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Abstract. In standard finite-element analysis a fixed mesh is prescribed in the undeformed

body and the strain energy is considered as a function of nodal displacements. Since the strain

energy also depends inherently on the prescribed nodal coordinates of the mesh, any shift of

a node in the undeformed body will cause a change of strain energy in the deformed state.

This gives rise to the definition ofconfigurational forces acting on the nodes in the undeformed

body. The forces are represented in terms of the Eshelby stress tensor. The undeformed finite-

element mesh can be modified such as to make the inner configurational forces vanish. Only
the boundary nodes have to sustain configurational forces normal to the boundary, to preserve
the shape of the body.
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1. INTRODUCTION

The concept of a force acting on a geometrical singularity within an elastic

body has been introduced, decades ago, by Eshelby [!]. Configurational forces,
in general, are those forces which are exerted on any kind of imperfection such as

dislocations, disclinations, inclusions, voids, etc. by the surrounding continuum. In

the context of dynamics configurational forceshave been studied in the recent years

by Maugin [2].
The static deformation of an elastic solid is described, as in [®], by functions
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relating the coordinates z’ of the actual position of a material point to the

coordinates X of its position in the stress-free reference state. The strain-energy

density, per unit volume of the undeformed material, is a function

W = W(:Bi,[, XK)

depending on the deformation gradient z‘; = dz'/0X! and, in the case of an

inhomogeneous material, also directly on the material coordinates XK The

constitutive eguation (1.2) has to meet the reguirements of material frame

indifference and to reflect the symmetry properties of the material.

The first Piola—Kirchhoff stress tensor is obtained from the strain-energy density

by

T;! =
õ—W.
3:17’,[

It delivers the stress in the actual placement acting on a surface element specified
in the reference placement. A material region Bx marked off in the reference

placement is exposed in the actual placement to the total force

fi =/ T,7 dA;
OBx

by the surrounding material. This is a physical, or Newtonian, force as opposed to

the configurational force introduced below.

Eshelby’s original reasoning is sketched briefly as follows. Into a stress-free

elastic body an unspecified defect is inserted at some location inside a region Bx
(Fig. 1). Due to the defect the whole body undergoes a deformation, especially
the region Bx is deformed to 8,. The same procedure is repeated with an

identical replica of the body, in which the marked-off region is shifted by a small

vector —6X” such that the shifted region B still contains the defect. Now the

region B 3; is cut out from the deformed original body and replaced by B, from the

deformed replica. Since the deformed regions B, and 8., are not congruent any

more, appropriate self-equilibrating forces have to be applied on their boundaries

before they can be glued together. When the whole procedure is finished, the defect

has been shifted by the vector 40X/ relative to the undeformed body. Reckoning
up the energy change and expenditure of work during this hypothetical process, one

obtains a net change of total energy, as if one had to work against a force while

shifting the defect. This configurational force can be calculated from the Eshelby
stress tensor .

s]'] = WÕIJ — .'Bi,[ T%J

by integration around the boundary oBx containing the defect:

(1.2)

(1.3)

(1.4)

(1.5)
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Actually Eshelby’s original “energy-momentum” tensor differs from (1.5) by a

divergence-free term and leads to the same force (1.6). The formulation presented
here is more appropriate for finite deformations.

An explicit calculation of the configurational force (1.6) in closed form will not

be possible in most cases. A numerical approach, however, is quite convenient,
since all the ingredients of the Eshelby stress tensor (1.5) are provided by a finite-

element calculation. As a simple test example one can calculate the configurational
force exerted on a region that does not contain any defect. The finite-element

method will predict a nonzero force, in general, although it should vanish. This

effect will be analysed in the sequel.

2. FINITE ELEMENTS

The finite-element method approximates the deformation (1.1) by interpolation
or shape functions, which are specified within each of the elements by certain nodal

variables. More specifically, the deformation z* = z*(X7) is not attacked directly.
Instead, the coordinates X! and z* are considered as functions of a new set of

parameters £*. These canbe interpreted as the coordinates in a certain standard form

of the element. For instance, every triangular element is generated from a right-

angled isosceles prototype, in which all the necessary calculations are performed

(Fig. 2). This prototype is mapped to the reference placement by a transformation

Fig. 1. Eshelby’s concept of a force acting on a defect
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which depends on the coordinates X of the nodes Ain the reference placement.
Since the nodal coordinates ¢*A of the prototype must be mapped into the

prescribed nodal coordinates XA of the reference placement, the corresponding

shape functions Na (%) have to satisfy the condition

Na(E°B) = 6h.

Themap (2.1) does not describe an actual deformation of the elastic body. It serves

only to adjust shape and size of acertain finite element to fit into the chosen element

net. |
The same prototype is now mapped to the actual placement, thus representing

the deformed version of the element. The corresponding transformation is

o’ = 2*(£%) = 2™ n,(£%)

with 2@ denoting the coordinates of the nodes in theiractual position. In contrast to

the prescribed coordinates XTA the nodal coordinates z*? are unknown, in general,
with possible exception of some nodes fixed by supports. Again, the shape functions

na(E*) have to satisfy the characteristic condition

Fig. 2. Placements of a triangular finite element

(2.1)

(2.2)

(2.3)
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enforcing that the nodal coordinates ¢° of the prototype are passed to z*? by the

transformation (2.3).
Thenodes a need not coincide with the nodes A. For instance, if straight-edged

triangles are desired to cover the undeformed body, they can be generated from the

prototype by an affine transformation that is specified by three nodes per element.

The deformed element, on the other hand, may afford six nodes to allow for a

quadratic transformation of the prototype (Fig. 2).
The deformation (1.1) is realized by concatenation of the mapping (2.3) and

the inverse of (2.1). In order to obtain the deformation gradient, one needs the

derivatives

tia =tn X —

XxIA

,a a=X "Naq.

The deformation gradient itself is composed according to

AR aEr=—Tnl

where the first factor is directly available as (2.5); while the second factor £% 1 is

the inverse of (2.5),.
In ahomogeneous elastic material the strain-energy density W depends only on

the deformation gradient. The total strain energy is

dVz,&q)d(mz,aW= [II

where the integration is performed over the prototype region B¢ and

J = det(X'4)

denotes the Jacobian of the map (2.1). The strain energy of the elastic body is now

considered as a function II = IT(z*®) depending on the actual positions z*? of the

nodes. The derivative .

S
—

555
= fa

yields the external nodal forces. The finite-element computation has to solve the

system of equations (2.9) for the unknown nodal positions z*® when the external

nodal forces f;, are given. For nonlinear problems this can be done only by iteration.

3. PHYSICAL AND CONFIGURATIONALFORCES

The nodal forces f;, are physical orNewtonian forces exerted on discrete points
of the body. They are discrete approximations to the actual forces, which are

continuously distributed over the volumeand the boundary. But this does not detract

from their physical nature.

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)
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Now the strain energy II of the finite-element system does not only depend on

the nodal positions z* in the deformed state, but also on the coordinates X/A of the

nodes in the reference placement. Therefore, the strain energy shouldbe considered

as a function of both of them:

ja yIA
I = I(x7,X°°).

The dependence of IT on the coordinates X’A is left unnoticed in usual finite-

element treatments, since the undeformed finite-element mesh is regarded as fixed.

Taking into consideration the full dependence of the strain energy on z*@ and XA
admits two different forces

»

OI 01l

fza-g;;, -7:IA=BX—IA-

The forces f;, have already been introduced in (2.9) and identifiedas physical nodal

forces. The new forces Fra act on the nodes of the undeformed mesh. These

discrete configurational forces are not perceived by the body itself, but by the

agency prescribing the nodes in the undeformed body.
In order to obtain explicit expressions for the two kinds of forces (3.2), one has

just to trace the dependences of the strain energy (2.7) upon the two kinds of nodal

coordinates. The coordinates z*® of the actual nodal position enter via the factor

',, of the deformation gradient, which is the argument of the strain-energy density.
Using (1.3) and (2.5);, one obtains immediately

fa= | Tiniplav;.
Be

The nodal coordinates XA, occurring directly in (2.5), are hidden at two places
within the integral (2.7): Both the Jacobian J and the inverse derivative £ ; depend
indirectly on the coordinates XA, According to well-known formulas of tensor

analysis, we have

oJ OE®

m:JNA,I, ä—šc—ž—ž:.—é'aJNA,J-
Using these derivatives, the configurational nodal force can be expressed in terms

of the Eshelby stress tensor (1.5) by

dVz.JSNEIAFIA

Thus, the configurational nodal force is obtained from the Eshelby stress tensor in

the same way as the physical nodal force (3.3) is generated by the Piola—Kirchhoff

stress tensor.

The domain of integration B¢ in (3.3) and (3.5) represents a collection of

prototype elements, from which the finite-element mesh covering the whole body is

(3.1

(3.2)

(3:3)

(3.4)

(3.5)
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generated. But only those elements contribute to the integral, which are adjacent to

the considered node, since otherwise the derivatives of the shape functions vanish.

Therefore it suffices to integrate over the elements surrounding the node.

For the body as a whole the physical nodal forces are due to the external loads.

If these are applied only on the boundary, the innernodes are free ofphysical nodal

forces. Configurational nodal forces, however, are present at all nodes, in general.
This suggests the question, whether a finite-element net can be tailored in such a

way that the configurational forces vanish. To preserve the shape of the body the

boundary nodes should be kept fixed or at least confined to the fixed boundary. But

the inner nodes could be released to take a position free of configurational forces.

Figure 3 shows a simple problem of plane elasticity, solved by triangular finite

elements. In the left picture a fixed mesh is prescribed. Then the nodes are allowed

to float into new positions, shown in the right picture, where the configurational
forces are (nearly) zero. The boundary nodes still perceive configurational forces

which are normal to the boundary and prevent the body from shrinking.

One could expect that the floating nodes improve the result, since the number of

degrees of freedom is enhanced. In fact, the total energy is reduced and, therefore,
closer to the minimum that would be attained by the exact solution. However, the

new mesh contains several bad-shaped elements, which make it worse than the

original mesh from the numerical point of view. As long as the topological structure

of the mesh iskept fixed, the variation ofnodes will not necessarily improve a finite-

element solution.

4. CONCLUSIONS

Discrete configurational forces are always anchored at inherent irregularities
within an otherwise homogeneous continuum. They are not restricted to real defects

within a material, such as inclusions, voids, cracks, dislocations, and disclinations,

Fig. 3. Finite elements with fixed and floating nodes
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but may also be tied to artificial substructures that are introduced by numerical

discretization. The spurious configurational forces induced by a finite-element net

have been analysed in detail.

The strain energy of an elastic body, in its finite-element approximation, is

regarded as a function of the nodal coordinates in both the deformed and the

undeformed mesh. The corresponding derivatives of this strain-energy function

yield two different types of nodal forces, the physical and the configurational forces.

The latter are not really perceived by the material. Rather they indicate the change
of energy that is generated by the shift of a node in the undeformed mesh. The

configurational nodal forces are expressed in terms of the Eshelby stress tensor.

The undeformed mesh can be modified such as to make the configurational
forces at internal nodes vanish. Such a mesh stands out for minimum total

energy when compared with other meshes of the same topological connectivity.
A substantial improvement, however, should admit also changes of the topology,
which would be accompanied by “quantum jumps” of the energy. This lies outside

the scope of configurational forces.
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LÕPLIKE ELEMENTIDE DISKREETSUSEST PÕHJUSTATUD
KUJUJÕUDUDEST

Manfred BRAUN

Standardse 10plike elementide meetodi kasutamisel seotakse elemendid

deformeerumatakehaga ja vaba energia on sdlmede siirete funktsioon. Elementide

valiku muutumisel teiseneb ka vaba energia, mis voib olla viljendatud kujujoudude
abil. Kéesolevas artiklis on esitatud kujujoud Eshelby pingetensori abil jandidatud,
missugune peab olema sdolmede valik, et sisesdlmedele mojuvad kujujoud oleksid

nullid.
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