than five solitons); type iii — train of n negative solitons (iii, — the number of negative solitons in the train is n + 1); type iv — chaotic solution. X-marks correspond to d, —b, pairs where the numerical integration is carried out.
	Fig. 2. Solution for d, = 2.2 and b,=2.4 (train of n solitons): a, time-slice plot; b, waveprofile maxima against the time ¢ (I, 2, 3 correspond to the first, second, and third solitons); c, time dependence of spectral amplitudes (/—4 correspond to SA|—SA,).
	Fig. 3. Solution for d;, = 0.6 and b, = 1.6 (multisoliton solution): a, time-slice plot; b, waveprofile maxima against the time ¢ (/ corresponds to the highest and 3 to the lowest soliton in the group); ¢, time dependence of spectral amplitudes (/-3 correspond to SA;—SAS); d, time dependence of the cumulative spectrum (/-9 correspond to SC,—SCy).
	Fig. 4. Solution ford, = 1.0 and b; = 3.2 (train of n negative solitons): a, time-slice plot (profiles -u(x,t) are shown); b, time dependence of the cumulative spectrum (/-7 correspond to SC,—SC,).
	Fig. 5. Solution for d; = 2.0 and b, = 3.4 (chaotic solution): a, time-slice plot; b, time dependence of spectral amplitudes (/-8 correspond to SA|—SAg).
	Fig. 1. Most frequent coupled fields of mechanics.
	Fig. 2. Dimensionless longitudinal coefficient of thermal expansion of a [6/-6 ], laminate as a function of ply angle. Ply properties: E|/Ey; = 10, v 15 =0.25, o /0 75 = 0.1; G5/E5, = 0.05, 0.5, and 4 for curves 1,2, and 3, respectively.
	Fig. 3. Longitudinal coefficient of thermal expansion (CTE) as a function of ply angle for three [6/-6 ], laminates consisting of different commercial ply materials: Kevlar-epoxy (solid line), graphite-epoxy (dashed line), and E-glass-epoxy (dash-dot line).
	Fig. 4. Longitudinal coefficient of moisture expansion (CME) as a function of ply angle for three [6/-6 ], laminates consisting of different ply materials: Kevlar-epoxy (solid line), graphite-epoxy (dashed line), and E-glass-epoxy (dash-dot line).
	Fig. 5. Longitudinal coefficient of thermal/moisture expansion (CT/ME) as a function of ply angle for a [6/-0 ], graphite-epoxy laminate.
	Fig. 1. Sketch of the elastic structure and coordinate system.
	Fig. 2. Linear frequency spectrum: I, N =-0.425; 2, N =0; 3, N = 0.425; 4, N = 0.85; 5, N = 1.0.
	Fig. 3. Region of modulational instability
	Untitled
	Fig. 4. Time evolution of the nonlinear standing wave: a, initial state; b, birth of modulational instabilities (t = 75); ¢, formation of localized structures (¢ = 1200).

	Tables
	Characteristics of main models
	Number of independent coefficients
	Untitled
	Untitled




