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Abstract. Soliton interactions in a strongly dispersive one-dimensional medium are discussed.

It is shown that the interactions between two moving solitons in the dispersive medium

can change their character from repulsive to attractive depending on contraction properties
of the solitons. As a result, the formation of the soliton complex which can move without

radiation becomes possible. This universal phenomenon is demonstrated in the framework of

dispersive variants of the sine-Gordon and double sine-Gordon models described by equations
with additional fourth derivatives. The bound soliton states are exact travelling solutions of

the equations. Conditions of the formation of the soliton complex are specified and its internal

dynamics is studied in terms of collective variables.

Key words: soliton, dispersive medium, soliton interaction, radiationless motion.

1. INTRODUCTION

The first step in describing the microstructured solids consists usually in taking
spacial dispersion of the medium into account. A natural cause of the dispersion is

a discrete structure of real crystals. Nonlinear wave dynamics in discrete models

of solids reveals many specific features known as the discreteness effects. Some

of them are consequences of the translational invariance of the lattices; therefore

they exist only in discrete systems. However, some of the effects, originating from

dispersiveproperties of the medium, can hold in the long wave limit and hence these

have a more universal character than the others.
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Twelve years ago Peyrard and Kruskal observed by a numerical simulation

almost radiationless motion of the 4m-soliton in the highly discrete sine-Gordon

system [l]. It was a surprise since a stationary motion of a single 27-soliton was

impossible in this highly dispersive system because of a strong radiation emitted by
the moving 27-soliton [2]. The authors of [*] tried to explain the formation of the

soliton complex of two identical 27-solitons by exploiting the fact of the presence
of the Peierls potential in the lattice underconsideration. However, a similar effect

of the bunching of solitons in the weak discrete sine-Gordon model was known

much earlier, beginning with the work [3]. There were also attempts [* 5] at an

explanation of the phenomenon based on the use of the soliton perturbation theory
applied to the continuous analogue of the system. Theauthors of [*] were the first to

point out that one needs to add dispersive terms to the usual sine-Gordon model to

obtain the steady multisoliton solutions. Recently Alfimov et al. [6] have shown

numerically the existence of a freely-moving soliton complex in the continuous

nonlocal sine-Gordon model. All these facts prompted that the formation of the

bound soliton complex is a universal property of the dispersive media. Indeed,
in a previous work [7] we found that the radiationless motion of the complex can

be described explicitly in the framework of the dispersive sine-Gordon equation
(dSGE) with a fourth spacial derivative.

The goal of the present work was to show that solitons in dispersive media

possess an internal structure and their interaction strongly depends on intrinsic

properties such as the flexibility. Due to this dependence two identical moving
solitons begin to attract each other when their velocity exceeds the threshold value.

We present exact analytical solutions corresponding to the soliton complex for two

variants of the dispersive sine-Gordon equations and the dispersive double sine-

Gordon equation. Together with a discussion of dynamic and intrinsic properties
of the single 2m-soliton, the knowledge of exact solutions allows us to formulate

the ansatz for the description of dynamics and interaction of two solitons in the

dispersive medium. As a result, we find the condition for the formation of a soliton

complex, calculate its dynamic characteristics, and study its stability with respect
to decay into two solitons.

2. DISPERSIVE SINE-GORDON EQUATIONS

A large variety of physical processes in microstructured solids is described by
the discrete sine-Gordon equation. We write it in the dimensionless form following
the notations of []:

ou,, 1

—37 + Žuün — Un-1 — Un+l + ä“ž Sin(un) = 0, (1)

where u, is, e.g., the displacement of the atom and d is the discreteness parameter.
The Hamiltonian of the system is written as
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1
. (2)1 = 3{502 + 51— un)? + 251 = cos(un)|

In studying the long wave processes, one can substitute zd for n, td for 7, and the

second difference by the series:

2
Un-1 + Un+l — ŽUn R Uzz + IBuxa::z;a: + šlßZUz:m:zz:v +

213 (3)

where the dispersive factor, 8 = 1/(12d?), is supposed to be small. Neglecting
the sixth derivative and higher-order ones, we obtain the dispersive sine-Gordon

equation (IdSGE):

Utt — Uzz — Buxzzx + Sin(u) = 0. (4)

With the same accuracy the Hamiltonian of the system is transformed into the

following expression:

H=C / š[už + u 2 — Buž, + 2(1 — cos(u))dz, (5)

where C = 16/d. Note that the dispersive term in the Hamiltonian can affect

a soliton interaction in the sine-Gordon system and change strongly the solitonic

dynamic properties.
Equation (4) can be obtained from a Lagrangian of the following form:

L=C / š[u% — u 2 + BuŽ, — 2(1 — cos(u)))dz. (6)

Total field momentum of the system is as follows:

P=-€ / UtUz dT. (7)

Linear waves of Eq. (4) have the spectrum w(k) = /1 + k? — Bk*. Formally
there exists a critical wave number kg at which w(ky) = 0. This means that

the equilibrium state v = 0 is unstable with respect to the short wavelength
perturbations. Recalling the spectrum of linear excitations of the discrete system,
one understands the artificial origin of this instability. Note that the same problem
takes place in the Boussinesq equation [®] and there is another form of the

Boussinesq equation especially proposed to avoid the instability. Following this

idea, we can write another dispersive sine-Gordon equation (2dSGE)

Utt — Urz — PBUttzr + sin(u) = 0. (8)
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It has a dispersion relation of the form w(k) = /(1 + k2)/(1 + Bk?) and hence a

stable state with u = 0.

Starting from the more complicated discrete model described by the double sine-

Gordon equation,

o%u
3t2n + 2un—- u —1 — un+l »1

P
(sin (un) _|.. h sin(u

n/2) ) ==0 (9)

we can derive by the above procedure the dispersive analogue (dADSGE) of Eq. (9):

Utt — Urz — Burxzzx + sin(u) cos(u) + hsin(u) = 0. (10)

This equation can be used in various applications. We mention here only its

relevance in describing the nonlinear dynamics in low-dimensional magnets. In this

context the parameter h denotes the amplitude of the magnetic field. Concluding
this section we note that soliton dynamics in many physical systems such as

plasmas [°], nonlinear transmission lines [l°], anharmonic crystal lattices with next-

neighbour interactions [*!], and so on, obey the equations with the same strong
dispersion in the wave motion.

3. REMARKS ON DYNAMICS OF 27-SOLITON

Dynamics of a single 27-soliton in the discrete sine-Gordon model and in the

case of very weak dispersion for Eq. (4) has been studied to some extent ['% 3].
The results are summarized as: (i) because of a strong interaction with continuum

waves the moving soliton quickly loses its velocity; (ii) its motion is accompanied
by significant radiation mainly in backward direction; (iii) the dispersion influences

the soliton shape and yields an internal soliton motion. The existence of the
internal mode of a soliton oscillation in the discrete sine-Gordon model was shown

numerically in [**]. It is difficult to prove this fact analytically forEq. (4) because

an exact solution for the 27-soliton is absent. However, such a solution is easily
found for Eq. (8): us = 4arctan{exp(z)}. The problem of the spectrum of small

oscillations v(z,t) = u(z,t) — us = f(z)exp(iwt) is reduced to solving the

eigenvalue problem: +

d? 2[—(l—fiw2)£—2—+l—a-sh2—(s)]f=w2f. (11)

Besides the translation mode with w = 0, Eq. (11) has the internal mode which

corresponds to an oscillation of the soliton width. Frequency of the mode is a

function of the parameter [:

>

IA2-—-9
—

68+ /1787— 108+9
m=gprp MÕ= —p
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At small [ the frequency behaves very similar to that of the discrete model and

has to coincide with the corresponding dependence in Eq. (4). Thus, due to their

internal structure, the 27r-solitons can interact nontrivially in the dispersive medium

[l4].

4. EXACT SOLITON SOLUTIONS OF DISPERSIVE EQUATIONS

Now we present exact solutions describing a radiationless motion of soliton

complexes in the dispersive equations (4), (8), and (10), respectively:

2 ¢ —Vpt 1

Uid = Barctan{exp(\/j——-)}, W(d) = +y/1-=—;
3 /I_VO2 3d

2 :ll—Vlt 1 1
—) t \/j_—._——)}, V 5 ::{:( 1 ._______);Ug arc an{exp( 3 v

1(d) \/ +36d2 6

2 z —Vit 1 3
:4 — ———

*
:i ]_———— =

«Ua arctan{exp(\/3+h\/I___v?_>}, Vi (d) ‘/ 3d(l+2h)
We have written the soliton complex solutions in the Lorentz-invariant-like form.

However, the velocity of the complex is not an arbitrary parameter of the solution

but it depends strongly on the parameter 3 (or d). In the IdSGE the velocity

dependence on the discreteness parameter d differs less than 5% from the numerical

one of the highly discrete sine-Gordon model (cf. with Fig. 12 in [']). It should

be noted that, despite the strong connection between the results, the continuous

model does not admit the Peierls potential which was a principal ingredient in the

phenomenological theory of Peyrard and Kruskal [']. In the 2dSGE the velocity
tends to zero when d vanishes. In the dDSGE the soliton complex consists of two

m-domain walls. In this system the threshold value of the discrete parameter d at

which the complex begins to move is a function ofthe magnetic field h. We interpret
all these complexes as specific bound states of two identical solitons which can

attract each other in the dispersive medium.

5. COLLECTIVE VARIABLE ANSATZ FOR DYNAMICS OF A SOLITON

COMPLEX

Our analytical approach to the description of a soliton complex formation in

a dispersive medium is based on the use of the collective variable ansatz. It is
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constructed with taking account of the translational and internal degrees of freedom

of the soliton as well as interactions between solitons and solitons with radiation:

u(z,t) = ul(z,t;q, X, R) + u) (z, 1), (12)

where u(") (z, t) is a part of the solution corresponding to radiation and () is the

solitonic part:

ul®) = 4arctan{exp(qg(z —X — R))} + 4arctan{exp(¢(z —X + R))}. (13)

Here ¢ = q(t), X = X(t), and R = R(t) are functions of time. In the adiabatic

approximation functions ¢(t) and X (¢) describe the internal and translational

motions of solitons, respectively, and the function R = R(t) corresponds to the

changing distance between solitons. Note that stationary states are included in the

ansatz. In particular, the exact solution of the IdSGE corresponds to the expression
(12) with w(") = 0 and R = 0, X = Vjt, and

Vo =«I - X/š* q = (36) 7M. (14)

In the present work we apply the ansatz only to the IdSGE. The results

concerning two other dispersive equations will be published elsewhere. After a

substitution of the expressions (12), (13) in the Lagrangian (6) and performing the

integration, we obtain the Lagrangian for three collective variables and function

u(")(z,t). This expression is very complicated for arbitrary large R(t) so that we

consider here only the case of small R. Let us neglect theradiation for the moment.

Then the Lagrangian function with accuracy to order O(R?) can be written

L = Lo + RŽIT, - Ul(9, XŽ)], (15)

where the zero-orderLagrangian is

° qt2 B 3 1 2}=C{==%+2¢ - ——q+qX/¢, (16)

T} contains all terms proportional to the time derivatives of the function ¢, and Uy

equals

C 1 7
Ui(q, X7) = 3{(1(&2 -1)+

5
+ gflq3}- (17)

From Eq. (15) we see that one of the Lagrange equations takes the form

(OL/OR) = 0. It is transformed into RU;(q, X?) = 0 for stationary states. In the

next section we derive equations of motion for the soliton bound state parameters
when taking the radiation into account.
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6. EQUATIONS OFMOTION FOR COLLECTIVE COORDINATES

It is easy to find all the Lagrange equations by avariation of the Lagrangian (15).
There is also another way to obtain the equations without neglecting the radiation

terms. For this purpose one has to substitute the ansatz of general form (12) into the

original IdSGE

užž) — 'u'(xž:) — lBu:(vsa:):z:x + Sin(u(s) + u(r)) + ug) — U;(„T;,? — :Bua(;.:z?:z;z =0 (18)

and perform the integration of the equation with the solution derivatives with

respect to parameters X and ¢, namely, (Ou®/0X) and (Ou®/0q). In the zero-order

approximation with respect to small R the Lagrange equations are the following:

7i2qtt 7x2qt2 1
— ——————+l—X2—62———— 2/9 hlgD„(T)de 19

6q3 4q4 t 9
3q2

q CS ( ) ,( )

8%(th): /cosh—l(B)Du(T)dß, (20)

where § = q(z — X) and the operator D has the form

g v ot
D = a—tž

—

'Õ—x—ž
— ,B'ö? + COS('U,(S)). (21)

In general, the right-hand sides of Egs. (19), (20) are not equal to zero. This occurs

only when radiation is absent as in the case of the exact moving solutions. Therole

of radiation in nonstationary processes is very important and does not reduce only
to dissipation of a soliton energy as in the case of the 27r-soliton. The total energy of

the dispersive model is naturally conserved but a distribution of the energy between

two subsystems, the soliton complex and the radiation, appears to be nontrivial.

However, let us study Eqgs. (19), (20), at first, with zero r.h.s.

7. ADIABATIC APPROXIMATION IN SOLITON COMPLEX DYNAMICS

Below we assume that u(z,t) = Barctan{explq(t)(z — X(¢))]}, where

functions ¢(t) and X (¢) obey the equations

2 2 2
T™q Ty 2 2

1
—_——-—=+4l-X; - - — =O, 22

gX; = p = const. (23)
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The second equation is a consequence of the fact that the coordinate X is cyclic as

is seen from the Lagrangian L. These equations can be completely solved because

their first integral is easily found as

2 2
Soovy2, t >B3 1

24

It is interesting to note that Eq. (24) can be rewritten as astandard energy expression
of a point particle placed in an effective field

7T—2(l'2+q2(-1-+;o2>—l?7’;(l3+q4—@-616=0 (25)
12

7
3 3 :

At first we seek stationary solutions of Eq. (22) and find that constant solutions g

and X; = V are connected by the relation

Vi=l- ,3q2 —

-—l—-
—

(26)

or by the inverse two-valued dependence

» 1-V? (1 — V2)2
Bgr = mt \/—4— — š (27)

Note that one of the parameters, g or V, can be considered as free yet. The function

V (q) has a maximum Vj in the point ¢ = go which coincides with parameters (14) of

the exact solution. Other values of parameters of Eq. (26) or Eq. (27) do not yield
exact solutions of Eq. (4). However, they reflect the fact that the IdSGE has two

branches of stationary solutions ©(*)(z — V't) in the form different from the ansatz

(13). Although the adiabatic approach gives obviously a qualitative description of

the stationary solutions, its main conclusions are believed to be correct.

The total momentum calculated for the stationary solutions equals P = 2Cq+V
and the total energy is as follows:

(28)
2,9 ),B = 200 (1— 580

where g 4 (V) is given by Eq. (27). Taking the soliton-particle analogy into account

[ls—l7], we can find a quasi-particle spectrum for the moving soliton. It is given
by the two-valued function: ¥ = FE(P). The upper branch of the dependence,
corresponding to upper signs in Eq. (28), belongs to absolutely unstable states which

are placed in a maximum of the effective potential in Eq. (25). Stationary states

of the lower branch correspond to a minimum of the effective potential and hence

are stable in the framework of Egs. (22), (23). This conclusion is also proved by a

direct analysis of stability ["]. Omitting details of calculations, we present the final

expression for small oscillations near the stationary states: y(t) = q(t) — g+ =

yoexp(i€2t), where the squared frequency % = šqi(l — 28¢%). In the point
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m = (26)—1/ 2 both branches meet and reach the energy maximum. The energy

appears tobe also a two-valued function of the velocity £ = E*(V). The lower

branch E_(P) corresponds to a part of the dependence E = ET(V) after the

point of the energy maximum and a whole branch £ = E~(V). Both branches

E = E*(V) coalesce in the pointV demonstrating a typical bifurcation behaviour.

~ Thebifurcation nature of the exact solutionbecomes clear when we take account

of the additional dependence of the solutions on the distance parameter R and

consider the equation (OOL/0R) = 0 together with the pair Eq. (22) and Eq. (23).
We are easily convinced that the exact solution is uniquely defined as one of two

equations, Ui(q, V) = 0 (see Eq. (17)) and Eq. (26). Discussing the stability of

the soliton complex in the framework of three equations for collective variables,
we note that the unstable mode includes now the dependence of a distance between

solitons in the soliton complex increasing in time. This means the initial stage of the

decay of the complex. It begins when the energy of interactionbetween solitons as a

function of the mutual distance R changes its character from attractive to repulsive.
Inreality the formation of the stationary solution proceeds with the participation

of the radiation processes and the energy of two interacting solitons is changed until

they reach the form of the exact radiationless soliton complex. If the initial velocity
of solitons is lowerthan the critical value Vj, theyrepulse each other. In the opposite
case, V > V), solitons attract each other by changing their widths and decreasing
the velocity until it becomes equal to Vi when they form the bound state.

In conclusion, we would like to emphasize that this phenomenon seems to be

a universal effect in nonlinear strongly dispersive nonintegrable systems bearing
soliton excitations. It can be observed not only in computer simulations but also

in real experiments in low-dimensional microstructured solids.
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SOLITONIDE INTERAKTSIOON DISPERGEERUVAS KESKKONNAS
JA NENDE RADIATSIOONIVABAD LIIKUMISREŽIIMID

Mihhail BOGDAN ja Arnold KOSSEVITS

On analiiiisitud solitonide interaktsiooni tugevasti dispergeeruvas iihemodtme-

lises keskkonnas ning néidatud, et interaktsioon voib olla kas repellori vGi atraktori

tilipi soltuvalt solitonide struktuuri omadustest. Sellest tingituna on voimalik

solitonide kompleks, mis saab levida ilma radiatsioonita. Niide kisitleb siinus-

Gordoni ja kaksiksiinus-Gordoni vorrandi analiiiisi, arvestades neljandat jarku
tuletiste abil modelleeritud lisadispersiooni. On leitud tidpsed leviva laine tüüpi
lahendid jaméératud solitonide kompleksi tekketingimused.


	b10720984-1997-1-2 no. 1-2 01.01.1997
	PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES EESTI TEADUSTE AKADEEMIA TOIMETISED
	PHYSICS MATHEMATICS FÜÜSIKA MATEMAATIKA
	CONTENTS
	EDITORIAL
	CONTINUOUS CELLULAR AUTOMATA FOR SIMULATION OF THERMOELASTICITY
	Fig. 1. Elastic wave propagation across a solid layer: a, homogeneous; b, heterogeneous
	Fig. 2. Thermoelastic wave propagation across a solid layer: a, wave profiles; b, temperature evolution.
	PIDEVAD RAKUAUTOMAADID TERMOELASTSUSES

	INTERACTION OF MOVING SOLITONS IN A DISPERSIVE MEDIUM AND REGIMES OF THEIR RADIATIONLESS MOTION
	SOLITONIDE INTERAKTSIOON DISPERGEERUVAS KESKKONNAS JA NENDE RADIATSIOONIVABAD LIIKUMISREŽIIMID

	CONFIGURATIONAL FORCES INDUCED BY FINITE-ELEMENT DISCRETIZATION
	Fig. 1. Eshelby’s concept of a force acting on a defect
	Fig. 2. Placements of a triangular finite element
	Fig. 3. Finite elements with fixed and floating nodes
	LÕPLIKE ELEMENTIDE DISKREETSUSEST PÕHJUSTATUD KUJUJÕUDUDEST

	GROWTH AND DECAY OF WAVES IN MICROSTRUCTURED SOLIDS
	LAINETE VÕIMENDUMINE JA SUMBUMINE MIKROSTRUKTUURIGA MATERJALIDES

	NONLINEAR WAVE PHENOMENA AND NONLOCALITY
	Characteristics of main models
	3. DISCUSSION
	MITTELINEAARNE LAINELEVI JA MITTELOKAALSUS


	PROPAGATION CRITERION FOR PHASETRANSITION FRONTS IN THERMOELASTIC FERROMAGNETS
	FAASIÜLEMINEKU FRONTIDE LEVIKU KRITEERIUM TERMOELASTSETES FERROMAGNETITES

	SIGNAL PROPAGATION AND INTERNAL MEASUREMENT IN CRYSTALLINE SOLIDS
	Fig. 1. Definition of the natural standard length L, out of the kink solution
	Fig. 2. Periodical oscillation of the breather solution (5) for some ¢ values
	Fig. 3. The contraction of the moving standard length.
	Fig. 4. The moving clock goes behind.
	Fig. 5. The synchronization of the clocks U? and U,; at the event A according to the elementary principle of relativity. .
	Fig. 6. The synchronization of the moving clocks for the time ¢ = 0 in X,.
	SIGNAALI LEVI JA SISEMÕÕTMISED KRISTALSETES TAHKISTES

	ON THE USE OF LANGEVIN EQUATIONS IN DISLOCATION PATTERNING AND DEFORMATION INHOMOGENEITIES
	Fig. 1. Illustration of the correlation length £ of mobile dislocations (L and T signs) and of the characteristic wavelength A of an emerging pattern of sessile dislocations (_L and T).
	Fig. 2. Comparison of the length scales involved in chemical patterning (e.g., the spiral waves associated with the Belousov—Zhabotinski reaction) and dislocation patterning (e.g., the persistent slip band and matrix structures occurring during cyclic plastic deformation). In the latter case the mesoscopic scale where fluctuations show up is important.
	Fig. 3. The variance of the plastic strains of macroscopic specimen segments as a function of the total plastic strain, demonstrating the diffusion-like behaviour of plastic deformation by single glide (Eq. (11)); experimental data for Cu deformed at room temperature, after Diehl [l7].
	Fig. 4. Probability distributions of the total dislocation density pertinent to the formation of dislocation cell structures (see text).
	Fig. 5. Probability distributions of the dipole dislocation density pertinent to the formation of persistent slip band structures (a) and matrix structures (b); for details see text.
	Fig. 6. Phase diagram of fatigue dislocation patterning in dependence of the noise intensity o> and the dipole generation rate k. Above the cusp-like phase boundary aš , dislocation patterning occurs, since distribution functions are bimodal.
	LANGEVINI VORRANDITE KASUTAMINE DISLOKATSIOONI JAOTUSE JA DEFORMATSIOONI MITTEHOMOGEENSUSE KIRJELDAMISEKS

	NONLINEAR DUALITY BETWEEN ELASTIC WAVES AND QUASI-PARTICLES IN MICROSTRUCTURED SOLIDS
	Fig. 1. Schematic of (P, V=c) relationship for remarkable systems: a, NLS (Newtonian point mechanics); b, SG (Lorentzian—Einsteinian point mechanics); ¢, GZ (complex point mechanics); d, 6GBO equation (“rocket”-like point mechanics).
	Fig. 2. Mass, momentum, and energy for Kawahara solitons for positive fourth-order dispersion B = +1 (symbols: numerical evaluation; lines: best-fit approximation).
	Fig. 3. Head-on collision of two Kawahara solitons with V=o.B (soliton from the left) and V = -0.7 (soliton from the right).
	ELASTSETE LAINETE JA KVAASIOSAKESTE MITTELINEAARNE DUAALSUS MIKROSTRUKTUURIGA MATERJALIDES

	NONLINEAR SURFACE AND WEDGE ACOUSTIC WAVES IN THE PRESENCE OF WEAK DISPERSION
	Fig. 1. Surface elevation profile (solid curve) and displacement component parallel to the surface (dashed curve) for stationary nonlinear Rayleigh waves in the presence of weak dispersion due to a thin film. (o = qovr/(vr + Av)).
	Fig. 2. Geometry considered for the propagation of flexural waves along the tip of a slender wedge [23].
	Fig. 3. The quantities K (j) (open dots) and K'r(s)/10 (full dots), defined in the text, to leading order in © as function of the branch index j of wedge acoustic waves (A = p).
	Fig. 4. The functions F'(€, €) and F'(l, £) determined numerically for A = p.
	MITTELINEAARSED AKUSTILISED PINNALAINED JA KIILULAINED NÕRGA DISPERSIOONI KORRAL

	ALIGNMENT TENSOR DYNAMICS INDUCED BY THE MESOSCOPIC BALANCE OF THE ORIENTATION DISTRIBUTION FUNCTION
	ORIENTATSIOONI JAOTUSFUNKTSIOONI MESOSKOOPILISEST TASAKAALUST MÕJUTATUD REASTUSTENSORI DÜNAAMIKA

	SOLITONS IN A PERTURBED KORTEWEG-de VRIES SYSTEM
	Fig. 1. Regions, where different solution types are realized: a, (vl, v2)-plane; b, (a, p)-plane. Different hatch types X, /, and \ correspond to trivial solutions u(z,t) = 0, u(z,t) = vy, and u(z,t) = v 2, respectively.
	Fig. 2. Typical example of a stationary solution with one soliton (case a = 65 in Fig. 1)
	Fig. 3. Example of a dark soliton solution (case o = 128 in Fig. 1b)
	Fig. 4. Example of a double soliton solution (case & = 132 in Fig. 1b)
	Fig. 5. Example of a single soliton solution (case @ = 140 in Fig. 15). Notice how smaller solitons are suppressed (see also the next figure).
	Fig. 6. A single soliton solution (case a = 205 in Fig. 1b)
	Untitled
	Fig. 7. A double soliton solution (case o = 208 in Fig. 1b) Fig. 8. A negative soliton solution (case & = 210 in Fig. 1b).
	Fig. 9. Example of a cnoidal type soliton solution (case a = 209, p = 0.65 in Fig. 1b)
	SOLITONID HÄIRITUSEGA KORTEWEGI—de VRIESI SÜSTEEMIS

	EFFECTS OF NOISE ON LOCALIZED EXCITATIONS IN THE DISCRETE NONLINEAR SCHRODINGER SYSTEM
	Fig. 1. Evolution of an initially single-sited localized excitation. Parameter values are y = 10, 7 = 2, and D = 0.05.
	Fig. 2. Typical evolution of the initial-site probability for different values of 7, i, and D. In (a) we have n = 0, D = 0.05, and from bottom to top v = 5, 10, 15, and 20; in (b) y = 5, D = 0.05, and from bottom to topn = 0,1, 5, and 10; in (¢) ¥ = 5,7 = 1.0, and D = 0.005, 0.025, and 0.05 from top to bottom. The particular realization of the noise is the same in all cases.
	Fig. 3. Quantitative dependence of the decay rate, k, of the breather as a function of (a) noise strength D, (b) nonlinearity parameter -y, and (¢) nonlinear damping parameter 7). In (a)n = 0.1 for both curves and in (c) D = 0.05 for both curves; other parameter values are as indicated in the figures.
	MÜRAEFEKTID LOKAALSELT HÄIRITUD DISKREETSES MITTELINEAARSES SCHRODINGERI SÜSTEEMIS

	SOLITONS IN SYSTEMS WITH A QUARTIC POTENTIAL AND HIGHER-ORDER DISPERSION
	Fig. 1. Regions in the d; —b, plane, where different solution types (separated by bold lines) and subtypes (separated by dotted lines) are realized: type i — train of n solitons (i, — the number of solitons in the train is n + 1); type ü — multisoliton solution (ii,, n=1,...,4 — group of n + 1 solitons, iis — group of more than five solitons); type iii — train of n negative solitons (iii, — the number of negative solitons in the train is n + 1); type iv — chaotic solution. X-marks correspond to d, —b, pairs where the numerical integration is carried out.
	Fig. 2. Solution for d, = 2.2 and b,=2.4 (train of n solitons): a, time-slice plot; b, waveprofile maxima against the time ¢ (I, 2, 3 correspond to the first, second, and third solitons); c, time dependence of spectral amplitudes (/—4 correspond to SA|—SA,).
	Fig. 3. Solution for d;, = 0.6 and b, = 1.6 (multisoliton solution): a, time-slice plot; b, waveprofile maxima against the time ¢ (/ corresponds to the highest and 3 to the lowest soliton in the group); ¢, time dependence of spectral amplitudes (/-3 correspond to SA;—SAS); d, time dependence of the cumulative spectrum (/-9 correspond to SC,—SCy).
	Fig. 4. Solution ford, = 1.0 and b; = 3.2 (train of n negative solitons): a, time-slice plot (profiles -u(x,t) are shown); b, time dependence of the cumulative spectrum (/-7 correspond to SC,—SC,).
	Fig. 5. Solution for d; = 2.0 and b, = 3.4 (chaotic solution): a, time-slice plot; b, time dependence of spectral amplitudes (/-8 correspond to SA|—SAg).
	SOLITONID NELJANDAT JÄRKU POTENTSIAALIGA JA KÕRGEMAT JÄRKU DISPERSIOONIGA KESKKONDADES

	THEORETICAL AND PRACTICAL PROBLEMS OF HYGROTHERMALLY LOADED FIBRE REINFORCED COMPOSITES
	Fig. 1. Most frequent coupled fields of mechanics.
	Fig. 2. Dimensionless longitudinal coefficient of thermal expansion of a [6/-6 ], laminate as a function of ply angle. Ply properties: E|/Ey; = 10, v 15 =0.25, o /0 75 = 0.1; G5/E5, = 0.05, 0.5, and 4 for curves 1,2, and 3, respectively.
	Fig. 3. Longitudinal coefficient of thermal expansion (CTE) as a function of ply angle for three [6/-6 ], laminates consisting of different commercial ply materials: Kevlar-epoxy (solid line), graphite-epoxy (dashed line), and E-glass-epoxy (dash-dot line).
	Fig. 4. Longitudinal coefficient of moisture expansion (CME) as a function of ply angle for three [6/-6 ], laminates consisting of different ply materials: Kevlar-epoxy (solid line), graphite-epoxy (dashed line), and E-glass-epoxy (dash-dot line).
	Fig. 5. Longitudinal coefficient of thermal/moisture expansion (CT/ME) as a function of ply angle for a [6/-0 ], graphite-epoxy laminate.
	Number of independent coefficients
	HÜGROTERMILISELT KOORMATUD KIUDARMATUURIGA KOMPOSIITMATERJALIDEGA SEOTUD TEOREETILISI JA PRAKTILISI PROBLEEME

	MODULATIONAL INSTABILITY OF TWO COUNTER-PROPAGATING WAVES IN A THIN PLATE RESTING ON ELASTIC FOUNDATION
	Fig. 1. Sketch of the elastic structure and coordinate system.
	Fig. 2. Linear frequency spectrum: I, N =-0.425; 2, N =0; 3, N = 0.425; 4, N = 0.85; 5, N = 1.0.
	Fig. 3. Region of modulational instability
	Untitled
	Fig. 4. Time evolution of the nonlinear standing wave: a, initial state; b, birth of modulational instabilities (t = 75); ¢, formation of localized structures (¢ = 1200).
	KAHE VASTASSUUNAS LEVIVA LAINE MODULATSIOONILINE EBASTABIILSUS ELASTSEL ALUSEL LEBAVAS ÕHUKESES PLAADIS
	ANNUAL AWARD OF THE ESTONIAN PHYSICAL SOCIETY EESTI FÜÜSIKA SELTSI AASTAPREEMIA
	Corrigendum


	MATRIX MAPS INTO THE SPACE OF STATISTICALLY CONVERGENT BOUNDED SEQUENCES
	INSTRUCTIONS TO AUTHORS
	Untitled
	Untitled



	Illustrations
	Fig. 1. Elastic wave propagation across a solid layer: a, homogeneous; b, heterogeneous
	Fig. 2. Thermoelastic wave propagation across a solid layer: a, wave profiles; b, temperature evolution.
	Fig. 1. Eshelby’s concept of a force acting on a defect
	Fig. 2. Placements of a triangular finite element
	Fig. 3. Finite elements with fixed and floating nodes
	Fig. 1. Definition of the natural standard length L, out of the kink solution
	Fig. 2. Periodical oscillation of the breather solution (5) for some ¢ values
	Fig. 3. The contraction of the moving standard length.
	Fig. 4. The moving clock goes behind.
	Fig. 5. The synchronization of the clocks U? and U,; at the event A according to the elementary principle of relativity. .
	Fig. 6. The synchronization of the moving clocks for the time ¢ = 0 in X,.
	Fig. 1. Illustration of the correlation length £ of mobile dislocations (L and T signs) and of the characteristic wavelength A of an emerging pattern of sessile dislocations (_L and T).
	Fig. 2. Comparison of the length scales involved in chemical patterning (e.g., the spiral waves associated with the Belousov—Zhabotinski reaction) and dislocation patterning (e.g., the persistent slip band and matrix structures occurring during cyclic plastic deformation). In the latter case the mesoscopic scale where fluctuations show up is important.
	Fig. 3. The variance of the plastic strains of macroscopic specimen segments as a function of the total plastic strain, demonstrating the diffusion-like behaviour of plastic deformation by single glide (Eq. (11)); experimental data for Cu deformed at room temperature, after Diehl [l7].
	Fig. 4. Probability distributions of the total dislocation density pertinent to the formation of dislocation cell structures (see text).
	Fig. 5. Probability distributions of the dipole dislocation density pertinent to the formation of persistent slip band structures (a) and matrix structures (b); for details see text.
	Fig. 6. Phase diagram of fatigue dislocation patterning in dependence of the noise intensity o> and the dipole generation rate k. Above the cusp-like phase boundary aš , dislocation patterning occurs, since distribution functions are bimodal.
	Fig. 1. Schematic of (P, V=c) relationship for remarkable systems: a, NLS (Newtonian point mechanics); b, SG (Lorentzian—Einsteinian point mechanics); ¢, GZ (complex point mechanics); d, 6GBO equation (“rocket”-like point mechanics).
	Fig. 2. Mass, momentum, and energy for Kawahara solitons for positive fourth-order dispersion B = +1 (symbols: numerical evaluation; lines: best-fit approximation).
	Fig. 3. Head-on collision of two Kawahara solitons with V=o.B (soliton from the left) and V = -0.7 (soliton from the right).
	Fig. 1. Surface elevation profile (solid curve) and displacement component parallel to the surface (dashed curve) for stationary nonlinear Rayleigh waves in the presence of weak dispersion due to a thin film. (o = qovr/(vr + Av)).
	Fig. 2. Geometry considered for the propagation of flexural waves along the tip of a slender wedge [23].
	Fig. 3. The quantities K (j) (open dots) and K'r(s)/10 (full dots), defined in the text, to leading order in © as function of the branch index j of wedge acoustic waves (A = p).
	Fig. 4. The functions F'(€, €) and F'(l, £) determined numerically for A = p.
	Fig. 1. Regions, where different solution types are realized: a, (vl, v2)-plane; b, (a, p)-plane. Different hatch types X, /, and \ correspond to trivial solutions u(z,t) = 0, u(z,t) = vy, and u(z,t) = v 2, respectively.
	Fig. 2. Typical example of a stationary solution with one soliton (case a = 65 in Fig. 1)
	Fig. 3. Example of a dark soliton solution (case o = 128 in Fig. 1b)
	Fig. 4. Example of a double soliton solution (case & = 132 in Fig. 1b)
	Fig. 5. Example of a single soliton solution (case @ = 140 in Fig. 15). Notice how smaller solitons are suppressed (see also the next figure).
	Fig. 6. A single soliton solution (case a = 205 in Fig. 1b)
	Untitled
	Fig. 7. A double soliton solution (case o = 208 in Fig. 1b) Fig. 8. A negative soliton solution (case & = 210 in Fig. 1b).
	Fig. 9. Example of a cnoidal type soliton solution (case a = 209, p = 0.65 in Fig. 1b)
	Fig. 1. Evolution of an initially single-sited localized excitation. Parameter values are y = 10, 7 = 2, and D = 0.05.
	Fig. 2. Typical evolution of the initial-site probability for different values of 7, i, and D. In (a) we have n = 0, D = 0.05, and from bottom to top v = 5, 10, 15, and 20; in (b) y = 5, D = 0.05, and from bottom to topn = 0,1, 5, and 10; in (¢) ¥ = 5,7 = 1.0, and D = 0.005, 0.025, and 0.05 from top to bottom. The particular realization of the noise is the same in all cases.
	Fig. 3. Quantitative dependence of the decay rate, k, of the breather as a function of (a) noise strength D, (b) nonlinearity parameter -y, and (¢) nonlinear damping parameter 7). In (a)n = 0.1 for both curves and in (c) D = 0.05 for both curves; other parameter values are as indicated in the figures.
	Fig. 1. Regions in the d; —b, plane, where different solution types (separated by bold lines) and subtypes (separated by dotted lines) are realized: type i — train of n solitons (i, — the number of solitons in the train is n + 1); type ü — multisoliton solution (ii,, n=1,...,4 — group of n + 1 solitons, iis — group of more than five solitons); type iii — train of n negative solitons (iii, — the number of negative solitons in the train is n + 1); type iv — chaotic solution. X-marks correspond to d, —b, pairs where the numerical integration is carried out.
	Fig. 2. Solution for d, = 2.2 and b,=2.4 (train of n solitons): a, time-slice plot; b, waveprofile maxima against the time ¢ (I, 2, 3 correspond to the first, second, and third solitons); c, time dependence of spectral amplitudes (/—4 correspond to SA|—SA,).
	Fig. 3. Solution for d;, = 0.6 and b, = 1.6 (multisoliton solution): a, time-slice plot; b, waveprofile maxima against the time ¢ (/ corresponds to the highest and 3 to the lowest soliton in the group); ¢, time dependence of spectral amplitudes (/-3 correspond to SA;—SAS); d, time dependence of the cumulative spectrum (/-9 correspond to SC,—SCy).
	Fig. 4. Solution ford, = 1.0 and b; = 3.2 (train of n negative solitons): a, time-slice plot (profiles -u(x,t) are shown); b, time dependence of the cumulative spectrum (/-7 correspond to SC,—SC,).
	Fig. 5. Solution for d; = 2.0 and b, = 3.4 (chaotic solution): a, time-slice plot; b, time dependence of spectral amplitudes (/-8 correspond to SA|—SAg).
	Fig. 1. Most frequent coupled fields of mechanics.
	Fig. 2. Dimensionless longitudinal coefficient of thermal expansion of a [6/-6 ], laminate as a function of ply angle. Ply properties: E|/Ey; = 10, v 15 =0.25, o /0 75 = 0.1; G5/E5, = 0.05, 0.5, and 4 for curves 1,2, and 3, respectively.
	Fig. 3. Longitudinal coefficient of thermal expansion (CTE) as a function of ply angle for three [6/-6 ], laminates consisting of different commercial ply materials: Kevlar-epoxy (solid line), graphite-epoxy (dashed line), and E-glass-epoxy (dash-dot line).
	Fig. 4. Longitudinal coefficient of moisture expansion (CME) as a function of ply angle for three [6/-6 ], laminates consisting of different ply materials: Kevlar-epoxy (solid line), graphite-epoxy (dashed line), and E-glass-epoxy (dash-dot line).
	Fig. 5. Longitudinal coefficient of thermal/moisture expansion (CT/ME) as a function of ply angle for a [6/-0 ], graphite-epoxy laminate.
	Fig. 1. Sketch of the elastic structure and coordinate system.
	Fig. 2. Linear frequency spectrum: I, N =-0.425; 2, N =0; 3, N = 0.425; 4, N = 0.85; 5, N = 1.0.
	Fig. 3. Region of modulational instability
	Untitled
	Fig. 4. Time evolution of the nonlinear standing wave: a, initial state; b, birth of modulational instabilities (t = 75); ¢, formation of localized structures (¢ = 1200).

	Tables
	Characteristics of main models
	Number of independent coefficients
	Untitled
	Untitled




