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Abstract. Dislocation dynamics theories of spatio-temporal structure formation during plastic
flow encounter the problem of dealing with the long-range dislocation interactions. The

basic idea of the stochastic dislocation dynamics presented here consists in accounting for

the fluctuations of the local effective stress and of the plastic shear strain rate that are caused

by transient dislocation interactions during glide. The correlation functions of the effective

stress and of the strain rate are related to the strain-rate sensitivity and the mechanical power

dissipation using an effective medium approach. Plastic flow properties may then be described

in terms of stochastic differential equations of the Langevin type. The applications presented
refer to (i) the random aspects of the macroscopic plastic strains and tensile stresses, and (ii) the

evolution of the dislocation densities pertinent to noise-induced dislocation patterning.

Key words: plasticity, dislocations, stochastic dynamics, pattern formation, noise-induced

transitions.

1. INTRODUCTION

Dislocation dynamics approaches to plastic flow properties of metals and

alloys are known to offer several advantages as compared to traditional continuum

mechanics theories: (i) they may provide physical justifications of the constitutive

viscoplastic laws used in continuum mechanics, (ii) they may give access to

the characteristic length and time scales that are important for modelling the

spatio-temporal aspects of plastic deformation and, obviously, (iii) dislocation

dynamics modelling is indispensable for understanding the spontaneous formation

of dislocation patterns which, being outstanding examples of self-organization in
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complex systems far from equilibrium, have stimulated much theoretical work

during the last decade [l3].
In practice, however, fundamental problems inherent in dislocation dynamics

approaches are due the long-range interactions between dislocations. They are

the reason why in dislocation dynamics one is dealing with complex systems
where the length scales are not clearly separable. As depicted schematically in

Fig. 1, the correlation length £ over which mobile dislocations may behave in a

collective way is of the same order of magnitude as the characteristic wavelength
of the spontaneously emerging dislocation patterns. That this situation is somewhat

peculiar can be seen from a comparison with other, theoretically much better

understood examples of pattern formation, such as chemical patterning (Fig. 2).
Here patterns show up on a macroscopic scale (103 m) that is well separated from

the microscopic scale (102 m) where thermal fluctuations and the discreteness of

particles become appreciable. Therefore, patterning phenomena can be described

theoretically in terms of deterministic continuum approaches of the reaction—-

diffusion—transport type. The situation is quite different with dislocation dynamics,
where fluctuations and the discreteness of dislocations manifest themselves on the

same mesoscopic scale (10~% m) that is characteristic of patterning. Under these

circumstances it seems safe to resort to some type of stochastic approach, in order

to get an idea to what extent the fluctuations average out and whether fluctuations

may induce qualitative changes in dislocation dynamics that can be associated with

patterning.

To this end, let us consider the effective shear stress (driving stress)
el = rext — rint that acts on a gliding dislocation. It is given by the external
resolved shear stress 7°** and the long-range internal shear stress 7™ (back stress)
exerted by other dislocations. During the time passing between its generation (or

Fig. 1. Illustration of the correlation length £ of mobile dislocations (L and T signs) and of

the characteristic wavelength A ofan emerging pattern of sessile dislocations (_L and T).
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mobilization) and its annihilation (or storage), a glide dislocation interacts with

various dislocation configurations such that the internal stress is varying along its

glide path. Consequently, dislocation motion takes place in a spatio-temporally
fluctuating effective stress field that can be envisaged as a noise superimposed on

the external stress varying slowly on the time scale of strain hardening. The mean

square deviations of 7¢T and the concomitant deviations of the plastic shear strain

rate -y are easily determined by assuming that the work done by the internal stresses

is completely dissipative. The result is [* °]:

57) = T2,
((67°%)2) = S(rint) .

Equations (1) and (2) relate the local fluctuations to the strain-rate sensitivity
S = o(r°f)/01n(¥) which represents the dynamic response function, and to

the mechanical power dissipation which is governed by the ensemble average of

the internal stress as experienced by the glide dislocations: (7'7) (“fluctuation—-
dissipation theorems of plastic flow”).

Fig. 2. Comparison of the length scales involved in chemical patterning (e.g., the spiral
waves associated with the Belousov—Zhabotinski reaction) and dislocation patterning (e.g., the

persistent slip band and matrix structures occurring during cyclic plastic deformation). In the

latter case the mesoscopic scale where fluctuations show up is important.

(1)

(2)
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In the direction normal to the dislocation glide planes, a correlation length ¢
of fluctuations can be introduced which formally establishes a scale of “coarse

graining” while, physically, it corresponds to the characteristic range of dislocation

interactions. As a discussion of this correlation length has been given elsewhere

[4=6], we only point out that ¢ is defined from a dynamic point of view by noting
that two dislocations interact strongly enough to glide in a correlated way, only
if their interaction stress exceeds the random stress fluctuations exerted by other

dislocations. This gives the following scaling law for the correlation length [*~6]:

£= Atwil gl - — Bb
Ar/((õTEE)2) — 474/ S(rint)

j

where ju denotes the shear modulus and b the length of the Burgers vector. It is

interesting to note that a random array of static dislocations inan infinite medium

does not possess a finite interaction range (cut-off) as a consequence of the 1/ type
interaction law [7]. The finite correlation length ¢ defined here, however, derives

from dynamic arguments.
Correlations are limited in time due to dislocation immobilization (storage or

aimihilation). This is expressed by the following scaling law for the correlation time

%)
iy

bpmL
COIr

—
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where L is the average slip line length and p,, the density of mobile dislocations.

The present stochastic dislocation dynamics isbased on the idea that dislocation

glide occurs in a fluctuating effective medium that is made up by the ensemble

of dislocations. The scaling relations (1)—(4) are supposed to reflect those

aspects of long-range dislocation interactions that are relevant on a mesoscopic
scale. They represent the starting point for formulating mesoscopic stochastic

differential equations of the Langevin type for the evolution of the mechanical

and microstructural variables characterizing plastic flow. Thereby it turns out that

the stochastic approach opens up new relationships that cannot be obtained from

deterministic approaches.

2. APPLICATIONS

2.1. Deformation inhomogeneities

On a mesoscopic scale, fluctuations are quite significant even ifthe macroscopic
plastic deformation proceeds smoothly. In the case of weakly rate-sensitive face-

centred cubic (f.c.c.) metals (where S is very small as compared to (7'™%)), Egs.
(1), (2) predict large local strain-rate fluctuations of the order of (672)/(%)? =

102 to 103, which is consistent with the observation of a coarse mode of slip
(formation of slip bands [®]). It is commonly assumed that the fluctuations average

3)

4)
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out efficiently so that they do not significantly influence the plastic deformation

behaviour of a macroscopic tensile specimen. While this is quite well fulfilled in

the case of a polycrystal where the deformation is brought about by an enormous

number of independent slip events within different crystallites, it has been shown

that fluctuations are appreciable in the deformation of single crystals [Y~!l], as

slip tends to spread within slip bands extending over the entire specimen cross

section. Inparticular, this is true when one approaches a strain-rate softening regime
(S —0) that goes along with a divergingcorrelation length ¢ ['% 13].

The fluctuations ofthe elongation rate [ of a macroscopic specimen (or specimen
segment) of length [ deforming by single-slip follow from Egs. (1) and (3) as

G —/
;

M 2 ;
I

A
/0 löö(z)ö3(2'))dxrdz' =z

261
2 (65°)

or with the tensile strain rate é = [/I

G) BB €)-€ el
2r g g

Here ¢’ is the projection of £ on the tensile axis and M is the Schmid factor of

the primary slip system. The correlation time of the elongation-rate fluctuations

equals that of the underlying mesoscopic strain-rate fluctuations, Eq. (4). In

polycrystals, because of the independence of the strain-rate fluctuations within

different crystallites, the macroscopic elongation-rate fluctuations are reduced by a

factor of (d/r)?, where dis the grain size and r the specimen radius. Taking a typical
grain size of 100 xm and a specimen radius of 3 mm, one has (d/r)? ~ 1073, i.e.,

macroscopic fluctuations play much less arole in polycrystals than in single crystals.

2.1.1. Macroscopic strain fluctuations

Considering an ensemble of statistically equivalent specimen segments, we may
define by E = € — € = (I — (1)) /lp the deviations of the segment strains, F, from

the average strain € of all segments ([ is the initial segment length). Assuming that

(i) the slip activity only depends on the mean strain € regardless of the actual strain

accumulated locally and that (ii) fluctuations of the macroscopic strain rate result

from many, statistically independent events (slip bands), the strain deviation E is

subjected to a Wiener process [l4 151,

%—f— = /2D. we),

with a standard white noise w(€) defined by

(5)

(6)

(7)
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and a fluctuation strength that is characterized by the pseudodiffusion coefficient

Tl

{Bl2
o

E(T%) pmbl

De=yjp rÖST 5 M¢
The solution of this standard problem of statistical mechanics follows from solving
the corresponding Fokker—Planck equation for the probability density p(E, €),

0
4

s

82
-

'õ—šp(E, E) — De(e) WP(E, 6) )

for the initial condition that all specimen segments are undeformed at zero mean

strain: p(E,€ = 0) = 0(E). The strain deviations are then Gaussian distributed

with a mean square deviation that broadens during straining in a diffusion-like way:

(E?) =2 / D.(¢)d

In the case of a constant fluctuation strength D, that follows for deformation

conditions where the Cottrell-Stokes law holds (i.e., (7™) ~ S, L ~ & ~ p;ll/%~

(ri%)-1 see [l6]), Eq. (11) reduces to (E?) = 2D, that is, the strain variance

increases in proportion to the square root of the mean strain (random walk). This

result can also be derived in a more mechanistic way by assuming that the strain is

accommodated by a certain number of random, discrete, simultaneously active slip
events that on average last a time~ and bring in an elementary strain Ae [lOl.

Figure 3 presents a comparison with experimental investigations performed by
Diehl [l7] who monitored the inhomogeneity of tensile deformation by marking five

segments withthe length 6 mm each on the gauge length of a monocrystalline copper

specimen. One notes that in Stage II of strain hardening ['®] the variance of the

segment strains is well represented by a /é-relationship with D, ~ 7.5 x 107 —a

value that is consistent with whatone expects from Eq. (9). This is an indication that

the assumptions made above (statistical independence of slip events, and validity
of the Cottrell-Stokes law) represent good approximations to the actual hardening
dynamics during Stage 11. In Stages I and 111, however, the observed statistics

differ systematically from what is expected for constant D., demonstrating that

deformation mechanisms are different there: The observed decrease of the strain

variance in Stage I is consistent with a self-avoiding mode of slip, i.e., the crystal
fills up continuously with slip lines that harden a surrounding material slice. This

violates the assumed statistical independence of events. On the other hand, in

Stage 111 the strain variance turns out to be constant within the statistical limits of

confidence of the experimental data. This may be explained by assuming that at the

end of Stage II the pseudodiffusion coefficientD, drops markedly. This assumption
is consistent with current theories which attribute Stage 111 to the onset of abundant

cross slip [l% 2°]. By providing an additional degree of freedom, cross slip reduces

the strain-rate fluctuation amplitude [*], corresponding to a marked drop in D..

(9)

(10)

(11)
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2.1.2. Macroscopic stress fluctuations

Let us now turn to the fluctuations of the external tensile stress o®** which can

be determined by a stochastic integration similar to that used before for the plastic
strain. Using the machine equation that relates the imposed cross-head velocity u

to the overall plastic strain rate and the elastic strain rate (C' denotes the compliance
of the system specimen—tensile machine),

u.—-i/li dz v + Cl&**

one finds for temporal fluctuations of the tensile stress rate [l9]

(sil
(Ö-ext)Z

—

(C6)2 (i)2
>

where 6 = (s°**) /(€) is the macroscopic strain hardening coefficient.

Since CO < 1 for a stiff tensile machine, the relative stress rate fluctuations

may be appreciable. This is, however, not necessarily true for the corresponding
relative deviations of the stress itself. The reason is that the stress is forced to stay
close to its expectation value by two intrinsic mechanisms that are related to the fact

that the external stress and the flow stress are not independent from each other: (i)
The duration ¢ of a stress deviation originating from a mesoscopic inhomogeneity
of the slip activity is delimited by the global response of the machine-specimen

Fig. 3. The variance ofthe plastic strains ofmacroscopic specimen segments as a function of the

total plastic strain, demonstrating the diffusion-like behaviour ofplastic deformation by single
glide (Eq. (11)); experimental data for Cu deformed at room temperature, after Diehl [l7].

(12)

(13)
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system [l°]: ¢, = CMS/(¢). (ii) Any lasting deviation of the external stress

must be realized on the microstructural level in terms of a corresponding strain

hardening/softening, so that the average external stress equals the macroscopic
flow stress of the material. Spatio-temporal deviations of the flow stress can only
be sustained during the activity of a slip band, i.e., on a time scale on the order

of teorr = bpmL/M(€). Therefore, the external stress cannot depart from its

expectation value by performing a random walk. '

Again, the temporal evolution of the deviations of the external stress,

Y = ot — 5%t can be described by a stochastic differential equation which, in

the present case, possesses the form of a Langevin equation:

dX — »
D

— 2Da' w (š) —

,

de Ecorr

where €corr = (€) teorr = bpmL/M is the characteristic strain associated with the

correlation time, and where the diffusion-like coefficient D, is given by ['°]

te »ext y 2 .Da —

2—<Z§' ((50 ) )

The corresponding Fokker—Planck equation for the probability distributionp(%, €)
is now of the drift—diffusion type:

0
-

e
9

0 »
3

SP(EB) =Dop(2,9)+5 ( (5,9

with the steady-state solution

pS(E € e]Cp7 )
g CO TT11 € 2D €

0 COIr

Using material parameters typical of a f.c.c. metal deformed in single slip
orientation by a stiff tensile machine, one finds the stress fluctuations to be close to

the percent range [l°]. Particularly pronounced stress fluctuations are encountered

with dilute alloys showing dynamic strain ageing ['2]. In a certain range of

temperature, strain, and strain rate, this may give rise to a strain-rate softening
instability (S = 0) that comes along with serrated flow (Portevin—Le Chatelier

effect [l% 13 21]). Equations (13), (15), (17) can be used to study the collective

dislocation behaviourand critical stressfluctuations that occur when Stends to zero

[lO, 13].

2.2. Noise-induced dislocation patterning

In the following, we shall outline some implications of the stochastic approach
regarding the spontaneous formation of dislocation patterns. In doing so we

(14)

(15)

(16)

(17)
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shall first introduce some basic notions of the theoretical framework of noise-

induced transitions ['°], and then briefly discuss two applications to dislocation

patterning during (i) unidirectional and (i1 cyclic plastic deformation. To keep the

representation as simple as possible, let us assume that an emerging dislocation

pattern can be described in terms of a single-order parameter p which, in general,
will be identified with the density of the immobile dislocations accumulated during
the plastic deformation (e.g. dislocation tangles or sessile dislocation dipoles).
Since the systematic evolution of p proceeds on a much slower time scale than

that of the mobile dislocation density p,,, we may assume that the latter has been

eliminated adiabatically. If, in addition, we neglect any static recovery processes,
all dislocation reaction rates considered are in proportion to the plastic shear strain

rate y. Under these circumstances, the evolution equation for p assumes the general
form

oo = f(p)(¥) +o9(p) &¥

with the (appropriately scaled) plastic strain rate ¥ = () + d- split into its mean

value () and a fluctuating part § with zero mean value. The first term on theright-
hand side of this generalized Langevin equation describes the systematic evolution

as in the deterministic case. The second term represents the noise which, in general,
is multiplicative, as the random force depends on the dynamic variable p. Under

these circumstances noise-induced transitions may show up [*°].
The fluctuating terms of Eq. (18) are the price to pay for neglecting the

microscopic details of transient dislocation interactions in favour of a mesoscopic
effective medium description that treats the interaction dynamics as an intrinsic

noise. In order to analyse the probability of a certain state as characterized by p

and investigate the signature of dislocation patterning in probability space, Eq. (18)
is transformed into the corresponding Fokker—Planck equation for the transition

probability density. Using the Stratonovich calculus, one gets [l°]

o'2 02
Õip = =O, [(f(p) G apg2<p)) p] &

5 190B o

where p = p(p,t|po,to) denotes the probability to find the system in the state

p at time ¢, when it was in pg at to, and o 2 is a measure of the noise intensity
that is in proportion to the correlation time. Note that for the derivation of the

Fokker-Planck equation (19), the strain-rate fluctuations have been approximated
by a Gaussian white noise. This is possible, since the time scale of fluctuations is

small as compared to the time scale of the systematic system’sevolution (governed
by strain hardening). For the same reason one may obtain all informationrelevant to

dislocation patterning by investigating the steady-state distribution function ps(p)
as a parametric function of the slowly varying mechanical quantities, such as the

flow stress and the strain-rate sensitivity. These aspects are considered important
technical advantages of the stochastic dislocation dynamics.

(18)

019
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Provided that the probability current vanishes at the boundaries ofp, the steady-
state solution of Eq. (19) reads:

op

N
o 2D["g5Op=ps(p) = 9(p) p( 02 /0 . 92(/0’))’

whereN is anormalizationconstant. A noise-induced transition may manifest itself

by (i) the loss of integrability of ps(p) occurring at some critical noise level (for an

example pertinent to the formation of slip channels see [2?]) or by (ii) a qualitative
change in shape ofps(p). In the remainder of this paper two examples belonging to

the latter category will be presented.

2.2.1. Dislocation cell structures

Cellular dislocation structures are commonly observed to form when

dislocations of various slip systems interact with each other (multiple slip). The

average cell size A is known to scale as the inverse squareroot ofthe total dislocation

density which, in turn, behaves as the square of the flow stress (principle of

similitude: A ~ p~l/2 ~ (7%%)=1) [23]. To describe this patterning phenomenon,
a simple model equation of the type introduced above (Eq. (18)) has been adopted
with f(p) = 1 — /p accounting for dislocation generation and annihilation, and

glp) = ¢ + /P, [°]. The dimensionless average effective stress ¢ is the only
material parameter besides the scaled noise intensity o.

A straightforward analysis presented elsewhere [®] gives the probability
distributions of the total dislocation density p in dependence of the parameters
o 2 and ¢, a typical example of which is shown in Fig. 4. As one expects, the

distribution is smeared out around the deterministic steady state p = 1 at small

values of 02. At some critical value 02 = o 2 (about 1.4 in the specific example),

Fig. 4. Probability distributions of the total dislocation density pertinent to the formation of

dislocation cell structures (see text).

(20)
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the maximum of ps(p) gives way to an inflection point with horizontal tangent and

a cusp appears at p = 0 corresponding to the emergence of dislocation free regions
(i.e. the interiors of dislocation cells). At the same time the distributions become

very broad, which is consistent with the observation that cell formation does not

go along with periodic patterning, but with a hierarchical spectrum of dislocation

densities.

In dimensional terms, the model allows for explaining several basic

observations. The critical condition 0> >o2 is found to be fulfilled if the

correlation length £ (Eq. (3)) exceeds the average spacing of mobile dislocations,

pr}l/? This is an indication that cell formation represents a collective dislocation

dynamics effect. The principle of similitude isrecovered ifwe note that the Cottrell—

Stokes law holds (¢ ~ (7%*)~1!) and identify ¢ with the average characteristic

coherence length of the cellular structure. Moreover, the model allows one to

attribute the absence of cell formation in body-centred cubic metals deformed at

low temperatures to the large strain-rate sensitivity S and the correspondingly small

strain-rate fluctuations observed there.

2.2.2. Fatigue dislocation patterning

Ordered dislocation structures are also found in f.c.c. metals fatigued by strain-

controlled cyclic plastic deformation (see the electron micrograph on the right

part of Fig. 2). Two types of structures may be distinguished: (i) the so-called

matrix structure consists of more or less regularly arranged dislocation-rich veins

embedded into dislocation-poor channels, whereas (ii) the persistent slip bands

(PSB) are periodic arrays of dislocation-rich walls separated by much broader

channels. In both cases, the dislocation-rich regions are made up by dipoles of edge
dislocations [%%: 25].

The fatigue dislocation patterns can be modelled by treating the coupled
dynamics of mobile edge dislocations (carrying the plastic strain) and edge
dislocation dipoles (bringing about the patterns). The following reactions are

considered important [2°]: (i) the generation of a mobile edge dislocation, (ii) the

formation of a dipole, (iii) the annihilation of a mobile edge with either another

mobile or a dipole dislocation, and (iv) the glide-induced decomposition (breaking

apart) of a dipole. After an adiabatic elimination of the mobile dislocation density
and an appropriate scaling, this yields anothermodel equation of the type (18) where

now f(p) =k — pand g(p) = p(1 —p) and p denotes the scaled dipole dislocation

density. The parameter « represents the dimensionless dipole formation rate. Note

that the cyclic nature of plastic deformation is taken into account by identifying the

correlation time (which enters the noise intensity o2) with the cycle period [2°].
Figure 5 shows two sets of probability distributions of the dipole density for

k = 0.3 and kK = 0.5, respectively. In both cases the distributions are seen to

change from monomodal to bimodal ones, as the noise intensity o 2 exceeds some

critical value. This is indicative of a phase separation into dipole-rich regions (veins
and walls) and dipole-poor regions (channels). As to the relative volume fractions,
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one notes that k < 0.5 gives rise to PSB-like structures with channels occupying
a higher volume fraction than walls. £ = 0.5 represents a situation where the

probability distributions are symmetrical with respect to p = 0.5 and the relative

volume fractions are equal. This corresponds to matrix structures with equal volume

fractions of veins and channels [%6].

A phase diagram is given in Fig. 6. From the shape of the phase boundary
02, separating monomodal dipole distributions from bimodal ones, we infer that

k = 0.5 represents a particular case. This may explain why fatigue dislocation

patterning always commences by the formation of a matrix structure, while PSBs

Fig. 5. Probability distributions of the dipole dislocation density pertinent to the formation of

persistent slip band structures (a) and matrix structures (b); for details see text.

Fig. 6. Phase diagram of fatigue dislocation patterning in dependence of the noise intensity o>
and the dipole generation rate k. Above the cusp-like phase boundary aš ,

dislocation patterning
occurs, since distribution functions are bimodal.
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may eventually form in a later stage of cyclic deformation. The details of the

temporal evolution of the dipole patterns can be investigated by considering strain

hardening trajectories in {o%, x} phase space [?°]. Here we only mention that the

model gives (i) the strain amplitudes localized in the PSBs, (i1 the dependence
of fatigue patterning on deformation conditions and material parameters, and

(iii) the pattern stability against, or the characteristic changes during, changes of

temperature and/or applied plastic strain amplitude [*®].
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LANGEVINI VORRANDITEKASUTAMINE DISLOKATSIOONI

JAOTUSE JA DEFORMATSIOONI MITTEHOMOGEENSUSE

KIRJELDAMISEKS

Peter HAHNER

Ajalis-ruumiliste struktuuride teke plastse voolamise tingimustes on

seotud pikaajaliste dislokatsioonide vastasmdjudega. On esitatud dislokatsioonide

stohhastilise diinaamika idee, mis baseerub lokaalse pinge ja plastse nihkepinge
muudu arvestamisel dislokatsioonide vastasmdju mehhanismist ldhtudes.

Pinge ja deformatsiooni muudu korrelatsioonifunktsioonid on seostatud
deformatsiooni muudu tundlikkusegajaenergia dissipatsiooniga. Plastse voolamise
omadused on siis kirjeldatavad Langevini stohhastiliste diferentsiaalvorranditega.
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