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Abstract. It is shown that integrated photoelasticity allows for complete determination of

the velocity field of the viscous flow in closed conduits. The velocity gradient v,/0z for

incompressible stationary flow can be directly calculated from the experimental data. After that

the velocity field is constructed by using the equations of hydrodynamics.
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1. INTRODUCTION

The birefringent fluid-flow method is one of the techniques for visually
investigating problems of fluid mechanics [}?]. Most of the flow birefringence
studies are devoted to two-dimensional flow problems, e.g., [3’4]. An algorithm
and experimental results about the application of integrated photoelasticity for the

axisymmetric velocity distribution was first published by Yuhai et al. [°]. An

alternative algorithm for this problem is given in [®7].
In [7], the determination of the three-dimensional flow velocity field was based

on some simplifying assumptions. The aim of this paper is to show that the problem
can be completely solved in the general case.
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2. BASIC OPTICAL RELATIONSHIPS

Assume that the flow is weakly birefringent. In this case the three-dimensional

flow in closed conduits can be investigated by using a two-dimensional integrated

photoelastic technique. One can measure on each light ray the parameter of the

isoclinic ¢ and the optical retardation ¢, which are related to the components of the

dielectric tensor &;;.
We can write for the components of ¢;; in the plane zz, perpendicular to the

direction of light propagation y [®]

1
deos2p =

% /(gm; — szz)dy,

,

1
õsin2p = —/E„dy,

no

where ng is the initial refractive index of the fluid.

Let the optical effect be a function of the strain rate ey,

1 Ä

%gij = fij(€pq) -
The latter relationship can be written as P]

1 :
L

57—Eij = apbij + a 1 éij + A2EikEjk >

271,0

where «; are functions of the physical properties of the fluid and of the invariants

of é;j
Eguation (2.4) reveals k

1 - .

m(sm‘ — EZZ) = 01 (ea::z: — ezz)
.

+o2[(Ezx + €22) (éax — €22) + €3y — €2,], (2.5)
1 , . KoA

Ks

n—OE:z:z = 201erz + O2[2l(errz + €zz)Erz + 2eryEyz]- (2.6)

In first approximation we can assume that a;; = const and a 3 = 0. Then Egs.
(2.1) and (2.2) can be written as

dcos2p = Aa /(éa:a: — Õzz)dy,

õsin2p = 2al/éxzdy.
These are the basic optical relationships for determining the flow field in closed

conduits. -

(2.1)

(2.2)

(2.3)

(2.4)

(2.7)

(2.8)



1

—Egradp—l—uA'Ü:O, (3.8)
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3. DETERMINATION OF THE VELOCITYFIELD OF THE VISCOUS

FLOW

The relationships between the components of the strain rate tensor e;; and the

velocity vector ¥ components, v;, can be written as

o dn, o Wy + OW .
>

1 /fOv; — z
Ezzr —

Or ° Eyy =

Õy, Ezz —5% ] ea:z—z(ax + ÕZ)
Assume that the fluid is incompressible. That is,

divv=o,

or

ézx"l‘éyy‘l"ézz:o-

Inserting Eq. (3.3) into Eq. (2.7), we obtain

0 cos2p = —1 /(éyy + 2¢,,)dy,

or

Ov Ov
dcos2p = —

A — .COSs2p al/(By+2B2)dy
If the conduit of the flow has a solid wall, then we have on the boundary of the

measurement region {2, €2, the condition

=0 on O0f).

From Egs. (3.5) and (3.6) it follows that

ov,
—dy.sco32<p:—2al/ 5

Using the measured values of ¢ and J, we can calculate the line integral
(3.7) of the velocity gradient dv,/dz for any ray in the cross section of the flow.

Consequently, the determination of dv,/0z is reduced to a problem of the scalar

field tomography. Thus, using Radon inversion in Eq. (3.7), we obtain the values

of Ov,/oz.
Now, let us consider the case of a lowReynolds number. Then an approximate

form of the equations of steady fluid motion is

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)
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or

10
—-——E—i—uAvx = 0,

p Oz

10p
——— +vAy, = 0,

p Oy
4

10———p+Vsz = 0,
p 0z

where

0? 02 0?
A= 2y

Oz?
+

Oy
+ 922"

Here p is the fluid density, p is the fluid pressure, and v is the kinematic viscosity.
Denoting

ov,
—ä—;

— A(IB,y, Z) ,
we have

Z

e = / A(s,y, Z)dZ + C(IL', y) )
Z1

where C(z,y) is an integration constant.

Assume that the velocity v, by z = z; is given as

vz(wvy7 Zl) — U;((B,y) 8

Then C(z,y) = vž(z, y), and

i))dz+ vi(xZA(w,y,zf„z:/n
From Eqgs. (3.11) and (3.16) it follows that

Op ž 0A
+ä—z——u(/ZI AIAdZ-l—g-l-Al'Uz) Ä

where

Al=.š+õ—2
or2 = 2’

and pu = pv.

Equation (3.17) enables us to express the pressure in the form

3.9

(3.10)

(3.11)

(%12)

(3.13)

(3.14)

(3:13)

(3.16)

£3.17)

(3.18)



O(rv,) Ovg = O(rv,)_
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D = wp [/ / A 1 Adzdz + A(z,y,2) — Az, y,21) +(2 — zl)Alv;]
z 1 J2l

+D(z,y),

where D(z,y) is an integration constant.

Assume that the pressure by z = z; is given as

p(xayazl) = p*(a:,y) °

Then D(z,y) = p*(z,y), and

p = wy [/ / AlAdzdz + A(z,y, 2) — A(z,y,2l) +(2 — zl)Alfu;]
Ž1 21

+p*(z,y).

Thus we have determined the pressure p(z,y,z) using the given functions

Az,y,z), vi(z,y), and p*(z,y). Using the known value of p(z,y,z) in Egs.
(3.9) and (3.10), we determine the velocity components v, and v, from the Poisson

equations

1 Op
A'U;L- —

ZÕ—JZ,
1 Op

A = ——.y
u Õy

The boundary condition for Egs. (3.22) and (3.23) are given by (3.6) and by
conditions at both ends of the conduit z = z; and z = 29

’Ux(.’B,y,Zl) — U:g:l)(xay)7vx(m7y322)ZlU:S,?)('Tay)v
wle,ga) = v(z,y), wy(z,y,z22) = vÕ(z,y).

4. VISCOUS FLOW IN AXISYMMETRIC CONDUITS

Next we consider the flow in axisymmetric conduits with a variable cross

section. In cylindrical coordinates (7,6, z) the equations of viscous fluid motion

take the form

19dp vr 20NN‘;5?““”(“7"772"7330)—0’
10p 2 ovr vy

—‘;%*”(A”“r@“rz)—o’
p 0z

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

4.1)

(4.2)

(4.3)



p(r,0,2) = p*(r,9), (4.13)
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where

Ö 109 & g 8
N e BeBr2+rBr+r23o2+fi'

From experimental results, using the Radon inversion, we can determine

ov,
= A(r,o,z).

By integration of Eq. (4.6) we obtain

z

V, = / A(r,9,z2)dz + C(r,9),
21

where C/(r, 0) is an integration constant.

Assume that

v.(r,0,21) = vž(r,9).

Then from Egs. (4.7) and (4.8) we have

V, = / A(r,9,z)dz + vž(r, 0)
z1

Substituting Eq. (4.9) into Eq. (4.3), we obtain

@——-,u(/ AlAdz—l—Qé-i—Alv:) |0z 54 0z

where

0 18 1 8
= 2+22

1 Õr2+rõr+pä—9s

From Eq. (4.10) it follows that

p = p[/ / AiAdzdz + A(r,9,z2) — A(r,9,z21) +(z — zl)Alv;]
21 21

+D('r7 0)7

where D(r, 0) is an integration constant.

If we assume that

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)
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then D(r,B) = p*(r,o), and

p = u[/ / A 1 Adzdz + A(r,o,z) — A(r,0,21) +(2 — 21)Av},
z1 Jzl

+p*(r,o). |

Using the pressure (4.14), we can determine the velocity components v, and vy

from Egs. (4.1), (4.2), and (4.4).
From Egs. (4.1), (4.4), and (4.6) we obtain for v, the equation

2, 30 1 Idw Gy 10p. 2

—Br—2+;fi+r—2vr+r—2w+s—z—7—ss—;A(r,@,z).
If the velocity component v, is determined, then the velocity component vy can

be obtained from Eq. (4.4) as

0 0

’Ug“—‘—/ 8(%’—)010—/ rAdf.
0 T 0

In the axisymmetric flow we have

Qfii_A
ÕZ

— (T',Z).

Here the condition of incompressibility (4.4) takes the form

a—vt%—ru—r—l—A(r,z) =O.
or r

From Eq. (4.18) we obtain

v = —š [/O
"

rA(r;z)dr - C(Z)]
where C(z) is an integration constant.

The condition

vr(o,2) =0

implies that C'(z) = 0. Therefore

Ü = l/ rA(r, z)dr.
T Jo

Thus, the flow field is completely determined.

4.14)

(4.15)

(4.16)

4.17)

(4.18)

4.19)

(4.20)

(4.21)
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5. CONCLUSIONS

We have shown that integrated photoelasticity permits of complete
determination of the velocity field of the viscous flow in closed conduits. From

the experimental results the velocity gradient dv,/0z for incompressible stationary
flow can be directly determined. After that the velocity field isconstructed by using
the equation of hydrodynamics.
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INTEGRAALNE FOTOELASTSUSMEETOD TORUSID LABIVA
VISKOOSSE VOOLU KIIRUSE MAARAMISEKS

Leo AINOLA

On ndidatud, et integraalne fotoelastsusmeetod voimaldab tdielikult médrata

viskoosse voolu kiiruste vélja. Kiiruse gradient voolu suunas dv,/0z arvutatakse

kokkusurumatu statsionaarse voolu puhul vahetult katseandmetest. Seejdrel määra-

taksekogu kiiruste vili kasutades hiidrodiinaamika vorrandeid.
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