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Abstract. Natural standard lengths and clocks in a crystalline solid with the help of

soliton solutions of the sine-Gordon equation are introduced. The idea of an internal

measurement formutually moving reference systems can be well-founded, including especially
a synchronization for moving clocks. As a result, the coordinates of an event measured from

two reference systems are related by the Lorentz transformation. Hence, an arbitrary moving
internal observer measures one and the same isotropic propagation for limiting signal velocity
of the sine-Gordon equation. Lorentz symmetries in solids become more transparent in this

description. Moreover, we have found a mechanical model for the special theory of relativity
without falling back into the mechanical ether concept.
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PRELIMINARY REMARK

Even four years after the discovery of special relativity by A. Einstein,
H. Poincaré in 1909held the view that the contraction hypothesis formoving lengths
was postulated independently of the special principle of relativity, the universal

constancy for the speed of light. We know that this view was wrong. However, there

is a grain of truth in it, which we will discuss below considering special relativity
based on a lattice structure.

1. INTRODUCTION

The displacement g, perpendicular to a straight dislocation line along the z-axis,
in a crystal is described by the sine-Gordon equation (cf. [1~3]):

0?2g
—ox 2 = —

2
Co õt2

Ä;2 s.jnq. sine-Gordon equatition (1)
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Here ¢, is alimiting velocity forthe propagation of plastic deformations through
a crystal with numerical values near that of the transversal sound velocity, cf. [ L
The length ), results from the physical constants of the lattice and has numerical

values of around 10~® cm. We will consider the following solutions of (1), cf. [°],
also [0 7];
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¢,(z) = 4 arctanexp (X—) ,
static kink (2)
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sin[27(t — vz/c2)/T"]
g,1) =4 R = jg (=t arctan

coshir(z — vt)/ox/ž)x'], T'
= T,y. moving breather (6)

Without going into detail we notice: These solutions behave as quasi-particles,
i.e., particles with inertia in reference to the lattice. The energy-momentum tensor

of these solutions allows an energy-momentum vector of a particle. The vacuum

of these particles is the lattice, whereas the particles themselves, if we take an idea

of Weizsicker [®], are nothing but shapes, this means here structural defects of the

ideal lattice, cf. [°].

2. NATURAL STANDARD LENGTHS AND CLOCKS

With the help of the kink solution (2) a natural standard length, e.g., L, = 7},
for measuring distances in the crystal can be defined (cf. [°], see Fig. 1).

Fig. 1. Definition of the natural standard length L, out of the kink solution
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On the other hand, the solution (5) supplies us with a period of oscillation 75,

which allows us to define a natural clock, cf. [® 9], see Fig. 2. Then it is easy to

see from the solution (3) that our natural standard length L,, if it is moving with a

constant velocity v, is contracted with theLorentz factor (4), cf. Fig. 3. That is, we

measure a length L’ for the moving standard length according to the equation

L’—=L 1/
o

1 ’U2/C 2
0

On the other hand, according to (6) the oscillation period 7" of the moving clock,
if itmoves with a constant velocity v, is enlarged by theLorentz factor (4). The hand

of the clock counts the oscillations. Hence the moving clock goes behind according
to the equation (see Fig. 4)

IMI —v2/c2.

By Egs. (7) and (8) we have found for our crystal both fundamental

kinematic effects of special relativity, Lorentz contraction, as well as time dilation.

Nevertheless, this is not yet the special theory of relativity! First of all we

distinguished the particular inertial system 3,, the system in which our crystal rests.

We described the sine-Gordonequation in this reference system and derived the rest

from this equation. Thus we have only shown that when standard lengths and clocks

move against the inertial system %, then these standard lengths are shortened and

these clocks go behind.

Fig. 2. Periodical oscillation of the breather solution (5) for some ¢ values

(7

(8)
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Fig. 3. The contraction of the moving standard length.

Fig. 4. The moving clock goes behind.
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3. SYNCHRONIZATION

The crystalline solid defines our special reference system %, with well-defined

synchronized clocks (e.g., on the basis of the isotropic velocity ¢, of the sine-

Gordon equation). Let us consider the moving standard lengths L' (Fig. 3) and the

moving clocks U, with the oscillation period 7" (Fig. 4) as the moving reference

system Y. Notice, however, that we do not have a well-known velocity c|, for

synchronizing clocks in ¥'. Hence, we are not at all able to describe physical laws

with respect to ¥’. To overcome this deficit, let us define the following elementary
principle of relativity for synchronizing clocks in X':

If an observer in ¥, measures the velocity v for the system ¥, then the moving
observer in ¥ has to synchronize his clocks in such a way that he measures the

velocity —vfor X,
Assume that enough “identical” standard lengths and clocks are distributed in

¥, as well as in ¥'. Notice that distances in ¥’ can be measured with the help
of these standard lengths so that the coordinate z' of any event, which has the

coordinates (z, t) in X, is well defined. Theproblem is the time coordinate ¢’ ofthat

event in X', To fix this ¢/, we synchronize the clocks in ¥ according to the above

principle. To this end we examine a measuring section of arbitrary length, which is

at rest in ¥/, say arod AX. The coordinates of its end points are z7, =’ in ¥’ and

xl, x for a fixed time ¢ in X,. Then we find

AX = Azl = AzL} with Az =5 -2}, Ar=z-z1

and, according to (7),

A! =
— AÄE 10
A -v2/2'

Consider the usual initial condition for the coordinate systems of ¥, and ¥/, i.e.,
there is the event O with

O: (x,t)=(z,t)=(o,o).

Assume that the left-hand end point of the rod is positioned at the coordinate

origin of ¥’ (Fig. 5), which moves with a velocity v in X, so that for an arbitrary
time ¢ in X5,

tl=vt, xl=o.

For Egs. (9)—(12) we can then write

e
vl

1 - v2/c2

There are moving clocks U? and U;f at the left, resp. right-hand, end points of

the rod. Consider the event A, where the right-hand end point of the rod has the

(12)

(13)

(9

(10)

(11)
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coordinate z = oin X,. Then the left-hand end point has the coordinate z; = —Az,
see Fig. 5. We suppose the velocity v = Az /(—t4) for the rod and the clocks Uy
and U,;. Hence, the hand of the clock U, at the coordinate origin ofX, for the event

A points at t 4 = —Az/v,

Mook (:1:20, tAZfl)v

On the other hand, at the event A the observer in X’ measures the position Az’

for the clock U, in X,. This clock arrives at z' = 0 for 77 = 0. He measures

the velocity v' = (—Axz)/(—t/4) for the clock U,. According to our elementary
principle, we demand v' = —wv. Hence, the observer in ¥’ measures the velocity
—uv for the clock U, in ¥, if the hand of the clock U, for the event A points at

t)y = —Axz'/v, see Fig. 5. Hence, using (10), we get

» :A (a:' = Azr' =ol5840 10,
I—v2/cZ’

ta= TV 4 vy/1 —vZ/c2

After the time lapse At4 in X, with At 4 = Az/v all clocks in ¥, point at the

time ¢ = 0. The moving clocks in ¥’ go behind by the Lorentz factor y. Hence,

during the time lapse Aty4 in 3, the hand of the clock U, moves on by the amount

Aty = yAtga,ie., Aty = (Azy/1 —v?/c2)/v, and therefore it points at a time

y =t+At

—Az Vl-—v2/c2 A ' s .=b+AI—— —A s s (-14+1—v*/c5).B vy/1 —vZ/c2
5

v v/1 — v2/c2

Fig. 5. The synchronization of the clocks U? and U,; at the event A according to the elementary
principle of relativity. .

(14)

(15)
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According to (9) and (12) we have for ¢ = 0 simply Az = z. Hence, from our

synchronization procedure we find: Ifa static clock at the position z in X, indicates

t = 0 (say the event B), the hand of the corresponding moving clock points to

tp = t'(z,o) with (see Fig. 6)

tl(z,O) = I—.’r’u/c2V vž;cš ;

4. LORENTZ TRANSFORMATION

Equation (16) describes the hand settings ¢'(z, 0) of the moving clocks in X,
which are observed in 3, at the time ¢ = 0 and the position . We know how these

clocks run. They go behind by the Lorentz factor (4). Therefore, if they arrive at

the position z + vt after the time ¢, theirhands have moved on by the amount y - £,
1.e.,

22 t — (x + vt)v/c;24TRO/ W 1-v2/c2 = r———A.t'(z +vtt) = I_v/60+t,/ /c 2 /2
Here z and t are arbitrary numbers. Hence, if we rewrite Eq. (13), we get as a

whole

PB =

x— vt

,
—

A - v2/e2
20 Lorentz transformation

Pat =

t— va/c 5
|

A — v2/e2

Fig. 6. The synchronization of the moving clocks for the time ¢ = 0 in X,.

(16)

(17)
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5. CONCLUSIONS

If we measure all distances and times in the crystal in termsof kink lengths and

breather oscillations, the kinematics of special relativity arises, based on the limiting

velocity ¢, of the sine-Gordon equation. From this an immediate consequence

follows: If the signal velocity of the sine-Gordon equation is measured from an

arbitrary, uniformly moving system ', we get one and the same numerical value

co. All “moving systems” become equivalent to 3,. It is no longer possible to

mark out this particular system ¥,. The lattice, the carrier of all kinks and breathers

and waves, etc., has “disappeared”. The continuum approximation of the lattice

becomes a mechanical model of special relativity. From this point of view modemn

tests of special relativity would no longer look for a supposedly ether drift (e.g., see

[107) but for a minimal length.
Let us additionally note that it is possible to formulate the equations for

incompatible elastic strain created by arbitrary dislocations in a crystal as exact

relativistic field equations. This incompatible strain of dislocations becomes a

space-time Lorentz tensor. In particular, moving with a constant velocity through
the crystal, the incompatible strain field of a dislocation can be calculated with the

help of a Lorentz transformation from the static deformation field, cf. Giinther

[6: 11]. This case is highly analogous to the electromagnetic one.

Going back to H. Poincaré’s belief: According to our approach it is really

possible to start with the contraction hypothesis with respect to a particular reference

frame X, as an independent axiom in order to derive special relativity. To this

end we have additionally assumed time dilation with respect to XJ,, as well as our

elementary principle of relativity. A. Einstein’s universal constancy of the signal

velocity then comes out as a result.
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SIGNAALILEVI JA SISEMÕÕTMISED KRISTALSETES TAHKISTES

Helmut GUNTHER

Kristalses tahkises leviva signaali kirjeldamiseks on kasutatud siinus-Gordoni

vorrandi solitonlahendeid, mille abil on defineeritud pikkuse ja aja
skaala. Liikuvate koordinaatsiisteemide abil on selgitatud Lorentzi siimmeetriaid

tahkistes jaesitatud teoreetilised kaalutlused erirelatiivsusteooria kontseptsioonide
selgitamiseks mehaanikas.


	b10720984-1997-1-2 no. 1-2 01.01.1997
	PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES EESTI TEADUSTE AKADEEMIA TOIMETISED
	PHYSICS MATHEMATICS FÜÜSIKA MATEMAATIKA
	CONTENTS
	EDITORIAL
	CONTINUOUS CELLULAR AUTOMATA FOR SIMULATION OF THERMOELASTICITY
	Fig. 1. Elastic wave propagation across a solid layer: a, homogeneous; b, heterogeneous
	Fig. 2. Thermoelastic wave propagation across a solid layer: a, wave profiles; b, temperature evolution.
	PIDEVAD RAKUAUTOMAADID TERMOELASTSUSES

	INTERACTION OF MOVING SOLITONS IN A DISPERSIVE MEDIUM AND REGIMES OF THEIR RADIATIONLESS MOTION
	SOLITONIDE INTERAKTSIOON DISPERGEERUVAS KESKKONNAS JA NENDE RADIATSIOONIVABAD LIIKUMISREŽIIMID

	CONFIGURATIONAL FORCES INDUCED BY FINITE-ELEMENT DISCRETIZATION
	Fig. 1. Eshelby’s concept of a force acting on a defect
	Fig. 2. Placements of a triangular finite element
	Fig. 3. Finite elements with fixed and floating nodes
	LÕPLIKE ELEMENTIDE DISKREETSUSEST PÕHJUSTATUD KUJUJÕUDUDEST

	GROWTH AND DECAY OF WAVES IN MICROSTRUCTURED SOLIDS
	LAINETE VÕIMENDUMINE JA SUMBUMINE MIKROSTRUKTUURIGA MATERJALIDES

	NONLINEAR WAVE PHENOMENA AND NONLOCALITY
	Characteristics of main models
	3. DISCUSSION
	MITTELINEAARNE LAINELEVI JA MITTELOKAALSUS


	PROPAGATION CRITERION FOR PHASETRANSITION FRONTS IN THERMOELASTIC FERROMAGNETS
	FAASIÜLEMINEKU FRONTIDE LEVIKU KRITEERIUM TERMOELASTSETES FERROMAGNETITES

	SIGNAL PROPAGATION AND INTERNAL MEASUREMENT IN CRYSTALLINE SOLIDS
	Fig. 1. Definition of the natural standard length L, out of the kink solution
	Fig. 2. Periodical oscillation of the breather solution (5) for some ¢ values
	Fig. 3. The contraction of the moving standard length.
	Fig. 4. The moving clock goes behind.
	Fig. 5. The synchronization of the clocks U? and U,; at the event A according to the elementary principle of relativity. .
	Fig. 6. The synchronization of the moving clocks for the time ¢ = 0 in X,.
	SIGNAALI LEVI JA SISEMÕÕTMISED KRISTALSETES TAHKISTES

	ON THE USE OF LANGEVIN EQUATIONS IN DISLOCATION PATTERNING AND DEFORMATION INHOMOGENEITIES
	Fig. 1. Illustration of the correlation length £ of mobile dislocations (L and T signs) and of the characteristic wavelength A of an emerging pattern of sessile dislocations (_L and T).
	Fig. 2. Comparison of the length scales involved in chemical patterning (e.g., the spiral waves associated with the Belousov—Zhabotinski reaction) and dislocation patterning (e.g., the persistent slip band and matrix structures occurring during cyclic plastic deformation). In the latter case the mesoscopic scale where fluctuations show up is important.
	Fig. 3. The variance of the plastic strains of macroscopic specimen segments as a function of the total plastic strain, demonstrating the diffusion-like behaviour of plastic deformation by single glide (Eq. (11)); experimental data for Cu deformed at room temperature, after Diehl [l7].
	Fig. 4. Probability distributions of the total dislocation density pertinent to the formation of dislocation cell structures (see text).
	Fig. 5. Probability distributions of the dipole dislocation density pertinent to the formation of persistent slip band structures (a) and matrix structures (b); for details see text.
	Fig. 6. Phase diagram of fatigue dislocation patterning in dependence of the noise intensity o> and the dipole generation rate k. Above the cusp-like phase boundary aš , dislocation patterning occurs, since distribution functions are bimodal.
	LANGEVINI VORRANDITE KASUTAMINE DISLOKATSIOONI JAOTUSE JA DEFORMATSIOONI MITTEHOMOGEENSUSE KIRJELDAMISEKS

	NONLINEAR DUALITY BETWEEN ELASTIC WAVES AND QUASI-PARTICLES IN MICROSTRUCTURED SOLIDS
	Fig. 1. Schematic of (P, V=c) relationship for remarkable systems: a, NLS (Newtonian point mechanics); b, SG (Lorentzian—Einsteinian point mechanics); ¢, GZ (complex point mechanics); d, 6GBO equation (“rocket”-like point mechanics).
	Fig. 2. Mass, momentum, and energy for Kawahara solitons for positive fourth-order dispersion B = +1 (symbols: numerical evaluation; lines: best-fit approximation).
	Fig. 3. Head-on collision of two Kawahara solitons with V=o.B (soliton from the left) and V = -0.7 (soliton from the right).
	ELASTSETE LAINETE JA KVAASIOSAKESTE MITTELINEAARNE DUAALSUS MIKROSTRUKTUURIGA MATERJALIDES

	NONLINEAR SURFACE AND WEDGE ACOUSTIC WAVES IN THE PRESENCE OF WEAK DISPERSION
	Fig. 1. Surface elevation profile (solid curve) and displacement component parallel to the surface (dashed curve) for stationary nonlinear Rayleigh waves in the presence of weak dispersion due to a thin film. (o = qovr/(vr + Av)).
	Fig. 2. Geometry considered for the propagation of flexural waves along the tip of a slender wedge [23].
	Fig. 3. The quantities K (j) (open dots) and K'r(s)/10 (full dots), defined in the text, to leading order in © as function of the branch index j of wedge acoustic waves (A = p).
	Fig. 4. The functions F'(€, €) and F'(l, £) determined numerically for A = p.
	MITTELINEAARSED AKUSTILISED PINNALAINED JA KIILULAINED NÕRGA DISPERSIOONI KORRAL

	ALIGNMENT TENSOR DYNAMICS INDUCED BY THE MESOSCOPIC BALANCE OF THE ORIENTATION DISTRIBUTION FUNCTION
	ORIENTATSIOONI JAOTUSFUNKTSIOONI MESOSKOOPILISEST TASAKAALUST MÕJUTATUD REASTUSTENSORI DÜNAAMIKA

	SOLITONS IN A PERTURBED KORTEWEG-de VRIES SYSTEM
	Fig. 1. Regions, where different solution types are realized: a, (vl, v2)-plane; b, (a, p)-plane. Different hatch types X, /, and \ correspond to trivial solutions u(z,t) = 0, u(z,t) = vy, and u(z,t) = v 2, respectively.
	Fig. 2. Typical example of a stationary solution with one soliton (case a = 65 in Fig. 1)
	Fig. 3. Example of a dark soliton solution (case o = 128 in Fig. 1b)
	Fig. 4. Example of a double soliton solution (case & = 132 in Fig. 1b)
	Fig. 5. Example of a single soliton solution (case @ = 140 in Fig. 15). Notice how smaller solitons are suppressed (see also the next figure).
	Fig. 6. A single soliton solution (case a = 205 in Fig. 1b)
	Untitled
	Fig. 7. A double soliton solution (case o = 208 in Fig. 1b) Fig. 8. A negative soliton solution (case & = 210 in Fig. 1b).
	Fig. 9. Example of a cnoidal type soliton solution (case a = 209, p = 0.65 in Fig. 1b)
	SOLITONID HÄIRITUSEGA KORTEWEGI—de VRIESI SÜSTEEMIS

	EFFECTS OF NOISE ON LOCALIZED EXCITATIONS IN THE DISCRETE NONLINEAR SCHRODINGER SYSTEM
	Fig. 1. Evolution of an initially single-sited localized excitation. Parameter values are y = 10, 7 = 2, and D = 0.05.
	Fig. 2. Typical evolution of the initial-site probability for different values of 7, i, and D. In (a) we have n = 0, D = 0.05, and from bottom to top v = 5, 10, 15, and 20; in (b) y = 5, D = 0.05, and from bottom to topn = 0,1, 5, and 10; in (¢) ¥ = 5,7 = 1.0, and D = 0.005, 0.025, and 0.05 from top to bottom. The particular realization of the noise is the same in all cases.
	Fig. 3. Quantitative dependence of the decay rate, k, of the breather as a function of (a) noise strength D, (b) nonlinearity parameter -y, and (¢) nonlinear damping parameter 7). In (a)n = 0.1 for both curves and in (c) D = 0.05 for both curves; other parameter values are as indicated in the figures.
	MÜRAEFEKTID LOKAALSELT HÄIRITUD DISKREETSES MITTELINEAARSES SCHRODINGERI SÜSTEEMIS

	SOLITONS IN SYSTEMS WITH A QUARTIC POTENTIAL AND HIGHER-ORDER DISPERSION
	Fig. 1. Regions in the d; —b, plane, where different solution types (separated by bold lines) and subtypes (separated by dotted lines) are realized: type i — train of n solitons (i, — the number of solitons in the train is n + 1); type ü — multisoliton solution (ii,, n=1,...,4 — group of n + 1 solitons, iis — group of more than five solitons); type iii — train of n negative solitons (iii, — the number of negative solitons in the train is n + 1); type iv — chaotic solution. X-marks correspond to d, —b, pairs where the numerical integration is carried out.
	Fig. 2. Solution for d, = 2.2 and b,=2.4 (train of n solitons): a, time-slice plot; b, waveprofile maxima against the time ¢ (I, 2, 3 correspond to the first, second, and third solitons); c, time dependence of spectral amplitudes (/—4 correspond to SA|—SA,).
	Fig. 3. Solution for d;, = 0.6 and b, = 1.6 (multisoliton solution): a, time-slice plot; b, waveprofile maxima against the time ¢ (/ corresponds to the highest and 3 to the lowest soliton in the group); ¢, time dependence of spectral amplitudes (/-3 correspond to SA;—SAS); d, time dependence of the cumulative spectrum (/-9 correspond to SC,—SCy).
	Fig. 4. Solution ford, = 1.0 and b; = 3.2 (train of n negative solitons): a, time-slice plot (profiles -u(x,t) are shown); b, time dependence of the cumulative spectrum (/-7 correspond to SC,—SC,).
	Fig. 5. Solution for d; = 2.0 and b, = 3.4 (chaotic solution): a, time-slice plot; b, time dependence of spectral amplitudes (/-8 correspond to SA|—SAg).
	SOLITONID NELJANDAT JÄRKU POTENTSIAALIGA JA KÕRGEMAT JÄRKU DISPERSIOONIGA KESKKONDADES

	THEORETICAL AND PRACTICAL PROBLEMS OF HYGROTHERMALLY LOADED FIBRE REINFORCED COMPOSITES
	Fig. 1. Most frequent coupled fields of mechanics.
	Fig. 2. Dimensionless longitudinal coefficient of thermal expansion of a [6/-6 ], laminate as a function of ply angle. Ply properties: E|/Ey; = 10, v 15 =0.25, o /0 75 = 0.1; G5/E5, = 0.05, 0.5, and 4 for curves 1,2, and 3, respectively.
	Fig. 3. Longitudinal coefficient of thermal expansion (CTE) as a function of ply angle for three [6/-6 ], laminates consisting of different commercial ply materials: Kevlar-epoxy (solid line), graphite-epoxy (dashed line), and E-glass-epoxy (dash-dot line).
	Fig. 4. Longitudinal coefficient of moisture expansion (CME) as a function of ply angle for three [6/-6 ], laminates consisting of different ply materials: Kevlar-epoxy (solid line), graphite-epoxy (dashed line), and E-glass-epoxy (dash-dot line).
	Fig. 5. Longitudinal coefficient of thermal/moisture expansion (CT/ME) as a function of ply angle for a [6/-0 ], graphite-epoxy laminate.
	Number of independent coefficients
	HÜGROTERMILISELT KOORMATUD KIUDARMATUURIGA KOMPOSIITMATERJALIDEGA SEOTUD TEOREETILISI JA PRAKTILISI PROBLEEME

	MODULATIONAL INSTABILITY OF TWO COUNTER-PROPAGATING WAVES IN A THIN PLATE RESTING ON ELASTIC FOUNDATION
	Fig. 1. Sketch of the elastic structure and coordinate system.
	Fig. 2. Linear frequency spectrum: I, N =-0.425; 2, N =0; 3, N = 0.425; 4, N = 0.85; 5, N = 1.0.
	Fig. 3. Region of modulational instability
	Untitled
	Fig. 4. Time evolution of the nonlinear standing wave: a, initial state; b, birth of modulational instabilities (t = 75); ¢, formation of localized structures (¢ = 1200).
	KAHE VASTASSUUNAS LEVIVA LAINE MODULATSIOONILINE EBASTABIILSUS ELASTSEL ALUSEL LEBAVAS ÕHUKESES PLAADIS
	ANNUAL AWARD OF THE ESTONIAN PHYSICAL SOCIETY EESTI FÜÜSIKA SELTSI AASTAPREEMIA
	Corrigendum


	MATRIX MAPS INTO THE SPACE OF STATISTICALLY CONVERGENT BOUNDED SEQUENCES
	INSTRUCTIONS TO AUTHORS
	Untitled
	Untitled



	Illustrations
	Fig. 1. Elastic wave propagation across a solid layer: a, homogeneous; b, heterogeneous
	Fig. 2. Thermoelastic wave propagation across a solid layer: a, wave profiles; b, temperature evolution.
	Fig. 1. Eshelby’s concept of a force acting on a defect
	Fig. 2. Placements of a triangular finite element
	Fig. 3. Finite elements with fixed and floating nodes
	Fig. 1. Definition of the natural standard length L, out of the kink solution
	Fig. 2. Periodical oscillation of the breather solution (5) for some ¢ values
	Fig. 3. The contraction of the moving standard length.
	Fig. 4. The moving clock goes behind.
	Fig. 5. The synchronization of the clocks U? and U,; at the event A according to the elementary principle of relativity. .
	Fig. 6. The synchronization of the moving clocks for the time ¢ = 0 in X,.
	Fig. 1. Illustration of the correlation length £ of mobile dislocations (L and T signs) and of the characteristic wavelength A of an emerging pattern of sessile dislocations (_L and T).
	Fig. 2. Comparison of the length scales involved in chemical patterning (e.g., the spiral waves associated with the Belousov—Zhabotinski reaction) and dislocation patterning (e.g., the persistent slip band and matrix structures occurring during cyclic plastic deformation). In the latter case the mesoscopic scale where fluctuations show up is important.
	Fig. 3. The variance of the plastic strains of macroscopic specimen segments as a function of the total plastic strain, demonstrating the diffusion-like behaviour of plastic deformation by single glide (Eq. (11)); experimental data for Cu deformed at room temperature, after Diehl [l7].
	Fig. 4. Probability distributions of the total dislocation density pertinent to the formation of dislocation cell structures (see text).
	Fig. 5. Probability distributions of the dipole dislocation density pertinent to the formation of persistent slip band structures (a) and matrix structures (b); for details see text.
	Fig. 6. Phase diagram of fatigue dislocation patterning in dependence of the noise intensity o> and the dipole generation rate k. Above the cusp-like phase boundary aš , dislocation patterning occurs, since distribution functions are bimodal.
	Fig. 1. Schematic of (P, V=c) relationship for remarkable systems: a, NLS (Newtonian point mechanics); b, SG (Lorentzian—Einsteinian point mechanics); ¢, GZ (complex point mechanics); d, 6GBO equation (“rocket”-like point mechanics).
	Fig. 2. Mass, momentum, and energy for Kawahara solitons for positive fourth-order dispersion B = +1 (symbols: numerical evaluation; lines: best-fit approximation).
	Fig. 3. Head-on collision of two Kawahara solitons with V=o.B (soliton from the left) and V = -0.7 (soliton from the right).
	Fig. 1. Surface elevation profile (solid curve) and displacement component parallel to the surface (dashed curve) for stationary nonlinear Rayleigh waves in the presence of weak dispersion due to a thin film. (o = qovr/(vr + Av)).
	Fig. 2. Geometry considered for the propagation of flexural waves along the tip of a slender wedge [23].
	Fig. 3. The quantities K (j) (open dots) and K'r(s)/10 (full dots), defined in the text, to leading order in © as function of the branch index j of wedge acoustic waves (A = p).
	Fig. 4. The functions F'(€, €) and F'(l, £) determined numerically for A = p.
	Fig. 1. Regions, where different solution types are realized: a, (vl, v2)-plane; b, (a, p)-plane. Different hatch types X, /, and \ correspond to trivial solutions u(z,t) = 0, u(z,t) = vy, and u(z,t) = v 2, respectively.
	Fig. 2. Typical example of a stationary solution with one soliton (case a = 65 in Fig. 1)
	Fig. 3. Example of a dark soliton solution (case o = 128 in Fig. 1b)
	Fig. 4. Example of a double soliton solution (case & = 132 in Fig. 1b)
	Fig. 5. Example of a single soliton solution (case @ = 140 in Fig. 15). Notice how smaller solitons are suppressed (see also the next figure).
	Fig. 6. A single soliton solution (case a = 205 in Fig. 1b)
	Untitled
	Fig. 7. A double soliton solution (case o = 208 in Fig. 1b) Fig. 8. A negative soliton solution (case & = 210 in Fig. 1b).
	Fig. 9. Example of a cnoidal type soliton solution (case a = 209, p = 0.65 in Fig. 1b)
	Fig. 1. Evolution of an initially single-sited localized excitation. Parameter values are y = 10, 7 = 2, and D = 0.05.
	Fig. 2. Typical evolution of the initial-site probability for different values of 7, i, and D. In (a) we have n = 0, D = 0.05, and from bottom to top v = 5, 10, 15, and 20; in (b) y = 5, D = 0.05, and from bottom to topn = 0,1, 5, and 10; in (¢) ¥ = 5,7 = 1.0, and D = 0.005, 0.025, and 0.05 from top to bottom. The particular realization of the noise is the same in all cases.
	Fig. 3. Quantitative dependence of the decay rate, k, of the breather as a function of (a) noise strength D, (b) nonlinearity parameter -y, and (¢) nonlinear damping parameter 7). In (a)n = 0.1 for both curves and in (c) D = 0.05 for both curves; other parameter values are as indicated in the figures.
	Fig. 1. Regions in the d; —b, plane, where different solution types (separated by bold lines) and subtypes (separated by dotted lines) are realized: type i — train of n solitons (i, — the number of solitons in the train is n + 1); type ü — multisoliton solution (ii,, n=1,...,4 — group of n + 1 solitons, iis — group of more than five solitons); type iii — train of n negative solitons (iii, — the number of negative solitons in the train is n + 1); type iv — chaotic solution. X-marks correspond to d, —b, pairs where the numerical integration is carried out.
	Fig. 2. Solution for d, = 2.2 and b,=2.4 (train of n solitons): a, time-slice plot; b, waveprofile maxima against the time ¢ (I, 2, 3 correspond to the first, second, and third solitons); c, time dependence of spectral amplitudes (/—4 correspond to SA|—SA,).
	Fig. 3. Solution for d;, = 0.6 and b, = 1.6 (multisoliton solution): a, time-slice plot; b, waveprofile maxima against the time ¢ (/ corresponds to the highest and 3 to the lowest soliton in the group); ¢, time dependence of spectral amplitudes (/-3 correspond to SA;—SAS); d, time dependence of the cumulative spectrum (/-9 correspond to SC,—SCy).
	Fig. 4. Solution ford, = 1.0 and b; = 3.2 (train of n negative solitons): a, time-slice plot (profiles -u(x,t) are shown); b, time dependence of the cumulative spectrum (/-7 correspond to SC,—SC,).
	Fig. 5. Solution for d; = 2.0 and b, = 3.4 (chaotic solution): a, time-slice plot; b, time dependence of spectral amplitudes (/-8 correspond to SA|—SAg).
	Fig. 1. Most frequent coupled fields of mechanics.
	Fig. 2. Dimensionless longitudinal coefficient of thermal expansion of a [6/-6 ], laminate as a function of ply angle. Ply properties: E|/Ey; = 10, v 15 =0.25, o /0 75 = 0.1; G5/E5, = 0.05, 0.5, and 4 for curves 1,2, and 3, respectively.
	Fig. 3. Longitudinal coefficient of thermal expansion (CTE) as a function of ply angle for three [6/-6 ], laminates consisting of different commercial ply materials: Kevlar-epoxy (solid line), graphite-epoxy (dashed line), and E-glass-epoxy (dash-dot line).
	Fig. 4. Longitudinal coefficient of moisture expansion (CME) as a function of ply angle for three [6/-6 ], laminates consisting of different ply materials: Kevlar-epoxy (solid line), graphite-epoxy (dashed line), and E-glass-epoxy (dash-dot line).
	Fig. 5. Longitudinal coefficient of thermal/moisture expansion (CT/ME) as a function of ply angle for a [6/-0 ], graphite-epoxy laminate.
	Fig. 1. Sketch of the elastic structure and coordinate system.
	Fig. 2. Linear frequency spectrum: I, N =-0.425; 2, N =0; 3, N = 0.425; 4, N = 0.85; 5, N = 1.0.
	Fig. 3. Region of modulational instability
	Untitled
	Fig. 4. Time evolution of the nonlinear standing wave: a, initial state; b, birth of modulational instabilities (t = 75); ¢, formation of localized structures (¢ = 1200).

	Tables
	Characteristics of main models
	Number of independent coefficients
	Untitled
	Untitled




