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Abstract. It is shown that the phase transition in a two-band pair-transfer superconductor
can be described by one order parameter appearing as a linear combination of coupled order

parameters associated with interacting bands. The corresponding effective one-variable free

energy is found.
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A two-band model of superconductivity where the superconducting phase
transition is caused or at least favouredby the interbandpair-transfer interaction was

introduced in ['~*]. After the discovery of high-T, superconductivity, this trend

in theory gained in importance (see for review [°]). In an interband pair-transfer
model the superconducting phase is described by two coupled order parameters,
the equilibrium values of which turn simultaneously to zero as temperature rises

and passes through 7,. The mean-field free energy, which depends on these

order parameters as on independent variables, was derived in [®]. In the present
note it is shown that at least the equilibrium properties of the model under

consideration can be described by an effective free energy depending on only one

order parameter. Such approach means that we neglect the fast relaxing deviations

from the equilibrium state of the system. The effective one-variable free energy is

shown to be of canonical form of the Landau expansion for a second-order phase
transition. ;

In the vicinity of the supereonducting transition the expansion of the mean-field

free energy is powers of homogeneous order parameters and 7" — 7T, for a two-band
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superconductor where the phase transition is caused by the interband pair-transfer
interaction has the following form [°]:

F=F+ F,+ Fy, (1)
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and © = (T — T.)/Te, w = W/|W|, é,(k) = es(k) — p. Here &,(k) is the

energy of an electron in the band numbered by o (o 0 = 1,2); p is the chemical

potential; W is the constant of interband pair-transfer coupling. The variables A 1,2
are superconducting orderparameters ofthe bands €; »; F{ is independent of A 1 2. In

[6], the free energy (1)—(3) was derived as a function of variables 6, = —2WA\; and

d 9 = 2W Xo. The equilibrium values of A » minimizing the mean-field free energy

are given self-consistently by the quantities ) - < Q 1 kl% Ikt > [°], where

ai 1s the annihilation operator of an electron. The temperature of superconducting
phase transition 7} is determined in the present model by the equation

mne =4. (7)

It must be pointed out that the approximate free energy (1)—(3) reveals instability
in case of too large values of \;5 (except a special region of the space of order

parameters). This formal problem arises in connection of the circumstance that the
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expansion of the exact mean-field free energy (the stability of which was proved in

[%]) has been interrupted at the fourth-order terms.

The second-order phase transition into the superconducting state described by
the free energy (1)—(3) takes place for the both signs of w. In case w = +l, the

difference of the phases of nonzero equilibrium values of A\; and A 9 determining the

superconducting state equals to , and in case w = —1 these phases coincide i1
In the pseudospin formalism the superconducting state for w = +1 corresponds
to an antiferromagnetic-type ordering and for w = —l, to a ferromagnetic-type
ordering of pseudospins in the subspace of electron pairs [°].

The free energy (1)—(3) differs significantly from wusual Landau-type
expansions. First, the coefficients before |\, |? do notchange the sign if temperature
passes T.. In addition, the second-order contribution F 5 into the free energy

includes the products (A 1 A 5 and A]\2) of orderparameters of different bands. Such

products are included also in the fourth-order contribution Fj, however, just the

interaction between \; and A in F 5 leads to the phase transition in the present
model. In some aspects the structure of the free energy (1)—(3) resembles the free

energy in the Kittel model of antiferroelectricity [°].
One can diagonalize the quadratic form F 5 by means of an orthogonal

transformation:

{AI = ArCOSp+ Agsingp
Aa = —ArSiNfp+A;coswp

with

1
A

tanp = swn [-1+ (4(m +12)) (142 — 3 41)6] ,
where tan ¢ has already been expanded into the series in powers of ©, taking only
the lowest-ordercorrection into account. The change of variables (8) replaces A;o
with As,, and, as a result, one obtains F; in the following form (up to the terms

proportional to ©):

F» = W llwdDuPt eel

ws = (M +m2)" (mA2 +m241)0

wr =m +m2 — (M + 12)" 2m + m2)A 2 + (202 + 1)Al]©,

where now the new variables A; and A, are separated. In Eq. (10), the coefficient

ws decreases as T' decreases and changes its sign if temperature passes 7,. The
coefficient w, remains positive and its temperature dependence (w, increases as T’

decreases) is rather unessential.

(10)
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The nonzero equilibrium values 212 of preliminary > order

parameters corresponding to the minima of the free energy (1)-(3) if' < T are

given by the expressions [°]
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By applying the change of variables (8) to Eq. (13), one obtains the expected results

for the equilibrium values of A,
,

if T' < T
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22
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For T > T., As = A\ =O. Thus, in terms of new variables, only ), appears in the

role of an order parameter for the phase transition underconsideration.

The normal-phase relaxational dynamics of the system is determined by the

following linear equations
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with the dissipation coefficients D; Dr > 0. By using Asr(t) =

As,r(o) exp(—t/Ts;,r), We obtain from Egs. (17) and (18) two relaxation times

e

Tr‘l — IWlPr—le,

one (75) exhibitinga critical slow-down near 7, the other (7,.) remaining finite. In

fact, the characteristic times 75, correspond to different timescales as T' — T¢, i.e.,

Ts » Tp.

Whereas the eguilibrium properties of the model have been determined by the

“soft” variable \; and the dependence of F' on the “rigid” variable A, is obviously
unimportant in this respect, it is quite natural to introduce an effective mean-field

free energy depending on only one argument, As;. Also, in this way we exclude

from consideration such deviations of order parameters A;o from the equilibrium
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position which are characterized by a small relaxation time. By using Eq. (8)

together with the condition A\, = 0, i.e., replacing A, by its equilibrium value, one

finds on the basis of Egs. (3) and (10) that the restricted free energy F' equals to

F = Fy + a®| X 2 + b|Xs*

with positive coefficients a and b

A A
azlwlm 2+ nN2AI
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=
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The expression (21) is a standard form of free energy expansion for a second-order

phase transition. The minimization of the free energy (21) leads at T' < T to the

expression (15) for \s. The equilibrium thermodynamic quantities near T}, for the

present model obtained in ['°] on the basis of the free energy as a function of two

order parameters follow naturally also from Eq. (21).

The effective free energy (21) is obtained in connection with the condition

Ar =O. The latter together with the transformation (8) leads to the relations

A 1 =Ay tanp and |As|? = |A\l]? + |[A2/2. By means of these relations one can

express the effective free energy (21) also as a function of a variable A; or 22.
Note that the formal problem in connection with too large values of A 1 7 in Eqgs.

(1)—(3) mentioned above has been removed in Eq. (21), whereas the instability of

the free energy (1)—(3) is connected just with nonzero values of A\, omitted in Eq.
(21) as unessential. In fact, the introduction of the effective free energy (21) means

that we have restricted the space of order parameters A 1 o to the region where the

free energy expansion (1)—(3) is stable for arbitrary values of A\; and Ag. From

Eq. (10) it is obvious that only the quadratic means of fluctuations of )¢ diverge
near 7T,.. Consequently, the exclusion of A, from the free energy (21) is justified
also in respect to critical thermodynamic fluctuations. The effects of fluctuations

in the present model with the account of space-inhomogeneity of A; and A\, will be

considered elsewhere.
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TSOONIDEVAHELISE PAARIULEKANDEGAULIJUHI
VABAENERGIAST JA KORRASTUSPARAMEETRITEST

Teet ORD

On niidatud, et faasisiiret kahetsoonilises paariiilekandega {ilijuhis
saab kirjeldada kasutades tihte korrastusparameetrit, mis kujutab endast tsoonidega
seotud paardunud korrastusparameetrite lineaarkombinatsiooni. On leitud vastav

tihe muutujaga efektiivne vabaenergia. ;
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