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Abstract. In the framework of the discrete nonlinear Schrodinger equation with nearest-

neighbour coupling we discuss the stability of highly localized, “breather-like” excitations

under the influence of thermal fluctuations. Numerical analysis shows that the lifetime of the

breather is always finite and in a large parameter region inversely proportional to the noise

variance for fixed damping and nonlinearity. We also find that the decay rate of the breather

decreases with increasing nonlinearity and with increasing damping.
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The effects of noise on the localized excitations in the discrete

nonlinear Schrédinger (DNLS) equation with only nearest-neighbour interaction

is considered. The investigation is motivated by the need to understand the

temperature effects in molecular systems. A frequently used method for taking
into account effects of finite temperature in models describing a quantum quasi-

particle (electron or exciton) interacting with lattice vibrations is to add white noise

and damping to the lattice equations [1 2], thereby turning these into Langevin

equations. As shown in [ 2], the coupled exciton-phonon equations can under

certain approximations be reduced to a single DNLS equation describing the exciton

dynamics, where the effects of thermal fluctuations of the phonons appear as a

multiplicative noise term. The spectrum of the noise will then in general be

https://doi.org/10.3176/phys.math.1997.1/2.13

https://doi.org/10.3176/phys.math.1997.1/2.13


112

coloured, but assuming short correlation times it can be treated as white noise in the

first approximation. In order to take proper account of the damping of the phonon
system, it is necessary (at least when the white noise approximation is made) to

additionally include a nonlinear damping term in the exciton equation [*» 2]. With

this inclusion, it was shown that energy balance may be established in the exciton

system. On this background we consider in this paper the one-dimensional DNLS

equation with multiplicative noise and nonlinear damping included, and investigate
how these terms affect the discrete breathers.

The form of the DNLS equation considered here is the following:

£ d
WYn + J(¢n+l + Yn-1) + ’Y|’¢n|2'¢n — m/Jnä(l%lZ) + hnlt)Yn =O,

where the last two terms describe nonlinear damping and multiplicative Gaussian

white noise, respectively. The noise is assumed to have zero mean and variance

2D, 1.e.,

(hn(t)) =O, (hn(t)h,(t)) = 2Dölt — t)önn:

Equation (1) can be derived from the equation of motion for a quantum quasi-
particle (e.g., electron or exciton) treated in the nearest-neighbour tight-
binding approximation and interacting with aclassically treated optical phonon field

in contact with a heat bath, i.e. (in units of A = 1),

“»bn + J("/}n+1 + 'šbn—l) + XunPn = 0,

Mün» + MXün + Mwšun - XYn]* = on(t).

Here 1), is the amplitude of the quasi-particle wave function at site n and u,,

represents the elastic degree of freedom at site n. Furthermore, J is the nearest-

neighbour hopping constant, is the coupling constant between the quasi-particle
and the phonons, M is the molecular mass, A is a damping coefficient, wy is the

Einstein frequency of each oscillator, and o, (%) is a stochastic force acting on the

phonon system. Equation (4) is the Langevin equation for the phonon system, so

the variance of the stochastic force is related to the external temperature 7" and the

damping coefficient A according to the fluctuation-dissipation theorem. TheDNLS

equation can be derived from Egs. (3) and (4) if the quasi-particle field is assumed

to vary slowly in time compared with the lattice vibrations [** 2]. This results in the

following relation between the parameters of Egs. (1)—(4):

-

X 77='7Ä2, D =nkgT,’Y—ng’ w8

where kp is the Boltzmann constant.

The DNLS equation has as its only conserved quantity the excitation number,
N =Y. |%n|?, while the Hamiltonian Hpnr,s

Hpnis = —J) (¥n¥niy + Ynthntl) — šz ln%

(1)

(2)

3)

(4)

(5)

(6)
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will evolve according to

fl;&s_ = —„znj (%(lw„|2))2 + znjh„a)%(I9nl?)

indicating that the damping and noise terms on average provide dissipation and

energy input, respectively.
We integrate Eq. (1) numerically using a single-site initial condition,

Yn (O) — õn,no,

varying the parameters -y, 7, and D for the fixed values N = 1 and J = 1, and

using a lattice large enough to simulate an infinite chain. For this choice of initial

condition the DNLS equation exhibits a self-trapping transition at y = v, ~ 3.5

when n = D = 0; when 7y > 7., a finite part of the excitation will remain trapped
around the initial site during the time evolution [37°]. As + is increased beyond
Ye, the total excitation number of the part trapped around the initial site increases,
and the width of the excitation decreases. In the calculations reported here, we

consider nonlinearities vy > 5, for which the trapped excitation has a highly discrete,
breather-like nature.

An illustration of how the presence of noise in Eq. (1) affects the DNLS

breathers is given in Figs. 1 and 2. We see that after a short initial interval,
where the breather is created and the initial-site probability |l, |? rapidly drops to

a value close to its stationary value in the absence of noise, the noise will cause a

slow, almost linear, decrease in the breather intensity with time. This linear decay
continues until the value of |l, |? has been reduced to approximately half its initial

value, at which point the initial-site probability rapidly drops to values close to

Fig. 1. Evolution of an initially single-sited localized excitation. Parameter values are y = 10,

7 = 2, and D = 0.05.

(7)

(8)
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Fig. 2. Typical evolution of the initial-site probability for different values of 7, i, and D. In

(a) we have n = 0, D = 0.05, and from bottom to top v = 5, 10, 15, and 20; in (b) y = 5,
D = 0.05, and from bottom to topn = 0,1, 5, and 10; in (¢) ¥ = 5,7 = 1.0, and D = 0.005,
0.025, and 0.05 from top to bottom. The particular realization of the noise is the same in all

cases.
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zero, signifying that the breather is destroyed. After this point the system behaves

diffusively, similar to the corresponding linear system (n = y = 0), with the initial-

site probability decaying on average as t~'/2. Thus, we find that the lifetime of the

breather is always finite, but increases when (a) the nonlinearity -y is increased, (b)
the nonlinear damping 7 is increased, or (c) the noise variance D is decreased (see

Fig. 2). The quantitative influence of the parameters -y, 1, and D on the lifetime

has been investigated by performing numerical calculations for several different

realizations of the noise, and determining the decay rate, x, as the mean-value of

——% (lYno|*) in the time interval of almost linear decay. Some of these results are

displayed in Fig. 3. Figure 3a indicates that the decay rate is proportional to the

variance of the noise over a large parameter region. We found this proportionality to

be valid as long as the noise is so weak that the creation of the breather is unaffected

(if the noise is too strong, no breather-like state will be created, and the diffusive

spreading starts immediately). As is shown in Fig. 3b, the decay rate for fixed D

and 7) is approximately proportional to y~2 in the studied parameter range, while

the data in Fig. 3c, showing the variation of x with 7, do not seem to follow any

simple scaling law.

In order to gain some analytical understanding of the effects imposed on the

DNLS breathers by the presence of noise and nonlinear damping, we use a method

of collective coordinates. This approach necessitates a rather elaborate analysis
where a Fokker—Planck equation describing the averaged dynamics of the system
is derived. From this Fokker—Planck equation it is possible (all details can be

found in [®]) to find the following approximative expression for the evolution of

the probability at the initial site,

( ———no" ~ 1 >

2°
2

:DJ?

72
f

fort < 6—%7. This result shows that the collective coordinate approach explains
qualitatively the initial linear decay of the breather observed in the numerical

simulations. The coefficient 6.D.J2 /2 exhibits the same dependence of D/2 as

was observed numerically. Additionally we find that the prefactor 6J2 is of the

same order of magnitude as what was found numerically. However, due to the

approximate character of the analytical approach, the n-dependence predicted by
Eq. (9) differs from the numerical results.

In summary, we have found that introducing multiplicative white noise and

nonlinear damping into the DNLS equation with nearest-neighbour coupling will

cause decay of the self-trapped discrete breathers which are created for large
nonlinearities. Numerical analysis showed that the intensity at the central breather-

site would initially decrease approximately linearly with time. The decay rate was

found to decrease with increasing nonlinearity y and with increasing damping 7,

and to increase with increasing noise variance D.

(9)
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Fig. 3. Quantitative dependence of the decay rate, k, of the breather as a function of (a) noise

strength D, (b) nonlinearity parameter-y, and (¢) nonlinear damping parameter7). In (a)n = 0.1

for both curves and in (c) D = 0.05 for both curves; other parameter values are as indicated in

the figures.
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MITTELINEAARSES SCHRODINGERI SÜSTEEMIS
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ja Juri B. GAIDIDEI

Diskreetse mittelineaarseSchrodingeri vorrandi baasil on analiiiisitud tugevasti
lokaliseeritud briiseri tiilipi hdirituste stabiilsust termiliste fluktuatsioonide korral.

Mudel arvestab interaktsiooni ainult ldhimate naabrite vahel. Numbriline analiiiis

nditas, et briiseri eluiga on alati 10plik ning po6rdvordeline miira karakteristikuga
fikseeritud sumbuvuseja mittelineaarsuse korral.
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