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Abstract. Every affine MDS-code is represented by a so-called partial quasi-ternary. Questions
referring to the uniqueness of this representation are discussed. For this purpose, a modern

concept of isomorphy for codes is used and different levels of isomorphy for partial quasi-
ternaries are introduced.
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1. INTRODUCTION

Maximum distance separable codes (MDS-codes) are closely related to discrete

geometric and combinatoric objects like finite affine planes, mutually orthogonal
Latin squares, and quasigroups of finite order (cf. Golomb and Posner [!],
Dénes and Gergely [2], Usan [3], and Cupona et al. [*]). Besides, MDS-codes

are appreciated in coding theory because they have among low redundancy high
error-detecting and -correcting capabilities (cf. MacWilliams and Sloane [°], Heise

and Quattrocchi [6]).
Karzel and Oswald [?], and Karzel and Maxson [2] construct affine MDS-codes,

i.e. (n,2)-MDS-codes, by so-called coding-sets based on near-rings and on groups.

Quistorff [°] generalizes this method by representing every affine MDS-code and
every set of mutually orthogonal Latin squares simultaneously through a so-called

partial ternary. This algebraic object is a weakened version of the ternary which

Skornyakov ['°] uses for co-ordinating an arbitrary affine or projective plane.
Usually, such a plane is co-ordinated by the stronger notion of a ternary field
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(cf. Lingenberg ['!]). A modern concept of isomorphy for codes is given by
Constantinescu and Heise [2].

In the present paper, the partial ternary is once again slightly weakened to

the so-called partial quasi-ternary which is sufficient to represent an affine MDS-

code. Four levels of isomorphy are introduced for partial quasi-ternaries. With both

concepts, questions referring to the uniqueness of the given representation up to

isomorphy are discussed. ;

2. ALGEBRAIC REPRESENTATION

Ifn € N and X is afinite set, asubset C ofK” is called a(block) code of length
n. Lett € Z, := {1,2,...,n}. The code C is called an (n,t)-MDS-code if for

pairwise distinct zl, ..., z+ € Z, and not necessarily distinct yy, ...,y € K, there

exists exactly one codeword w = (wj,...,w,) € C with w,, = y; forall i € Z;.
In the following, MDS-codes with ¢ = 2 are discussed which Karzel and Maxson

[®] call affine MDS-codes. To exclude trivial situations, always let |K| > 2.
For the aspired representation of affine MDS-codes, the relatively weak term of

a partial quasi-ternary is presented.

Definition 1. Let K be a finite set, L a subset of K and T : K X Lx K - K

a mapping. (L,K,T) is called an |L|-partial quasi-ternary if the following
conditions are valid. _

(PQTI) There exists an element 0 € L withT(a,o,c) = cforall a,c € K.

(PQT2) Foralla,d € K andallb € L, there exists one x € K withT(a,b,z) = d.

(PQT3) Forallb,b' € Lwithb # b andalld,d € K, there exists one (z,y) € K>

withT(x,b,y) = dand T(x,b',y) =d'.

The cardinality |K'| is called the order of the partial quasi-ternary.

Remark 1. Let (L, K, T) be a partial quasi-ternary. Then there exists exactly one

element 0 € L, exactly one element z € K, and exactly one pair of elements

(z,y) € K? which fulfil the conditions (PQTI), (PQT2), and (PQT3), respectively.

Proof. Fora € K and b € L, the mapping « : K — K,z — T'(a, b, x) is surjective
and hence bijective. This solves the case (PQT?2).

For b,” €L with b#ob, the mapping B:K2— K2, (z,y)—
(T'(z,b,y), T(x,b,y)) is surjective and hence bijective. This solves the case

(POT3
Suppose that there exist o,o’ € L with T'(a,o,¢) = ¢ = T(a,o,¢) for all

a,c € K. ThenT(o,o,o) =0 = T(0',0,0) is valid. Because of the above proved
uniqueness in (PQT3), it holds true that 0 = o’. This solves the case (PQTI). [

After this preparation, affine MDS-codes can be represented as follows.
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Theorem 1. Let (L, K, T) be an n-partial quasi-ternary. Choose s € Zn+l anda

bijection ¢ € Bij(Zpyl \ {s},L). Fora,c € K, put

(a,O) | — { T(a,p(i),c) ifi € Znta \ {s},
w 7 = Aa fi = s.

Then C := [(wša“c), ...,wšg”„cl))la, c € KY isan (n +1,2)-MDS-code.

Proof. Let z1,x22 € Zn+l Withzil $72 and yl,y2 €K. Incase s = 71, let ce€ K

be the unigue solution of T(yl,p(x72),c) = y2. Then (wšyl'c), ...,wéüic)) € C

is the desired codeword. The case s = 3 can be solved analogously. In case

s & {zl,l2}, let (a,c) € K? be the unique solution of T'(a, ¢(zl),c) = y; and

T(a,p(z2), c) = y2. Then (wi*?,
..., w,(&cl)) €C is the desired codeword. CI

The Singleton bound forMDS-codes (cf. e.g. Heise and Quattrocchi [6]) shows

that n < |K| is valid for every (n + 1,2)-MDS-code C C K"*!. Regarding this

fact, the following converse version of Theorem 1 can be formulated and proved.

Theorem 2. Let C C K"*! be an (n + 1,2)-MDS-code. Choose two distinct

elements s,t € Zn+l,asetL C KwithÄL[ = n, anda bijection ¢ € Bij(L, Zp+l\
{s}). Fora,c € K andb € L, put {w(®9} := {w € C|lws = a and w; = c} as

well'as T{aybyc) := wl(pa(,bc)). Then (L, K,T) is an n-partial quasi-ternary.

Proof. 1tholds true that T'(a, %~ (t),c) = wga,c) = ¢, which proves (PQTI).
Leta,d € K and b € L. There exists exactly one codewordw € C with w; = a

and Wyyy = d. Hence, w = w(@%t) because these codewords coincide in two

distinct positions s and ¢. Then T'(a, b, w;) = wl(;(’gt) = wyp) = d, which proves

(PQT2).
Let b,/ € L withb # b/ and d,d’ € K. There exists exactly one codeword

w € C with wypy = dand wyy) = d'. Hence, w = w®s¥) because these

codewords coincide in two distinct positions. Then T'(ws, b, w;) = wS’éZ;wt) =

Ww(oy = d and T(ws, b', w:) = d hold true. This proves (POT3 DO

3. CONCEPTS OF ISOMORPHY

Following Constantinescu and Heise ['?], a code, and especially an MDS-code,
should be seen as atriplet (K", d,C), where d : K" — K", (v,w) — |{i €

Zp|v; # w;}| is the Hamming metric on K™ and C' is a subspace of the metric

space (K™, d), because the code is always regarded together with the metric.

By this point of view, an isomorphism between two codes should be defined as

an isometry between these codes which can be extended to an isometry between the

underlying metric spaces:
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Let K and K' be finite sets with |[K| = |K'| as well as C C K" and

C' C (K')™. A bijection v € Bij(C,C") is called an isometry from C to C’ iff

d(y(v),y(w)) = d(v,w) is valid for all v,w € C. Abijection v € Bij(C,C’) is

called an isomorphism from C' to C" iff 7 is an isometry from C to C’ which can be

extended to an isometry from K" to (K')".
Next, two important isometries are regarded. Herewith, Sx = Bij(K, K)

denotes the symmetric group of all permutations on K, and S, := Sz,:
Let K be a finite setand n € N. Letp := (p1,...,0n) € (Sk)". By

p: K" — K", (wy,...,wp) — (p1(w1), ..., pn(wp)), an isometry of K™ is induced

which is called a configuration. Letw € S,. By 7@ : K™ — K", (wl, ...,wp) —

(Wr—l(l)s ey Wr=l(n))» an isometry of K™ is inducedwhich is called an equivalence

mapping.
Constantinescu and Heise [*2] prove that every isometry of K™ is a product of

a configuration and an equivalence mapping. By analogy, every isometry from K"

to (K')™ is, in case |K| = |K'|, a product of a configuration 7 (of K™) and an

equivalence mapping g with p = (pl, ..., pn) € (Bij(K, K'))".
In order to establish a useful concept of isomorphy for partial quasi-ternaries,

four levels are introduced:

Definition 2. Two partial quasi-ternaries (L, K,T) and (L', K',T") are called

(i) pseudo-isotopic,

(i1 isotopic,

(iil) semi-isomorphic, or

(iv) isomorphic,

iff there exist(s)

(i) a,O, 7 € Bij(K,K') forallb € L andB € Bij(L, L") with

(T(a,b,¢)) = T'(a(a), B(b),6(c)),

(i) «,d,7 € Bij(K, K') and8 € Bij(L, L") with

T(T(a,b,c)) = T(a(a), 8(b), õ(c)),

(iii) 7 € Bij(K, K') and8€ Bij(L, L') with

7(T(a,b,c)) = T'(r(a), B(b), 7(c)),

or
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(iv) T € Bij(K, K') with (L) = L' and

r(T(a,b,o)) = T'(r(a), 7(b), 7(c)),
respectively.

In this definition, part (iv) follows the usual definition of isomorphy between

two ternary fields, while part (ii) follows the weaker concept as it is used for

quasigroups (cf. Dénes and Keedwell [l3]). Parts (i) and (iii) are useful in the next

section.

4. PROBLEMS OF ISOMORPHY

In this section, the following questions are discussed:

1. If an affine MDS-code is constructed by a given partial quasi-ternary
according to Theorem 1 and if anew partial quasi-ternary is constructed by this code

according to Theorem 2, what level of isomorphy exists between the given and the

new partial quasi-ternary?
2. If a partial quasi-ternary isconstructed by agiven affine MDS-code according

to Theorem 2 and if a new affine MDS-code is constructed by this partial quasi-
ternary according to Theorem 1, are the given code and the new code isomorphic?

3. Are two affine MDS-codes, constructed by the same partial quasi-ternary
according to Theorem 1, isomorphic? More generally: What level of isomorphy
between two partial quasi-ternaries is sufficient in order that the two affine

MDS-codes constructed according to Theorem 1 are isomorphic?
4. What level of isomorphy exists between two partial quasi-ternaries which are

constructed by the same affine MDS-code according to Theorem 2? More generally:
What level of isomorphy exists between two partial quasi-ternaries which are

constructed by two isomorphic affine MDS-codes according to Theorem 2?

Theorem 3. Let (L, K, T) be an n-partial quasi-ternary. Let C C K" be the

affine MDS-code constructed through s € Zynyl and ¢ € Bij(Zpyl \ {s}, L)
according to Theorem 1. Let (L', K, T") be the partial quasi-ternary constructed

through s' := s, t' := ¢=1(0), L' C K with|L'| = n,and € Bij(L',Zn4l\{s'})
according to Theorem 2. Then (L, K,T) and (L', K,T') are semi-isomorphic.

Proof. Leta,c € K and b € L. Put j

,w(a,c) —

T(aa (p(Z), C) if1 € Zn+l \ {3}7
S a ifi=s,

according to Theorem 1. Put (v(4%)) := {v € Clvy = aand vy = c}. Itholds true

that vgfl’c) = 'wgf”c) and 'už,a) — wž,a). Hence, (%) = (39 is valid. Therewith,

T (o, Bey wO, =bB S (a 7 ik(B) ) O
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Theorem 4. Let C C K™t be an affine MDS-code. Let (L, K,T) be the partial
quasi-ternary constructed through s,t € Zpl with s # t, L C K with |L| = n,

and y € Bij(L,Zn+l \ {s}) according to Theorem 2. Let C' C K"l be the

MDS-code constructed through s' € Zy,1and ¢ € Bij(Zp4l \ {s'}, L) according
to Theorem 1. Then C and C' are isomorphic.

Proof. Put .: Zn+l — ŽZn+l:

| { poi iigks,
PR

LG e

s ifi=s.

Let w € C, then

Wy(b) = T(Ws,b, we) (1)

is valid. According to Theorem 1, for p(Wsw) € C! it holds true that

,U(ws,wt) —

T(wB7 (p(i,)awt) if i € Zn+l \ {3,}’
(2)

v Ws f3" =5".

For i’ € Zpnyl \ 18 it follows that wr-16 = Wyop(iry = T(ws, p(7), w) =

fuš,ws”wt) and Wr-1(5) = W = všf”s'wt) by Egs. (1) and (2). Hence, ž(w) =

v(Uswt) Put p := (idk, ~ idrx) € (Sr)"T!, then õõ is the desired isomorphism
from C to C. O

Theorem 5. Let (L,K,T) and (L',K',T') be two pseudo-isotopic n-partial
quasi-ternaries. Let C C K"™! and C' C (K')"*! be the affine MDS-codes

constructed through s € Zy+l and ¢ € Bij(Zpl+l\{s}, L), andthrough s’ € Zy1,
and p' € Bil(Zn+l X {s'}, L"), respectively, according to Theorem 1. Then C and

C' are isomorphic.

Proof. Let o, 8,7, € Bij(K,K') forallb € Land 8 € Bij(L,L') so that

(T (a, b, ¢)) = T'(afa), B(b),0(c)). Put 7t : Zn4+l — Žn4l

N-i . pe

A { (¢) 7 Be(d) ifis,
! S If2=ss,

and p := (pl,-,Pn+l) € (Bi)(K, K))"*T! with

D
T,B"lcp’(i’) if ¢/ ;é 8„

RLa f? =s".
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Leta,c € K and w'(*°) € C according to Theorem 1, as well as v := pir(w(@9).
Fori' € Z, 11\ {s'}, it holds true that

U — Pi (wšra:ž)(z/))
—

(a,e)

| = 7o)(W ap-1)
= 18o'l (T(CL, s—l(’o/(,1:/), C))

= T'(a(a), p'(7), õ(e))
— wšla(a),õ(f:))

and

v = prlw )
= afwf®?)
= «a(a)

— wš/a(a),õ(C)).

Thus, v = w(*2); c)) € C and piis the desired isomorphism. O

As a corollary of Theorem 5, the following statement also holds true.

Remark 2. Let (L, K, T) be an n-partial quasi-ternary. Let C, C" C K"! be the

affine MDS-codes constructed through s € Z,1and ¢ € Bij(Z,4l \ {s},L),
and through s’ € Z,,11 and ¢’ € Bij(Z,l \ {s},L), respectively, according to

Theorem 1. Then C and C” are isomorphic.

The following example shows that two partial quasi-ternaries which are

constructed by the same affine MDS-code according to Theorem 2 are not

necessarily isomorphic.

Example. Let K = {l,2} and

C =(4(1,1,1), 1,2,2), (2,1,2), 2,2,1)) <€.

Then C is a (3,2)-MDS-code. If someone chooses s=s'=l andt=% =2,
as well as L=L' = K and Y,/ € 8ij((1,2),(2,3)) with Y$(1) = Y'(2) =2

and Yy(2) =y'(l) =3, he gets T(1, 1,1)=1T(22,2) =T/(1,1,1) =1 and

T'(2,2,2) =2. Suppose that (L,K,T) and (ZI',K',T) are isomorphic.
According to Definition 2. (iv), there exists then a 76€855» with

elglL (T(LLI])) = Tl = T(TC),2,2) =

T'(r(2),r(2),r(2)). This will lead to the contradiction 7(1) = 7(2). Hence,

(L,K,T) and (L', K',T") are not isomorphic, but they are semi-isomorphic. This

can be seen by choosing 7,8 € Sy with 7(1) = 5(2) = 1 and 7(2) = (1) = 2.
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This example motivates the next theorem:

Theorem 6. LetC C K™ be an affine MDS-code. Let (L, K,T) and (L', K,T")
be the partial quasi-ternaries constructed through s,t € Zp+l withs #t, L C K

with |L| = n, and¢ € Bij(L,Zn+l \ {s}), and through ' := s,t' :=t, L' C K

with |L'| = n,and ' € Bij(L', Z,+l\{s'}), respectively, according to Theorem 2.

Then (L,K,T) and (L', K,T") are semi-isomorphic.

Proof. Leta,c € K and b € L as well as w(®% € C and v(%° € C according to

Theorem 2. Put 3 := (¢')~l4 € Bij(L, L’). It holds true that pša*c) = všfl”c) =

a = wg‘“) and v§“’c) = vš,a”c) =€ = w§“’c). Thus, v(4%) — w(40), Hence,

T'(a, B(b), ) = vfp‘fggb) = wf;(f)) = T(a,b,c). Thus, (L, K,T) and (L', K, T") are

semi-isomorphic. []

In the generalization of this theorem to the case of two isomorphic MDS-codes,

only pseudo-isotopy between the constructed partial quasi-ternaries can be proved.

Theorem 7. Let C C K" and C' C (K')"*! be two isomorphic affine
MDS-codes. Let p € (Bij(K,K')"! and 1 € Spil so that p 7 is an

isomorphism from C to C'. Let (L,K,T) and (L', K',T") be the partial quasi-
ternaries constructed through s,t € Zynyl withs # t, L C K with |L| = n,

andy € Bij(L, Zn+l X (s)), and through s' := 1(8), F := 1(t), L' C K' with

IL'| = n, and y' € Bij(L',Zn+l X {s'}), respectively, according to Theorem 2.

Then (L, K,T) and (L', K',T') are pseudo-isotopic.

Proof. Put a := pPr(s>>B := (P)'mwp, 6 := Pr(t) 2Nd Th := Prwy(o) FOT

b € L. Leta,c € K and w49 € C according to Theorem 2. Furthermore, let

u := pä(wWYW9) € C. It holds true that u = p„(s)(wša'c)) = a(a) =: a' and

Uy = Palt) (wža'c)) = õ(e) =: c!. Let v(2s°) € C according to Theorem 2. Then

'ušfll”cl) =a' =uy and fuž,a ) —o' =up are valid. Thus, v(¢¢) =4. Hence,

T'(a(a), B(b),8(c)) = T'(a’,B(b),c)
— ,U(all,cl)

%' B(b)
T Urw(b)

—

(a,c)
— Prw(b) (w'l,b(b))
= n(T(a,b,c)).

Thus, (L, K,T') and (L', K',T") are pseudo-isotopic. O
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AFIINSETE MDS-KOODIDE ALGEBRALISE ESITUSE ISOMORFISMI

PROBLEEMID

Jorn QUISTORFF

Iga afiinne MDS-kood on esitatud niinimetatud osalise kvaasiternaari abil ja
késitletud selle esituse iihesusekiisimusi. Selleks on kasutatudkoodide isomorfismi

niitidisaegseid definitsioone jarakendatud neid osalistele kvaasiternaaridele.
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