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Abstract. Because composites are inhomogeneous and anisotropic, both of these properties can be

used for tailoring their thermohygroelastic (THE) behaviour. The fundamental equations of THE

fields are examined to gain insight into the potentials of tailoring. These-fields can be shown to be

coupled in dynamic cases. The construction of the target function for the tailoring is discussed and

explicit forms for it are given in some simplified cases. Explicit results for balanced and symmetric
laminates, consisting of commercially available plies, are also shown.
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1. INTRODUCTION

The examination of general coupled fields in composites gives hints of

tailoring. Figure 1 shows a set of fields in continua and their possible
combinations that are well known as coupled fields in physics and engineering.
The overwhelming majority of scientific literature on composites mentions the

heat and moisture effects as environmental ones (e.g., [l]), which is necessarily
not valid. Generally, in the case of composites the elastic, thermal, and moisture

concentration fields have the basic role in all the mechanical problems and are

usually coupled. In dynamic cases the coupling between displacement and

thermal fields is never negligible (see the Gough-—Joule effect, or the

elastothermodynamic damping [2]). In the following we always suppose this case

and consider the problem as time dependent. The most often appearing couplings
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are the thermoelastic, hygroelastic, and thermohygroelastic (THE) ones. In special
composites, e.g., in actuators, other couplings (piezoelectric, magnetostrictive) are

frequent as well. The cross-coupling between thermal and moisture fields (Soret
and Dufour effects) is also well known (e.g., [3]). When dealing with the tailoring
of composites, their heterogeneous and microstructured nature must be taken into

account. If the load and/or the variation of environmental influence is dynamic,
then the analysis needs to be completed by the viewpoint of nonlinear dynamics.
According to the above, theoretical and practical problems are discussed.

The heat conduction and moisture diffusion phenomena have a triple
connection in case of composites:
1. total analogy between the Fourier and Fick laws;
2. cross-coupling described by the Dufour and Soret effects;
3. both can cause degradation and may lead toa failure.

On the other hand, the coupled handling of THE fields gives an extra

opportunity for the tailoring. The purpose and possibility of tailoring are rather

well known. The main target of tailoring is to avoid additional deformations or to

cause just specified deformationdue to givenmechanical and environmental loads

occurring in a specified way at a specified load (“fuse-effect”’). These targets

Fig. 1. Most frequent coupled fields of mechanics.
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require optimally engineered expansion (thermal and moisture), stress distribution,

temperature distribution, and moisture distribution, which in their turn require
feasible or optimal directions and distributions of various thermomechanical

properties.
Composite materials present a unique possibility to the designer because the

applications of these material systems can be tailored or engineered to easily meet

the particular performance requirements. This is possible due to the directional

nature of the filamentary materials used as a reinforcement, as well as due to the

wide variety of available fibre and matrix materials.

The conventional approach of tailoring is the use of the anisotropy. We are

going to show a possibility how the tailoring could be extended through the

inhomogeneity.

2. BASIC RELATIONS FOR TAILORING

The fundamental relations of continuum mechanics can be divided into four

groups:
1. balance laws;
2. kinematic equations;
3. constitutive laws;
4. complementary conditions.

From the viewpoint of tailoring the most interesting is the third group, which

contains the following equations: .
1. constitutive stress—strain equation;
2. law of heat conduction;
3. law of moisture diffusion;
or

4. the cross-coupled equation of heat conduction and moisture diffusion instead of

the last two ones.

We have to mention also the equation of state, but in our case it has a special
role and we return to this question later.

Let us consider all of these equations in the most general form [*] but ignoring
the temperature dependence of the material properties. Taking the constitutive

equations of the anisotropic THE solids into account, we recall the general
constitutive equation together with Fourier's heat conduction law and Fick's

moisture transport relation

T m

di = —kijT,j'

(2.1)

(2.2)



Ajikl = Aklij » (3.2)

131

Here Eij’ ÕLp AT, Am, dfi denote the strain, stress, temperature, and moisture

difference, heat and moisture flux, respectively, and Ak 0(,1} , ocž'j , k,-j, and (Dm),;j
are the space dependent material properties: compliance, coefficients of thermal

and moisture expansion, thermal conductivity, and moisture diffusivity.
Instead of the two last equations, the coupled and modified relations based on

the “second sound” phenomenon will be applied. For anisotropic THE materials

Jai + Tapij i = ~opiiCp,j

with o, B =1,2 andi, j, k, I=l, 2, 3. Here

pei ddi
g -

mAdz ODi
6 -

Oi o.Bij
m afij B, j T2 (T7)ij ) (d7);; (dp),; i

are the extended matrices of flux, relaxation, diffusivity, and concentration

gradients, respectively. A dot indicates the material time derivative and comma

with subscript the partial derivative with respect to the space coordinate.

It is now clear that the tailoring rests on compliance (stiffness), thermal

expansion, moisture expansion, relaxation, and diffusivity, i.e., on Aiikb ocg , oc}}’ ,

Tapij € dagyj- |

n practical applications the whole number of these parameters is of

importance.

3. THE NUMBER OF PARAMETERS IN THE TAILORING

The compliance (stiffness) tensor has 3% =Bl elements, but they are not

independent of each other. On the basis of (2.1) one can reach the well-known

lowernumber of stiffness parameters [°] that is briefly shown below.

The symmetry of the stress and strain tensors results in the symmetry in the

indices i<>j and k<> [, i.e.,

Akl = Gijlis ijkl = Gjikls

which reduces the number of parameters from 81 to 54 and then to 36.

Energy considerations require additional symmetries. From the definition of

elastic potentials [s] it follows that

(2.4)

(2.5)

(3.1)
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This means that finally, in the case of a generally anisotropic material, the number

of independent parameters is reduced from 36 to 21.

Generally the thermal and moisture expansion tensors have 32=9

components. Due to the symmetry of the strain tensor, they are also symmetrical,
1.e.,

T_ T
d m> m

This reduces the number of independent coefficients to only 6 in both tensors.

In special cases, e.g. general orthotropy, special orthotropy, and isotropy,
further reductions are possible. These cases are shown in the table (see also [s]).
The features of relaxation and diffusivity are similar to the above expansion
tensors.

A composite material can be defined as a combination of two or more

materials (reinforcing elements, fillers, and composite matrix binder), differing in

form or composition on a macroscale. The constituents retain their identities, i.e.,

they do not dissolve or merge completely into one another although they act

together. Normally, the components can be physically identified and exhibit an

interface between one another (e.g., glass and plastic in a glass fibre reinforced

plastic). By varying the relative amounts of fibre and matrix or by varying the
fibre direction one can try to match the coefficients to specified values in different

parts of the composite material, i.e., tailor the material.

Tensor

Material Compliance (stiffness) a;;

Thermal and moisture

characteristic p ik expansions of; and o

Speciality Speciality No.

General anisotropy 81 9

Anisotropy, Stress tensor O;; = Oj; 54

considering symmetries — Strain tensor €; = & 36 Strain tensor 6

Elastic energy properties 21

General orthotropy 9 3

Special orthotropy Transverse isotropy 5

Plane stress 4

Isotropy 2 ]

Number of independent coefficients

3.3)
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4. ANISOTROPY AND INHOMOGENEITY AS A POSSIBILITY FOR

THE TAILORING

In the tailoring it is customary to use the anisotropy rather than the

inhomogeneity. It is quite logical to ask what is the reason for such an approach in

spite of the fact that in the case of composites it is possible to create not only
anisotropic but also inhomogeneous properties. In addition, the difference

between the anisotropy and inhomogeneity should be clearly stated. Briefly, both

of them are space co-ordinate dependent properties, but the inhomogeneity is

location dependent while the anisotropy is direction dependent. It must be clear

how to express the difference between these two properties. In the case of heat

conduction, for example, we have

qi(r, t) = —kl] (r)TJ-(r, t).

If

const . . . s

kl-j(r) = kij(ro) = kij ,
then the material is homogeneous and anisotropic;

k(r)Sij ,
then the material is inhomogeneous and isotropic;

kij(ro)õij = õl.jkcon“, then the material is homogeneous and isotropic;

kij(r) ,
then the material is inhomogeneous and anisotropic.

Several definite material properties can be only inhomogeneous, never

anisotropic. These properties include density, specific heat capacity, etc. Other

properties can be both inhomogeneous and anisotropic, as for example stiffness,

conductivity, etc. This difference depends on the character of the property. There

are scalar properties, vector (first-order tensor) and tensor (second- and higher-
order) ones. Scalar properties (zeroth-order tensors) couple scalar quantities and

can not have direction (in the sense a vector has). Hence, the anisotropy is not

possible. Properties which are second-order tensors (e.g., ki) couple vector

quantities, i.e., first-order tensors (g; and Tj) to each other and can thus be

different in different directions. Properties which are fourth-order tensors (e.g.,
A;x) couple second-order tensors (strain and stress). Thus, also here the

anisotropy is possible.
Let us approach the problem from the manufacturing point of view. The most

important question is: Are we able to fabricate inhomogeneous materials or only
anisotropic ones? Before answering we may try to reverse the question: Are we

able to fabricate homogeneous material? The answer to this question is definitely
“no”. The only question is whether we are able to regulate or control the

inhomogeneity. If the answer is “yes”, then we have a possibility of tailoring on

the basis of inhomogeneity too, not only on the basis of anisotropy.

(4.1)
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The importance of the problem is obvious. If we can apply all the material

parameters and their dependence both on direction and location to the tailoring,
the opportunities are much wider.

No matter what is the specific manufacturing method, composite laminates

consist in principle of unidirectional plies (layers) bonded together with pressure
and heat. The plies used can be considered as generally orthotropic or transversely
isotropic. They are also macroscopically homogeneous when unidirectional fibres

are used as a reinforcement. All of the manufacturing processes allow us to vary

the fibre direction of each ply. Hence, we can use also the ply angles as

parameters in the tailoring. Moreover, by varying the fibre volume fraction from

ply to ply we can easily create inhomogeneity in the thickness direction. Also,
different fibre—matrix combinations can be used in different plies for this purpose.

In filament winding, for example, the fibre volume fraction and fibre direction

can be varied continuously along the axial co-ordinateof a pipe or a cylinder.

5. THE TARGET FUNCTION OF TAILORING: CONSTRUCTION AND

SOLUTION

Let us assume that prescription is given for displacement, strain, stress,

temperature, and moisture distribution (or for some of them). That means,

u = u(r),

€ = &(r),

6 = Õ(r),

T = T(r),

m = M(r)

are given everywhere in the domain or, in addition to the boundary conditions,
their values are specified somehow at certain points inside the domain. The

specification may be that they obtain a prescribed value or a minimum/maximum

value. The overbar emphasizes that the right-hand sides are just given functions of

space co-ordinates.

The target function in its most general form is a function

F = F(Jlu-11, |le-g|, lo -5, |[T- T, lm-ml),

the minimization of which quarantees that all the arguments are at theirminimums

with a certain distribution of the material properties

(5.1)

(5.2)
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and with a certain combination of ply angles. It should be noted, however, that the

requirements to minimize all the arguments at the same time can be contradictory.
In a pure thermal conduction problem we can, for example, simply choose

F=|r-T]

and the design variable can be the distribution of the tensor kij, see [6]. Moreover,

if only a property at a point is considered, we can use the absolute value instead of

a norm in Eq. (5.4). In some cases, e.g., considering the coefficient of thermal

expansion (CTE) in a balanced symmetric [6/-0 ] laminate (see [7]), an explicit
expression can be found for the property in question in terms of the ply properties
and the ply angles. Thus, the range in which the tailoring is possible can be

studied easily.
For more complicated problems, constrained minimization methods must be

used as described in [B‘lo]. The choice of the solution method depends not only on

the type and content of the target function, but also on the computational
resources available.

A typical feature, from the mathematical point of view, of the tailoring
problem is that there can be either none, only one or several solutions as will be

explained by the examples of the next section.

6. APPLICATIONS

Let us consider first the CTE of a balanced symmetric [6/-0], laminate

manufactured from unidirectional specially orthotropic plies. Because the

laminate is thin, we can assume that it is in a state of plane stress as are all of its

plies. Hence, according to the table, seven parameters can be used for tailoring:
the elastic constants of the ply (E;, Esy, G2, V 12) and the CTEs of the ply (o (4

and o ~), which can be varied by varying the fibre volume fraction, plus 6. The

CTEs of the laminate in x- and y-directions depend on all these parameters. Of

course, when 6 equals zero and 90°, the CTEs in x-direction equal o ;1
and 05,

respectively. Some results calculated by using the expressions developed in [7] are

shown in a dimensionless form in Fig. 2. As we can see from the graphs, we can

tailor the CTE to a value smaller than the smallest of the individual ply and also to

a value larger than the largest of the individualply used.

Figures 3,4, and 5 illustrate the dependence of the CTE, coefficient of moisture

expansion (CME), and coefficient of thermal/moisture expansion (CT/ME) on the

ply angle when some commercially available plies are used, i.e., ply properties are

fixed and the only tailoring parameter is the ply angle. However, we see that the

range of possibilities for tailoring is much broader than the engineering intuition

would suggest, e.g., laminates having negative values of the CME can be created.

In this kind of simplified tailoring one just chooses the ply angle corresponding to

the specified value of the coefficient.

(5.4)
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Fig. 2. Dimensionless longitudinal coefficient of thermal expansion of a [6/-6 ], laminate as a

function of ply angle. Ply properties: E|/Ey; = 10, v 15 =0.25, o /0 75 = 0.1; G5/E5, = 0.05, 0.5,

and 4 for curves 1,2, and 3, respectively.

Fig. 3. Longitudinal coefficient of thermal expansion (CTE) as a function of ply angle for three

[6/-6 ], laminates consisting of different commercial ply materials: Kevlar-epoxy (solid line),
graphite-epoxy (dashed line), and E-glass-epoxy (dash-dot line).

Fig. 4. Longitudinal coefficient of moisture expansion (CME) as a function of ply angle for three

[6/-6 ], laminates consisting of different ply materials: Kevlar-epoxy (solid line), graphite-epoxy
(dashed line), and E-glass-epoxy (dash-dot line).
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HÜGROTERMILISELT KOORMATUD KIUDARMATUURIGA

KOMPOSIITMATERJALIDEGA SEOTUD TEOREETILISI JA
PRAKTILISI PROBLEEME

Antti PRAMILA ja Andras SZEKERES

On kasitletud komposiitmaterjalide optimaalse siinteesi probleeme, arvestades

termohtigroelastsete interaktsioonidega. On esitatud tidpsustatud vorrandid termo-

hiigroefekti arvutamiseks ja ndidatud, kuidas kiudarmatuuri suuna muutmisega
saab siinteesida optimaalseidmaterjale.
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