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Abstract. The right invertibility problem is studied for a class of recursive nonlinear systems

(RNSs), i.e., for systems, modelled by recursive nonlinear input—output equations involving
only a finite:number of input values and a finite number ofoutput values. The concept of rank,
which plays the key role in the study of right invertibility for discrete-time nonlinear systems

in state space form, is extended to the RNS. It is shown that the inversion algorithm provides
the means to compute the rank of the system. Necessary and sufficient conditions for local right
invertibility in terms of the rank of the system are proposed.
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1. INTRODUCTION

The problem ofright invertibility of the discrete-time nonlinear control system
is studied in this paper. Right invertibility means the possibility of generating
a prespecified sequence at system output by the suitably chosen input sequence.
Besides its immediate importance, right invertibility is also fundamental in various

control problems (see, for example, [']). Except the papers [>~*] on finding
the inverse Volterra representation and [>®], all previous work on this subject
concentrates on systems having a state-space representation [/~ 18]. The purpose
of this paper is to study the right invertibility problem for the nonlinear system
described by a higher order difference equation relating the inputs, the outputs, and

a finite number of their time-shifts:

y(t) :F(y(t_l)a 7y(t—ou’)7'u‘(t—l)7"' ,u(t—u)). (1)

@ A preliminary version of this paper was presented at the International Conference on

Mathematical Theory of Networks and Systems, 1996, St. Louis, USA.
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Systems of the form (1) are called recursive nonlinear systems (RNSs) [19:20].
This representation has obvious advantages if the model of the system has to be

obtained via identification, either using the conventional approaches [*°] or the

neural networks [21:22].
In [] the concept of delay orders d1,... ,dp as well as the special case of

right invertibility, (d,... ,dp)-forward time-shift (FTS) right invertibility from

state-space formulation [l], are shown to have their direct counterparts for RNSs.

The present paper deals with the general case of right invertibility. In our study
we follow the approach used in the state-space formulation where the rank plays
the key role in the study of right invertibility and the inversion algorithm provides
the means to compute the rank of the system, or equivalently, the criterion for

determining whether the system is right invertible [7:%!5:17:18] Recall that the

notion of rank of a nonlinear system was introduced by Fliess in [23] forcontinuous

time systems; extension to the class of discrete-time systems was given in [%],
using difference algebra. In [°], using the linear algebraic approach, the rank of

a discrete-time system is generalized to analytic systems, admitting a global state-

space representation.

2. RECURSIVE NONLINEAR SYSTEM

In this section we introduce some preliminary material. Consider the RNS (1)
with 1 < u < 00,1 < v < 00, where the inputs u(¢) € U, an open subset of IR™,

the outputs y(t) € Y, an open subset of JR?. The mapping F: RFPT"™ — IRP is

supposed to be analytic. We assume the RNS (1) to be shift-invariant, which means

that (1) and the-equation

y(t +l)= Fly@),... .yt — s+ lu@);... ,ut-v+1))

describe the-same system.
From now on, we consider the RNS (1) at non-negative time steps on a finite

time interval 0 < ¢ < ¢y under the initial conditions

20) =Ji7 (=l2 iy
T (et (Elpe. s RG]t

Let us denote by U the set of control sequences u = {u(t);0 <t < tp}.
Analogously, let us denote by Y the set of output sequences {y(¢);0 <t < tp}.

For difference equation (1) under initial conditions z(0), as long as F is a

well-defined function of R*PT¥™ there is no problem regarding the existence and

uniqueness of its solution y(¢;0 < % < tp), for an arbitrary control sequence
u € U and an arbitrary initial condition 2(0). Such a solution will be denoted as

y(t,2(o),u) = y which is a shorthand writing for y(¢, z(0),u(0), ... ,u(t —1)).
The system (1) generates for each initial condition z(0) the input—output (I/O)

map 2 on U. The I/O map |

:UTV

(2)
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assigns to each input sequence u € U the output sequence y € Y according to

z(0) and the recursion (1). .
Given two systems X 1 : U — Y and ¥y : Y — Z, we denote by ¥g 0 X; :

U — Z the system represented by the composite map.

The linearalgebraic framework that we describe below was extendedby Grizzle

[°] for discrete-time nonlinear systems.
Let K be the field of meromorphic functions in a finite number of the variables

{x(o),u(t),t > o}. Over the field K one can define a difference vector space [°],
€ = spang{dp, ¢ € K}. The space £ can be decomposed into the direct sum of

two subspaces, £ = X @ U, where

X := spanc{dz(o)},
U := spangefdu(k),k>0)

Define the difference output space

Y = spani{dy(k), k > o}.

By(1l))CE=X9U.
The forward shift operator $ : £ — X is defined by

õp(z(0), u(7))
= p(z(1), u(7 +1))
— (p(F(Sß(O)),y('—].), v 7y(_'u' + 1)7“(0)7 v ,u(—-l/ + 1)7“'(.7 + 1))

The operator ¢ induces a forward shift operator A : £ — £ by

A(z aid(pi) H Z(Õai)d(&pi), ai, pi E K

3. THE CONCEPT OF FORWARD TIME-SHIFTRIGHT INVERTIBILITY

It is natural to say that the system isright invertible if its I/O map X is surjective,
or equivalently, if there exists another system with the I/O map ž]šl : Y> U,

called the right inverse, such that the composition of Zšl and X is the identity map

L:

Xro i = Ty Wi Y.

If a system is invertible in the above sense, then it is possible to reproduce an

arbitrary p-dimensional sequence {y,.f(t);o < t < tg} as an output of the system
by manipulating the input sequence.

3)

4)
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This definition is certainly too restrictive for most systems and obviously useless

for a strictly causal RNS of the form (1), where the map F' does not depend on u(t).
Such systems cannot be right invertible in the above sense, since the output y at

t = 0 is not affected by the input and is completely defined by the initial conditions

z(0):

y(O) — F(y(—l)a +ea ,y(—,u),u(—l),. .. ,'U,(—I/)) = F(m(O))

In general, the output may be defined completely by z(0) also at a few next time

instants t = 1,2, ... ,d— 1. Therefore, for those systems it is useless to require that

all sequences could be reproducible, and the best we can achieve is that all sequences

could be reproducible beginning from the time instant ¢ = d.

The notion of the delay orders with respect to the control d;,72 = 1,...,p,
one for each output component [%-6], has been extended for discrete-time nonlinear

systems, described by a nonlinear recursive equation. These system structural

parameters tell us how many inherent delays there are between the ith component

y; of the output and the control, or equivalently, forhow many first time instants y;

is completely defined by the initial conditions and which is the first time instant for

which the possibility arises to change y; arbitrarily.
A RNS (1) with delay orders d;,© = 1,... ,p, admits a representation of the

form

yl(t + d1)

: = A(z(t), u(t))

Yp(t + dp)

(5)

where

s(t) — [yT(t T 1)) I )yT(t — ,LL),UT(t — 1)7 ILMD 7uT(t — V)]T'

For the system (1) with delay orders d;,z = 1, ... ,p, we are able to reproduce
the reference signals at the output with some time-shifts and the smallest possible
value of the time-shift is d; (the delay order) for the :th output component. If this

can be done, then we call RNS (1) (dy, ... ,d,)-FTS right invertible [>°]. These

smallest values can be realized if the system of equations (5) can be solved for u(t)
in case of an arbitrary [y;(t + d1), ... ,yp(t + dp)]T.

Note that we cannot solve the system of equations (5) for u(¢) in case of an

arbitrary left-hand side if some components of the vector function A(z,u), as

functions of the control, depend functionally on the others, or equivalently, if -

0
rank %—A(x, u) <p.

The idea to generalize the notion of (dy, ... ,dy)-FTS right invertibility is to

represent the functionally dependent components via the independent ones and
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apply the one-step FTS operator to the dependent equations, and repeat the whole

procedure (say « times) until we obtain a system of equations which can be solved

for the control u(t) in terms of z(¢) and y(t + 1),y(t +2), ... ,y(t + «) in case of

an arbitrary reference signal, or it will become clear that this is impossible. If it is

possible to obtain a system of equations which can be solved for the control, then

we are able to reproduce at the ith output y; an arbitrary reference signal starting
from a certain time instant o;; > d; with ; > d; for some j € {1,...,p}. The

definition below generalizes the notion of right invertibility along these lines.

Of course, in case of nonlinear systems the global notions of invertibility, in

general, have little sense and we adopt a local viewpoint. More precisely, we work

around an equilibrium point (1, %) of the system (1).

Definition 3.1. Equilibrium point. The pair of constant values (u°,y°) is

called the equilibrium point of the RNS (1) if (u°,4°) satisfies the equality y° =

sge T
Let us denote by U? the set of control sequences u = {u(t);0 <t < tp}

such that the controls u(t) for every ¢ are sufficiently close to u°, i.e., that

|| u(t) —u® ||< 6 for some § > 0. Analogously, let us denote by Y the set of

output sequences {y(t);0 < t < tp} such that the outputs y(¢) for every ¢ are

sufficiently close to 4°, i.e., that || y(t) — y° ||< € for some € > 0. Denote by z°

a (up + vm)-dimensional vector (y%7,... ,y%T, u%T ... 4%T)T Finally, let us

denote by X the neighbourhood of z° such that for every z € X, || z— 20 ||< v

for some v > 0.

Definition 3.2. Local FTS right invertibility. 7he RNS (1) is called locally FTS

right invertible in a neighbourhood of its equilibrium point (u°,y°) if there exist

integers 0 < a 1 < 9 < ... < oy, a reordering of output components

¥, & = 1,...,p ses U, YO, and X° such that given z(0) € X° we are

able to find for any sequence {y,cf(t);o < t < tp} € Y a control sequence

luref(t); O<t<trY € U° (not necessarily unigue) yielding

yi(t;m(o)auref) — y'ref,'i(t), @ =1 <y, 1= 11' +,P

Definition 3.3. Forward time-shift right invertibility. 7The RNS (1) is called

almost everywhere locally FTS right invertible if it is FTS right invertible in a

neighbourhood of almost every equilibrium point.

4. INVERSION ALGORITHM

The main purpose of this section is to extend the concept of rank, which plays
the key role in the study of right invertibility, for systems in the state-space form,
to the class of RNSs. It is shown that though the rank of the system can be defined

intrinsically via the dimensions of certain subspaces associated with the system, the

inversion algorithm provides the means to compute the rank of the RNS.
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4.1. Inversion algorithm

In this subsection an inversion algorithm for studying theFTS right invertibility
of a RNS is presented. The algorithm reorganizes the information contained in the

system equations into a different form which is more efficient for system inversion.

The main operations at each step of the inversion algorithm are the following.
1. Separation of the functionally independent and dependent output

components. Note that since we are trying to obtain a system of equations that can be

solved foru(t), we are interested in functional independence with respect to variable

u(t) only.
2. Elimination of the variable u(¢) from the functionally dependent output

components by expressing the lattervia the independent components.
3. Application of the one-step forward shift operator to the functionally

dependent output components.
These operations, when repeated, will eventually allow us to invert the original

system provided the inverse system exists.

Note that the above operations involve the solution of the system of nonlinear

equations and therefore, in general, ask for the use of the implicit function theorem

(IFT). To avoid using the IFT at each step of the algorithm and linearize the

computations, we adopt the idea from [?] and work with differentials dy(¢) of the

output instead of working with the outputs themselves. So, instead of the RNS (1),
we apply our algorithm to the equation, obtained by differentiating Eq. (1)

L
o sl g |

dy(t) = šmdy(t -j) + š mdu(t —j)

H - V
BN

= > aldy(t—j)+ > Bhdu(t -).
j=l j=l

Define dgo(t) = dy(?).

Step 1. Apply the one-step forward shift operator A to Eq. (6)
& - V

A

dgo(t+l) = daddy(t—j+l)+ Y öbidul(t-j+l)
j=l j=l

and replace dy(¢) and y(¢) in the above equation by the right-hand side of (6) and

(1), respectively, to obtain

K . . V
2

A
djo(t+l) = )[(dag)af + öaj* ]dylt —j) +> [(6as)d) + öb)Idu(t —5)

j=l j=o

’J‘ . v .
= Y aldy(t—j)+ Y bldu(t -j).

y=l j=o

(6)
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Define

p 1 = rankih!.

Reorder, if necessary, the system outputs ¥;,... ,y;, to ensure that the linearly
independent rows of the matrix bY are the first p; ones. Decompose dfo(t + 1)
according to

u . y
AAD

dji(t+l) = > aldy(t—j)+> bldu(t—j),
j=l j=o

K. v
r

djr(t+l) = > äidylt-j)+sbldu(t -j),
=1 j=o

where 1(¢ + 1) consist of the first p; components of go(t + 1). The last p — py

rows of the matrix b are linearly dependent on the first rows, which means that there

exists a matrix M, with entries in X such that Y = M7b? and thus

N i
djr(t+l) = >aldy(t—j)+Y bldu(t—j)

=1 J=l |
Ho 2

ot-tSt )
j=l j=l

k . =
~

= > (ai - Mäl)dylt -5) + Y (b 1 — Myb])du(t —j)
j=l =

+ Midgi(¢+1)

& Loty
= Y ajdy(t—j) + > bldu(t —j) + Midg(t + 1).

j=l j=l

Define B; = b.

Step k + 1(k > 1). Suppose that in steps 1 through &, dg;(¢t + 1), dga(t + 2),
... ,dYk(t + k), dJx(t + k) have been defined so that

(7)
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u V

dip(t+l) = > aldy(t—j)+Ybidult-j),
J=l j=o

M 5 y
m

djo(t+2) = > õjdult -j) +>bidult -j) + õ7d7l(t +2),
j=l j=o

j

u I B
-

k—l k
o

dge(t+k) = D a@dy(t—4)+)bdut—7)+> > & dji(t+7),
=1 j=o i=l j=i+l

(8)

and

2 j K
A

k k
KD

dürl(t+k)=s> õidylt-j)+> Hdult-j)+> > õpdüilt+js). 09

j=l j=l i=l j=i

Suppose also that the matrix By, = (l;(l)’T, AD Ög*T)T has full row rank (overK)
equal to pg. In the following we leave the first p; equations unchanged and modify

only the equations which do not depend explicitly on du(t). Apply the one-step
forward shift operator A upon Eq. (9)

dgr(t +k +1)
£iß B b

e

=Y öõjdylt -j+l) +> obldu(t —j+l)+ > > 6eldgi(t+ 5+1)

and replace dy(t) and y(¢) in the above equation by the right-hand side of (6) and

(1), respectively, to obtain

/Il .

djik(t+k+l) = >[(6a})al +day "]dylt —j)
j=l

+> [(da})s + 05, "]du(t —j)
j=o

k k
.

+3 ) õõldült+sj+l)
i=l j=i

=Yal .dy(t—j)+ ) 8,dult -j)
j=l j=o

k k
e

+3 selit+).
i=l j=i+l
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Define pk4l = ranky [ bšk ] .
Reorder, ifnecessary, the elements of . (t+k+l)

| k+l

to ensure that the linearly independent rows of the matrix [B}, bg'fl]T are the first

pr+l ones. Decompose dgx(t + k + 1) according to

u v

djkilt+k+l) = Y &), dy(t—j)+ > 8, du(t -j)
j= j=o

k k
s

+3 > dnt+5)
i=l j=i+l

H v

djer(t+k+l) = Yaldy(t—g)+)b,du(t -j)
J=l j=o

k k
s

+z z éž.l-ldgz(t—'—.?)a
i=l] j=i+l

where §x+l(t + k + 1) consist of the first pxll — pr components of g (t + &k + 1).
The last p — pk+l rows of the matrix [B7, bg’L]T are linearly dependent on the

first rows, which means that there exists a matrix M}, with entries in K such that
; 70,Tb 1 — Mk4l[Bk 0x ]" andthus

dfr+l(t +k+l)
o . v

r

k k . .
=Y aldy(t— )+ > bdutt—7)+ > Y &ldi(t+ )

J=l =1 i=l j=i+l

Sy eyt j) -O Pidult —j)
dga(t +2) — Y6, @dy(t —j) + X7, bydu(t —j) — ediii +2)

+Mk+l :

i(b+ 5 +1) =505 8ydy(E ~1)— gbydult -j)
— 1 ijm é;cj+ld37i(t +j)

u I v
%

k+l k+l 5
=Y "a] dyt—s) + > b dult—s) + > >&ldii(t+ ).

j=l j=l i=l j=i

(10)

Define Bkyl = [B7, õg*fl]T.
End of the (k + l)th step.

Note that we can apply the inversion algorithm not necessarily in a unique way.

There exist, in general, different reorderings of output components 4 (¢ + k + 1)
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at step k + 1, & > 0, so that the first pxy; rows of the matrix [Bš,bgfl]T
are linearly independent. Different permutations of output components, that is,

different selections of üksl(7+kl+l) in each step k +l, k > 0, result in different

matrices Bk4l.

4.2. Thestopping criterion

We now give a stopping criterion for the inversion algorithm. Denote

Do W= eeB, »06]

Wl—l
W= ]| 8 -[a},...BL ] £

and

Define r; = rankx W*.
Stop if

rn="ri—i.

Lemma 4.1. The stopping criterion (11) of the inversion algorithm is always
reachedfor some | < up + vm.

Proof. Note that the sequence {r;,[ > 1} is nondecreasing by its definition. Hence,

by the number of columns up + vm of each W, (11) must be reached for some

[ < up + vm.

The next lemma shows that when condition (11) is satisfied, the seguence

{pr,k > I}, defined by the inversion algorithm, has converged so that we can,

indeed, conclude that the algorithm has terminated.

Lemma 4.2. Let « = [ be the first integer such that (11) is satisfied. Then p; does

not increase byfurther iterations of the algorithm.

Proof. The stopping criterion (11) or, equivalently, ;

Wo Wo

rankx : = rankg :

Wa Wa-1

implies that

W = Nowg + -+ + No_lWa—l

(11)



Er = spane(dz(t),dy(t),... ,dy(t + k)), (12)

13

and so

dja(t+a) = Nodgo(t) +Ny [dga(t+l) —er'dfn(t+l)] +...

a—la—l
5

+Na-1 |dja-Ilt+a-1) -> > õdydet )
i=l j=i

A A
K

+30 " eddgi(t+j).
li=ll j=i

According to the inversion algorithm

djo(t +a+l) = SNodjo(t+l)+6Ny [dgr(t+2) —er'dgn(t+2)] +...

a—la—l
1

LN [dg’]a_l(t +0)-5 Yeddp(t+i+ 1)]
i=ll j=i

A A

+> > edt +j+l)
i=l j=i

and

=rank Ba
= rank

Ba
=

Parl= NKK R
R s )vßet|P

4.3. The invertibility indices and the rank of the recursive nonlinear system

In analogy with the state-space formulation we call the py’s invertibility indices

of the system (1). These integers form a generalization of the notion ofdelay orders.

Though the result of the application of the inversion algorithm apparently
depends on the choice of admissible permutations made at each step of the

algorithm, it is possible to show, following the same method as in [, that the values

of the invertibility indices do not depend on the specific application of the algorithm.
However, we will not prove this fact here. Instead, we relate the invertibility indices

to the dimensions of a chain of subspaces of £, naturally associated with the output
of the system, and in that way show the intrinsic nature of these indices. Then,

the different applications of the inversion algorithm just correspond to the different

choices of the basis of the subspaces.
Define a chain of subspaces & C --- C &, of £, constructed from the outputs

of the system, by



(14)
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and the associated list of dimensions o 9 < o 1 < --- < 0, by

O = dim;cgk.

It is obvious that the inversion algorithm produces a basis for &, 0 < k < p,

Er = spancf(dz(t),dy;(t+sj), i<j<k, I<i<kl

and that the invertibility indices p, 0 < k& < pu, defined by the inversion algorithm,
are related to the dimensions of &, :

Pk = dim;cé'k — dimlcgk—l-

The next lemma establishes a priori bounds on the number of steps required to

compute the limiting ranks of the subspaces.

Lemma4.3. p* = 0, — 0,1 is a limiting value of the chain (13) in the sense that

if we were to extend the chain in the obvious manner, then o, 1, = o, +rp* for all

integers T > 0.

Proof. The proof is highly technical and extremely long, but we will omit it since

it 1s quite straightforward and the same reasoning applies as in the state-space
formulation [°].

p* is defined to be the rank of the system. Note that, by the inversion algorithm
p* can also be defined as p* = max{pg, k > I}.

5. NECESSARY AND SUFFICIENT CONDITIONSFOR FORWARD

TIME-SHIFTRIGHT INVERTIBILITY

The inversion algorithm incorporates a relatively simple criterion for

determining whether the system is right invertible.

Theorem 5.1. The system (1) isalmost everywhere right invertibleifand only if the

rank p* of the system is equal to the number of the outputs, that is iff p* = p.

Proof. Sufficiency. Ifp, = p, then at the last ath step of the inversion algorithm we

obtain (8) with £ = «a, where rank,cßa = p. Consequently, Eq. (8) with £ = « can

be solved for du(t), and by the IFT (in the case of almost every equilibrium point
(u°,4°)) in some neighbourhoods V; of (z°,%°,... ,y°) and V 5 of u? there exists

u(t) =plE@); {5(7)) <l Ceniidy <ad)

such that the following holds:

GE+1),..., 55+ )"

= Au(z®t), {i(t+7),l<i<a,i<j<a})

(13)
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Therefore, at 4;(¢),2 = 1,... ,
«, an arbitrary sequence from YZ-O isreproducible for

t > 1. Of course, thereproducibility property (or, eguivalently, identity (14)) is lost

if we leave the neighbourhoods V; and V5.

Necessity. Suppose that the system (1) is locally FTS right invertible around

an equilibrium point (u°,4%). In particular, this means that at the subvector

9;(t),t > 4, we can reproduce by suitable choice of w*(¢) an arbitrary 7 (¢),
sufficiently close to g}?. This yields the following equalities:

u v

dji(t+l) = Y aldy(t—j)+ >Bdu(t —j) + b)du*(¥),
9= j=l

H¥v
—

-

dgs(t+2) = > äödult-j)+sBhdu(t —j) + &2dji(t +2) + bldu*(t),
=1 j=l

(15)
u V

djält+a) = > aldy(t—j)+ Y bldu(t—j)
j=l j=l

a—l «a
i N

+3 N Eddir(t+)+ bldut (2).
i=l j=i+l

Assume that rankxB, < p. This implies that there exists a map R such that

R(Gi(t+7),l<i<ai<j<a,z(t) =O,

which means that §;(t + j), I<i<a, 1% <j < aarenotarbitrary and gives
us a contradiction.

Example 5.2. Consider the RNS j

yi(t) = w(t-]),

yo(t) = yolt — Dur(t —1) + ua(t —2).

The delay orders of this system are d; = dy = 1 and so the system can be

represented in the form

yi(t+l) = wui(t),
y2(t+l) = ya(t)ur(t) +ua(t —1).

It is clear that this system is not locally (1, 1)-FTSright invertible, since therank of

the matrix K is equal to one for all possible equilibrium points.
Applying the inversion algorithm to this system, we obtain

dyi(t+l) = du(t),

dys(t+l) = w(t)dys(t) +yo(t)dur(t) + dus(t —1)
= uüs(t)dy2(t) + y2(t)dyl(7 +1) + dus2(t —1).
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Applying the forward shift operation to the second equation, we obtain

dya(t + 2) = yl(t + 2)dya(t + 1) + y2(t + 1)dy1(¢ + 2) + dua(?).

Consequently, the arbitrary reference signals can be generated at the first output
starting from the time instant 1 and at the second output starting from the time instant

2 by the choice of the following control:

Ui (t) = yref,l(t + ]-)7

u2(t) = Yrefalt +2) — Yref2(t + I)yres,l(t + 2).

6. CONCLUSIONS

In this paper the right inversion problem is considered for RNSs. First,
the inversion algorithm, which closely resembles the well-known algorithm for

the state-space systems has been extended to the RNSs. Since we work with

differentials of the output, the algorithm presented in this paper does not use the

implicit function theorem. This form of the algorithm is certainly efficient for

computing the invertibility indices and the rank of the system. Of course, to find

explicitly the equations of the right inverse system, we need to integrate the one-

forms, obtained at the last step of the inversion algorithm. However, this was not

the topic of our paper. Next, through the introduction of a chain of subspaces
naturally associated with the output of a system, it is shown that the invertibility
indices defined by the inversion algorithm are actually tied to dimensions of certain

subspaces, providing so algorithm-independent structural parameters of the system.
Finally, the necessary and sufficient conditions of the local right invertibility are

presented in terms of the rank of the system.
To get a clear understanding of the relationship between the state-space and I/O

formulation of the system inversion, further investigation is required. To study this

relationship, advances have to be made in the realization theory of RNSs before

progress in understanding this relationship could be achieved. Note that up to now

there is no solution for the realization problem in the multi-input multi-output case

and therefore we have not developed this point here.
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PÖÖRAMISALGORITM REKURSIIVSETE MITTELINEAARSETE

SUSTEEMIDE JAOKS

Ülle KOTTA

On uuritud rekursiivsete mittelineaarsete siisteemide klassi kuuluvate siis-

teemide paremalt poodratavust, s.t. selliste siisteemide paremalt pdoratavust, mis

on kirjeldatavad siisteemi sisendeid ja viljundeid siduvate korgemat jarku dife-

rentsvorranditega. Siisteemi astaku moiste, mis méngib votmerolli olekumudeliga
kirjeldatud (mittelineaarsete) siisteemide paremalt podratavuse uurimisel, tldis-

tatakse rekursiivsetele mittelineaarsetele siisteemidele. On ndidatud, et siisteemi

astak on leitav pooramisalgoritmi abil, ning leitud rekursiivsete mittelineaarsete

stisteemide paremalt podratavuse tarvilikud ja piisavad tingimused siisteemi astaku

terminites.
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