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Abstract. A forced Korteweg—de Vries (KdV) system with a harmonic initial condition was

studied. To determine the possible solution types by the nonclassical pseudospectral method,
we focused on a long-term soliton formation process for establishing all stationary solutions.

As aresult, typical regions were found in the subspace of parameters of the given KdV system
for a strong perturbation field. As examples of typical solutions of the KdV system, one can

find there single, double, negative, cnoidal, and suppressed solitons.
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1. INTRODUCTION

Thecelebrated Korteweg—de Vries (KdV) equation describes wave propagation
in conservative systems taking dispersion and nonlinearity into account. In practical
applications, however, one needs to study nonconservative systems, for example,
wave propagation in a layer with energy influx, where the KdV equation must be

generalized by introducing a perturbative term, which results in

ou ou u
5% +uB_x +õs + yP(u) =O.

Here ¢ and «y are the dispersion and the perturbation parameter, respectively,
and the nonlinear operator P(u) represents the perturbation field (additional body
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force). We say that the field is strong, weak or very weak if the perturbation

parameter v > I,y < lory < 1, respectively. In [ 2] the system is

studied for P(u) being a cubic polynomial and v < 1 (very weak field) using
the perturbation methods. These results are generalized for the case of a n-degree

polynomial perturbative term in [3].
In the present study P(u) = u(u — v1)(u — v9), i.e., the perturbation field

is a cubic polynomial. Zeros of the polynomial, v; and vg, are called perturbation
fieldparameters. Such an equation describes wave propagation in a microstructured

layer, for example, seismic waves in the lithosphere [* °].
The concept of soliton is here the same as stated in the original work of Zabusky

[6]: A soliton is “a localized or solitary entity that propagates at a uniform speed
and preserves its structure (or shape) and speed in an interaction with another such

solitary entity”. It turns out that this concept of soliton is, generally speaking, not

violated for the KdV equation with a perturbation field.

In Section 2 the problem isstated and a brief overview of the methods used later

is given. Results of numerical experiments are described in Section 3. The final

section presents conclusions.

2. STATEMENT OF THE PROBLEM AND METHODS OF ANALYSIS

Let us consider the perturbed KdV (pKdV) Eq. (1) with the harmonic initial
condition

u(z,o) = —sinz

and the periodic boundary condition

u(xz,t) = u(x + 27,%)

The goal of the present work was to determine how the perturbation parameters
7Y, vl, V2, and the dispersion parameter ¢ affect the solution of the given pKdV
system (1)—(3). We reduced this complicated question into three smaller and less

complicated ones: (i) How do field parameters vl,v affect the solution forthe fixed

values of parameters J and y? (ii) How does the perturbation parameter -y affect the

solution? (iii) How does the dispersion parameter d affect the solution? The first

question was studied in detail. For the others, only some ideas are given, leaving
the full answers to forthcoming publications.

Thenonclassical pseudospectral method is applied for numerical integration of

Eq. (1). Space derivatives are found by the fastFourier transform (FFT)and in time

the Runge—Kutta method is used. This point makes the method nonclassical — we

have found several advantages of using such a scheme which will be discussed in

a future paper. Here we merely demonstrate the idea of our method. The initial

equation can be represented in the following discrete form:

(2)

(3)
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Here U = {u(i%F, t)}i]\;l is a time-dependent vector and D is the numerical

differential operator, defined here by theFFT. It is clear that one can use the Runge—
Kutta method for the numerical integration of the differential equation (4) as an

ordinary differential equation system.
Since we apply the FFT at each time step, we can readily use the information

given by the Fourier coefficients for analysing the state of the solution. In Section 3,
beside the wave profiles, we will show time plots of spectral densities, representing
squares of moduli of Fourier coefficients [7]. Spectral densities provide the

following information: (i) When the stationary solution has formed, all spectral
densities remain constant. (ii) In the case of the trivial solution all spectral densities

equal zero. (iii) If the stationary solution will not form, then the spectrum will be

quasiperiodic. Here by the trivial solution we mean the case when the perturbation
field suppresses the initial sine wave to a constant function. For the given equation,
only three trivial solutions are possible — these are the zeros of the cubic polynomial.

First we fix the dispersion parameter ¢ so that the KdV system with the harmonic

initial condition gives a certain number of solitons. Next we fix the perturbation
parameter <y so that the process of stationary solution formation is fast enough.
For this purpose a strong perturbation field is needed. Finally, the effect of field

parameters v; and vy is closely studied.

After the study of the problem with a strong perturbation field, a weaker field

is considered by decreasing the value of v to see how this parameter affects the

solution formation process. It shouldalso be noticed that the value of the dispersion
parameter ¢ is varied.

3. RESULTS

The basic case corresponds to § = 10711, which gives three interacting solitons

for v = 0 [®]. After fixing the dispersion parameter, the perturbation parameter

v = 4 is used, which gives us a strong perturbation field. This choice is quite
arbitrary — we only need the formation process to be fast enough.

Diagrams in Fig. 1 summarize the results of the first part of our research. The

regions with different shading separated by lines correspond to different solution

types. Diagrams a and b in Fig. 1 characterize the same results but from a different

point of view: Fig. 1a has axes v; and vy which are zeros of the polynomial P(u)
in Eq. (1), and Fig. 1b has axes labelled with « and p, which are also perturbation
field parameters linked with the primary field parameters as follows:

V 1 = pClosa, vy = psina

These are polar coordinates for the (v, wvs)-plane. For better understanding, a

rectangular plot of parameters plane « and p is shown in Fig. Ib.

The main idea of using polar coordinates is that when moving away from

the origin of the (v, vs)-plane along half lines, the type of the solution remains

(5)
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unchangeable for most cases (see vertical lines in Fig. 1b). Thus, polar coordinates

appeared most convenient for our further analysis.
Before moving on to the essential part of this diagram, we should point out that

Eq. (1) is invariantunder parameter mapping (v, vs2) + (v2,vl). Thus itis enough
to consider only half of the (v, vy)-plane as shown in Fig. la.

Next we shall present some typical solutions in the half circle with the radius

p = 1.5; in Fig. 1b it is just a horizontal line. We consider this to be the best

way to get an overview of this diagram. Starting with the case a = 65, we will

consider all the solutions referred in the diagram. We do not discuss regions with

trivial solutions because of lack of space.

The first quarter of the (v;,vy)-plane. First the explanations of the figures
will be given and then the example cases will be commented on. In Fig. 2 (the
following applies also to the rest of the figures) the time slices of the solution of the

pKdV system are depicted (Fig. 2a) and a time plot of spectral densities S(n, t) is

shown (Fig. 2b). With regard to the solution profiles, it turned out necessary to shift

the solution profiles in space, when very fast solitons emerged. So, the figure shows

a parameter ¢ which is the speed of the relative coordinate frame we are “sitting
on” when looking at this figure. We define here also a new space coordinate as

follows: X = x — ct. On the vertical axis of Fig. 2a the perturbation polynomial
P(u) is depicted to demonstrate how its zeros are spaced with respect to the initial

sine wave and to the stationary solution formed. The initial sine wave (dashed)
is plotted also at the end of solution formation to illustrate how the integration

Fig. 1. Regions, where different solution types are realized: a, (vl, v2)-plane; b, (a, p)-plane.
Different hatch types X, /, and \ correspond to trivial solutions u(z,t) = 0, u(z,t) = vy, and

u(z,t) = v2, respectively.
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process has deformed it under the given perturbation field. A complete data set that

characterizes the case is presented in the upper right corner ofFig. 2b.

It is important to point out that there exist nontrivial stationary solutions for this

case. Actually, this region in the first quarter of the (v;,v2)-plane was a starting

point in our studies, as Engelbrecht and Peipman first observednontrivial stationary
solutions for the forced KdV system in this region [°]. Here one stationary soliton

forms (Fig. 2a). Remember that the classical KdV system gave us three interacting
solitons. As demonstrated in the case of the stationary solution, all spectral lines

will remain constant (Fig. 2b).
Now we explain the concept of the strongfield. As one can see in the time plot of

the spectral lines, the field suppresses the first line very rapidly down(or up, Figs. 3—

5). Metaphorically speaking, the given field does not like the initial sine wave very
much and is strong enough to do something about it.

The second quarter of the (v, v;)-plane. In Fig. 3a negative soliton is

shown. Theconcept of negativity is quite simple: an ordinary soliton is just turned

upside down, resulting in a negative soliton. As seen in Fig. 3b, the first spectral
line has changed its behaviour — at zero time the line has a different tangent sign
(cf. Fig. 2b). The rule of thumb is that the same phenomenon occurs when going
over to the third quarter. Actually, it is not hard to prove that the sign of tangent of

energy at zero time is determined by the following hyperbola in the (vy, v2)-plane:
3 + 4vive = 0.

Figure 4 illustrates the case of a double soliton — two solitons that are stuck

together.
. Figure 5 represents again the case where only one soliton forms. Here we see

how the perturbation field suppresses the two smaller solitons (see the time moments

t~llandt = 4).
The third quarter of the (v;, v2)-plane. Figures 68 give classical examples

of single, double, and negative solitons. In addition to these classical examples, a

Fig. 2. Typical example of a stationary solution with one soliton (case a = 65 in Fig. 1)
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Fig. 3. Example of a darksoliton solution (case o = 128 in Fig. 1b)

Fig. 4. Example of a double soliton solution (case & = 132 in Fig. 1b)

Fig. 5. Example of a single soliton solution (case @ = 140 in Fig. 15). Notice how smaller

solitons are suppressed (see also the next figure).
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Fig. 6. A single soliton solution (case a = 205 in Fig. 1b)

Fig. 7. A double soliton solution (case o = 208 in Fig. 1b)

Fig. 8. A negative soliton solution (case & = 210 in Fig. 1b).
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small region exists in the third quarter where something interesting appears in the

formation of a stationary solution: at a certain moment the perturbation field causes

a regular behaviour of the solution (Fig. 9). This solution reminds very much of

the cnoidal wave that is a periodic solution of the classical KdV equation. We call

this kind of solutions as cnoidal type solitons.

4. CONCLUSION

As a result of this study we have established the following properties of the

pKdV system with the given four parameters:
1. In the case of a stationary solution, the field parameters vl, v define the type

of the solution. It can be either single, double, multi-, cnoidal, negative soliton or a

trivial one (with a stronger perturbation field, most cases are of trivial type).
2. Regarding the perturbation parameter y (which determines the strength of

the field), the following properties were established: (i) the strength of the field

determines the possibility of a stationary solution; (ii) a larger value speeds up the

formation process; (iii) a weak field allows a larger number of solitons.

3. The dispersion parameter J defines the maximum number of possible
solitons.
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SOLITONID HÄIRITUSEGA KORTEWEGI—de VRIESI SÜSTEEMIS

Pearu PETERSON ja Andrus SALUPERE

Vaatluse all on kuuppoliinoomi tiiiipi hdiritusega Kortewegi—de Vriesi siisteemi

voimalikud lahendid harmoonilise sisendi korral. Kasutades mitteklassikalist

pseudospektraalmeetodit on kindlaks médratud lahendite tiiiibid, mis on voimalikud

vaadeldud siisteemi puhul. Erilist tdhelepanu on pooratud tugeva hdiritusvilja
kvalitatiivsete parameetrite (kuuppoliinoomi nullkohtade) mdjule. On kindlaks

tehtud, et hédirituse parameetrite erinevate komplektide puhul vdivad harmoonili-

sest sisendist formeeruda jargmist tiitipi lahendid: iiksiksoliton, kaksiksoliton,

negatiivne soliton, knoidaalset tiilipi soliton voi triviaalne lahend. On selgitatud
tiitipiliste lahendite formeerumist janende spektraaltihedusjoonte evolutsiooni.
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