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Abstract. In the paper a generalization of cellular automata algorithm is proposed to simulate

some thermomechanical processes in a continuum. The essential feature of the method

is the absence of any partial differential equations commonly used for the description of

thermomechanical processes. Therefore, the method is rather a tool for the directsimulation ofa

process than for the solution ofpartial differentialequations. One-dimensional thermoelasticity
in solids is considered as an example. Calculations show that predictions of the proposed model

fully coincide with those of the classical theory in the case of homogeneous solids.
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1. INTRODUCTION

A simple approach is proposed for thermomechanical simulations, which, on

the one hand, is based on cellular automata technique and, on the other hand, on

thermodynamic laws. Thebasic ideas are demonstrated on the example of the one-

dimensional thermoelasticity. This is a well-knowncoupled problem in the simplest
form.

It is widely known that a cellular automaton is an array of identically
programmed automata, or “cells”, which interactwith one another [']. An essential
feature of a cellular automaton is its state. As a rule, the state of a cell is considered

as a set of numbers or properties. The other essential feature is the program, which

is the set of rules that definehow the state of a cell changes inresponse to its current

state and that of its neighbours.
However, from the thermodynamic point of view, we cannot arbitrarily change

the states of elements of a continuum, because these changes should satisfy
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the first and the second law of thermodynamics. Thermodynamic concepts
are usually introduced into mechanical problems by means of the hypothesis
of local equilibrium [*3]. Such a hypothesis is needed to assign the entropy
and thermodynamic temperature of an accompanying equilibrium state to a non-

equilibrium state of an element of a continuum. However, some properties of the

thermodynamic parameters expose themselves only in the Gibbsian state space. In

particular, each thermodynamic parameter should have the property to be a function

of state. Such a feature is often lost by the pure mechanical description. Namely, as

shown by Chen and Eu [*], there is no possibility that entropy willbecome a function

of state in the physical space. Therefore, it seems more convenient to have for

practical calculations a direct description of the coupled thermodynamic behaviour

for the finiteamount of interacting elements or cells. The difficulty here, as noted by
Truesdelland Bharatha [°], is that “the formal structure of classical thermodynamics
describes the effects of changes undergone by some single body. While it allows

these effects for one body to be compared with corresponding effects for another

body, it does not represent the effects associated with two bodies simultaneously or

in any way conjointly.”
In this paper an attempt is made to overcome these difficulties and to offer a

pure thermodynamic way to describe the simultaneous evolution for a finite count

of elements. In the case of a homogeneous medium, such a description should

be independent of size, shape, and amount of elements chosen. Therefore, the

problem of thermodynamic descriptivity arises: to determine the conditions of the

consistency between thermodynamic descriptions for the same medium by means of

different partitions. This problem is briefly considered in the 2nd part of the paper.
The conditions of thermodynamic descriptivity are deduced from the property of

internal energy to be a function of state.

An algorithm for the calculation of thermoelastic processes in a continuum is

elaborated on the basis of such a method of description. It is shortly described

in the 3rd part of the paper, where the one-dimensional thermoelasticity problem
1s considered as an example. Results of calculations for thermoelastic wave

propagation are presented as well.

Some conclusions concerning the energy redistribution due to interaction are

given in the 4th part.

2. THERMODYNAMIC BACKGROUND

We consider a one-dimensional thermoelasticity problem, formulated

as follows: What is the character of distributions of stress and temperature in the

layer placed between parallel surfaces, each of which has its own specified course

of the variation of temperature and stress. As will be shown below, the method of

calculation is based on the interaction between neighbouring elements or cells.
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In thermodynamic terms, the problem of the interaction between neighbouring
elements can be expressed as follows: What can we tell about the state of system 2,

placed between systems 1 and 3, if states of systems 1 and 3 are known?

To answer this question, we begin with a simpler thermodynamic situation. Let

us consider two interacting homogeneous thermodynamic systems 1 and 2, each of

which is characterized by the same equations of state. Let the states of systems
1 and 2 be specified. In addition, we consider the thermodynamic system 1-2,

containing both system 1 and system 2. The problem to solve is to determine the

values of parameters of the integral system remaining at the thermodynamic level

of description.
The most general way to characterize the system is to determine its internal

energy

dU2 = dUy + dUy — dErl-2, @)

where E;_» is the energy of interaction between subsystems 1 and 2, which is

considered as a function of state.

Owing to the additivity of energy, we can divide the interaction energy into two

parts which correspond to each subsystem and rewrite the expression for energy
variation in the form

dUyo = dU; + dUy + dEq + dFEs. (2)

The obtainedcondition of energy conservation is too general for direct applications,
even if the energies of interaction are specified. To have more convenient

conditions, we take the property of energy to be afunction of state into account. This

property allows us to compare the sum of total differentials of energy for subsystems
with an analogous total differential for the system as a whole, expressed by the

same variables 7', V, M, where T is temperature, V' is volume, M is mass. Such a

comparison leads to the conditions of thermodynamic descriptivity in the form [® 7]

(ÕUlz) — (Õ(UI + El)) — (Õ(Ug + Ez)) (3)
W2/ 7,mM o T,M Vs TM

This condition ensures the equivalence between the thermodynamic description
on the level of subsystems and that on the level of the integral system. The state

of the integral system is completely determined if the energies of interaction are

given. It is natural that the energy of interaction depends on the kind of the process

performed. We shall restrict ourselves to the one-dimensional thermoelasticity.

3. ONE-DIMENSIONAL THERMOELASTICITY

In the classical theory of thermoelasticity the governing laws determine stresses

by means of two elastic parameters ), u (or Young’s modulus F, and Poisson’s
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ratio, ) and linear expansion coefficient « (all these quantities are supposed to be

constant) [% 9]

035 = [Aekk — a 3 + 2u)(T — To)]ois + 2ueqj, (4)

where o;; and ¢;; are components of stress and strain tensors, respectively. In the

one-dimensional case, variations in only one direction, say, z, are considered, and

Hooke’s law obtains a simpler form

Ozz = ÄEzz — O(3A + 2) (T — Tp) + 2ue,,. (5)

The expression for free energy 1) per unit volume is commonly used as the

equation of state for thermoelastic media [® °]

A
pW = ueijeij +

7EkkEnn — a(3A + 2u) (T — To)Ekk — h(T). (6)

Here p is the density and A(7T') is a certain function depending only on the

temperature. The internal energy u per unit volume is more suitable for our

algorithm (in its one-dimensional form)

pu = p(y +sT)

=He + %Ešz + a(3A + 2u)ToEzz + TH(T) — h(T), (7)

where s is entropy per unit volume. It follows from relations (5) and (7) that

ou 1 A 0e[e <W)E„] ' 5

The last expression can be coupled with the derivatives contained in the

thermodynamic descriptivity conditions (3), while in the one-dimensional case

oU ou 1 / Ou('a“v)T,M - (ä)T = (@)T’ O)

where v 1s specific volume.

We start with the case of pure elasticity. This means that the influence of

temperature is neglected, i.e., T' = Ty = const. We divide the layerinto n sublayers
which represent one-dimensional cells. We identify the state of each cell with the

thermodynamic state of the corresponding sublayer.
Returning to the problem of interaction between three neighbouring elements,

we should apply the thermodynamic descriptivity conditions to systems 1 and 2, as

well as to systems 2 and 3, simultaneously

3612) (3621 ) (3632) (3623>nt (ov
/T
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where e;; is the interaction energy per unit mass for the system z with respect to the

system j.
Let, for definiteness, the elastic signal propagate in the direction from system 1

to system 2. This means, in particular, that o 7 # 09, while o 9 = 03 = 0. In the

purely elastic case the action of system 1 with respect to system 2 is the same as the

action of system 2 with respect to system 1, i.e.,

(52) =(52) an)
Ovy )1 ovy )1’

and, therefore, in the next time step the stress in system 2 becomes equal to the stress

in system 1 s s

o) — 6. (12)

Here superscripts denote the corresponding time step.
We apply this rule ofupdating cell’s states forthe layer excited by an impulse on

the boundary. We suppose that in the initial situation all sublayers were free from

stresses.

In Fig. 1a the propagation of an elastic pulse across a homogeneous copper

layer is represented. Since dissipation is absent, the initial form of the impulse
is conserved in full correspondence with the classical theory. In the case of

a heterogeneous layer, the first half of which is of copper and the second

one of aluminium, we obtain a partial reflection of the impulse if stresses and

displacements on the interface are equal (Fig. 1b).
In the case of thermoelasticity both stresses and temperatures are significant

ou ou aUzz(%)T—p(@)T—am—T< or )s„' (15)
The local thermodynamic descriptivity conditions include the elastic

0 0blg (Õ%) _ i o (5—%) , (14)
€1 €9

and the thermal part [® 7]

T (
If we apply these conditions as the rules of updating cell’s states by thermal

shock, when the temperature of one of the boundaries is impulsively shifted to a

fixed temperature 27}, then an elastic wave is generated and will propagate across

the layer. As we can see in Fig. 2a, the influence of temperature is significant only
in the neighbourhood of the heated boundary, since the corresponding temperature
distribution is far from equilibrium (Fig. 2b).
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Fig. 1. Elastic wave propagation across a solid layer: a, homogeneous; b, heterogeneous
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Fig. 2. Thermoelastic wave propagation across a solid layer: a, wave profiles; b, temperature
evolution.
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4. CONCLUSIONS

The proposed method is atool for the direct simulation of mechanical processes
rather than for the solution of partial differential equations. In this method, the

correspondence between points in the Gibbsian phase space and states of elements

in a continuum lis used. Therefore, the continuum elements are considered as cells

whose states are changed according to thermodynamic laws. The appropriate choice

is needed for the expression of the interaction energy in every particular case.

However, the simulation experience shows that this choice can have very simple
interpretation. In fact, the local variation of internal energy in each cell is expressed
in terms of corresponding energy variations in its neighbouring cells

dušC+l = o;_lduf_, + ai+lduf+l, (16)

where coefficients ;_1 and a;yl can vary in the range [—l, I]. In the case of pure

elasticity we have

Oi-1 1, Oi+rl = 0 Vi,

while in the case of heat conduction

1
OiISÜHT 5

Vi

Therefore, the local interaction between cells can be characterized by means of two

parameters, which should be chosen from physical considerations.
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PIDEVAD RAKUAUTOMAADID TERMOELASTSUSES

Arkadi BEREZOVSKI

On esitatud rakuautomaatide algoritmi iildistus pideva keskkonna termomehaa-

niliste protsesside modelleerimiseks. Tavalistemeetoditega vorreldes on kisitletava

meetodi oluliseks isedrasuseks loobumine diferentsiaalvorrandite kasutamisest

termomehaaniliste protsesside kirjeldamisel. Meetod on seega protsesside model-

leerimise vahend, aga mitte diferentsiaalvorrandite lahendusmeetod.

Rakendusniitena on vaadeldud tahke keha iihemddtmelist termoelastsust.

Homogeensete tahkete kehade puhul nditavad arvutused, et esitatud mudeli kohaselt

leitud prognoosid iihtivad klassikalise teooria tulemustega.
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