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Abstract. New algorithms are derived and the software composed for fast computing of the one-

dimensional wave functions in the range of a continuous energy spectrum. The method can be

applied to calculate the quantum-mechanical Franck—Condon factors and the fine structure of the

optical spectra of simple quantum systems. This enables us to improve the real potential energy

curves of such systems, which is demonstrated for diatomic xenon molecules.
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1. INTRODUCTION

In this paper a consistently analytic method of solving the one-dimensional

stationary Schrodinger equation is described. Its general idea is very simple: the

real potential is fitted with several smoothly joined piecewise analytic functions,

any component being expressed as a modified Morse potential. The treatment in

this paper restricts itself to up to three different Morse-type functions to

approximate a potential energy curve (see Section 4.2), but in principle, the method

is applicable to an arbitrary number of components. Compared with commonly
used numerical methods (see, e.g., [']), such an analytic approach has several

advantages. Firstly, the Schrodinger equation corresponding to a modified Morse

potential can always be transformed into a confluent hypergeometric equation that

can be easily solved analytically. Secondly, the wave functions for both, discrete
and continuous energy spectra, can be easily normalized. Thirdly, very effective

and fast algorithms for computing the wave functions can be derived on the basis

of the highly developed theory of confluent hypergeometric functions. This

circumstance is especially important for complicated fine-structure calculations of

the optical spectra, when one has to solve the Schrédinger equation many million
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times as fast as possible. Some examples of this kind of computations are given in

Section 5 in comparison with relevant experimental data.

In principle, the method can be applied to a wide class of anharmonic

potentials. In this paper it is used for diatomic molecules Xe,, representing a simple
but important model system for studying relaxation and radiative decay of

excimers. Therefore, to demonstrate the efficacy of the method, we should at first

specify the parameters of the potential energy curves for the system under study. In

this context it is worth mentioning that the full quantum-mechanical approach
described below is especially suitable for the accurate determination of those

parameters on the basis of the available experimental data.

2. POTENTIALS FOR THE LOWEST-LYING EXCIMER STATES OF Xe,

In view of the spectroscopic applications involved, only the lowest excimer

states (0,", 1,) and the ground state (0,") of Xe, are of importance for the study
(see Fig. 1). The most important parameters of the lowest dipole allowed excimer

state 0, have been determined in an excellent series of supersonic jet

experiments by Stoicheff and co-workers [*]. Unfortunately, the authors tried to

fit their data directly to a Morse potential, which was misleading for some later

investigations (see P*)). As explained elsewhere P7], a much better fit can be

obtained with the help of a slightly modified Morse potential. Indeed, the data of

[*] fitted very well a quadratic function

1 i
v,=T,+o,|nt+—|-o.x,|n+—|,

2 2

and adding a cubic term practically did not improve the fit. Consequently, a

modified Morse approximation suits well to describe the 0," state, because (1)
would be the exact formula for the vibrational levels of a Morse oscillator

Vi(R) =D(e (BR)g(B-R))_ 4

if one substituted ®, =2D, /a and x,=l/2a with a=,/mD, /hal. An important

point is that the actual dissociation energy D, = 551.28 meV determined in []
cannot be identified with the dissociation parameter of a “pure” Morse potential
but corresponds to a sum D, = D, + A, . This way, taking D, = 515.53 meV, ¢, =

191 A”, and A, =35.75 meV [’], one gets a very good fit with the data presented
in [7].

There still remain some essential problems concerning the potential of the 0,"
state. Firstly, onehas to fix the eguilibrium nuclear separation R,. As

demonstrated elsewhere [°], the best fit with various spectroscopic data can be

achieved by taking R, = 3.24 +O.Ol A.

(1)

@)
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Secondly, one should specify the shape of the potential near its dissociation

limit. To solve this problem, let us assume that the approximation (2) holds for

all vibrational quantum numbers up to, e.g., n = 50. At the point where the level n

= 50 crosses the Morse potential the latter can be smoothly joined with another

curve having a simple analytic form, e.g., that of a “reversed” Morse potential

V,(R) = A, — D, (¢228
_ gea(Rßo)|

with a small hump at long distances. The resulting potential would be nearly the

same for different sets of parameters D,, «,, and R, if one only presumes

continuity of the potential and its first derivative. The potential curve presented
in the upper part of Fig. 1 has been calculated taking D, = 2.607 meV, «, =

0.3592 A™', and R, = 10.09 A.

Fig. 1. Potential energy curves for the 0," and 0," states of Xe,. The dashed line in the upper graph
corresponds to the “pure” Morse potential. In the insert of the lower graph the region around the
shallow (24.3 meV) van der Waals minimum and its pseudo-Morse approximation are

demonstrated in a 25 times diminished scale (the curves are almost indistinguishable in the major
part of the figure).

(3)
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Thirdly, in view of the experimental data of Section 5, the approximation (2)
obviously cannot be extended to very small internuclear distances. Therefore, it

makes sense to use another simple analytic form of the potential

Vo(R) = Age2R |— AOEO e—a()R _A
3

for this region. Here,g, :hzoc(z)/m and m=24xloa.u. is the mass of xenon

atoms. The potential (4) was smoothly joined with (2) at R = 2.95 A. The

parameters o, = 4.66 A A, =2.57%x10"eV, and A; = O.5eV have been

determined in [°].
In this report we have not specially investigated the lowest-lying excimerstate

1, of Xe,. However, for practical purposes the curve obtained for the 0, state,
but shifted down by 0.1-0.15 eV, can be used.

3. GROUND STATE POTENTIAL FOR XENON DIMERS

The potential energy curve of the ground state (0,") of Xe, is well determined

at comparatively large internuclear distances, where Barker’s X, potential []
gives an excellent fit with various spectroscopic data. As regards the steep
repulsive region at smaller distances (R< 3A), the situation is more

complicated. To build up a realistic potential for this region, we take account of

the following four criteria.

1. The potential has to accord with available spectroscopic data, especially
with the observed position and width of the second emission continuum of xenon

and with the characteristic features in the so-called left turning point region o
2. At long distances (R>39A) the potential smoothly transforms into

Barker’s X, potential (U, (R) ).

3. At short distances (R < 3.1A), as in the previous section, the potential is

approximated by a pseudo-Morsepotential

U(Ry=Ae
"= J[Ag e,

where €= hzocz/m. The parameters o = 1.8625 A" and A=1.1867 x 10° eV

for Xe, have been determined in [].
:

4. In the intermediateregion (from 3.1 to 3.9 A) the potential is presented as a

combination

U(R) = (a, +a,R+a,R)U,(R)+(b,+b,R+b,R*)U,(R).

From demand of continuity of the potential and its first derivative at the

boundary points R, =3.1 A and R, =39 A, the parameters a,, a,, a,, by, b, and

b, can be uniquely determined and the potential therefore fixed.

4)

(5)
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Criterion 3 probably needs to be commented. Such an approximation for the

region of small distances is justified due to its simplicity. On the other hand, the

choice of this specific form of the potential is directly related to a simple analytic
method used in this paper to solve the Schrodinger equation (see the next

section). Another form of (5)

U,(r)= %(e'z"""") -2e), where 2°° =2./Afe

more explicitly unveils the physical meaning of the quantities A and €. Indeed,
Morse potential does not have discrete energy spectrum when its well depth

D<ef/4 ['%]. Therefore, (5) represents a potential with solely continuous

spectrum and this is a justification for the term “pseudo-Morse potential” used

to characterize this approximation. Note that £ is a very small guantity

(€=o.ll meV) compared to A and therefore, at small distances the second term

in (5) is much smaller than the first one, i.e., the potential is nearly exponential,
The potential for the 0, state is seen in the lower part ofFig. 1. Both potential

curves in this figure represent a result of very careful comparison between

various experimental data and relevant quantum-mechanical calculations

described in [*].

4. SOLVING OF THE SCHRODINGER EQUATION

4.1. Ground state of Xe,

The approximation based on (5), which is recommended for the short

distances’ region, can be used even more widely. Indeed, as demonstrated in

Fig. 1, the approximation by a single pseudo-Morse potential is quite reasonable

for the 0," state of Xe, in the whole region where R > 2.95 A. Naturally, a still
better fit with the so-called real potential can be obtained by using several

smoothly joined pseudo-Morse curves for different distance regions. In any case,

it makes sense to specially investigate the Schrodinger equation corresponding to

(5). For this purpose let us introduce a dimensionless variable y=2,/A/Be'°‘R.
Thereafter one comes to the following Schrédinger equation:

’ 2 _l_

vK[ , lkeo
yy y 4

where U =iJE/€ is a pure imaginary parameter determined by the energy (E)
of the system. The solution of (6), normalized by the condition

(6)
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with right asymptotic behaviour, can be expressed as ['*'']

Y= F(u, 24 +l, y).

Here,

F(u, 2u+l, y)=e @y d(u, 2u+l, y)+ey®d(—u, —2u+l, y),

d(u, 21 + 1, y) is the confluent hypergeometric function, and ¢ is a phase
constant (depending on energy) that should be determined from the boundary
condition at R — 0.

Tocalculate the wave functions (8), let us proceed from a very useful Tricomi

expansion of the confluent hypergeometric function through the Bessel functions

(112, | |

, ,
)(

+
) nz:() 'l[ |

2 2 )[4l(] XJB n( )’

where I'(8 + 1) is the gamma-function and K=%+%—b. In the case under

examination, b = , B =2u, andk= % Therefore, after substituting the

definition of the Bessel function J;,., into (10), one obtains

, 0”4, n+1)(x)
e D, 2u+l, x)=m2n,m 2

Here, (2u+l).. =(2u+l) _(2,u+ 2)...2Qu+m), Ao=l, A;=o, A, =p+% ,
and a

recurrent relation holds for the coefficients:

nA, =(n-2)A,,+24,A,,-2K A,3 n=3,4..

Now, let us define the quantities

F _=_-A_O+____é2___
—

__.__A3_+”_+_4l"_
“

e! Ok-D»D! (%X-3) 0!

and prove the following relations:

(8)

(9)

(10)

(11)

(12)
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— +Fk=———“+k><———“+kL,BL
k k-1 i k!

The proof can be performed by the mathematical induction method. One can

easily check that both assertions are valid for k =l, 2, etc. We now demonstrate

that if (13) and (14) hold for some arbitrary k, they also hold for k + 1. Indeed,

from (13) we conclude that ;

Fr(2k+2)= F, + G

where

>

2A, 3A, 4A, (2k+VDA>p; (2k+2)A142
OTSROt etL S b LTR

2k)! (2k-1)! (2k-2)! ! 0! _

Taking account of (12), one thereafter obtains

GGPvl=24(8.+84+...+))+(84 +3+..+F5),

and thus, according to (15),

DE = (pna Dby ¥B, b oot Fy) =k)F

1.e.,

(U+l)P—T ADT SED.
Substituting (13) and (14) into (11), one comes to the following rapidly
converging formula: a

e/tD, 2u+l, x)=C,(x) eAD . :
v F xY" x/2 x/4 — (x/4)* x/4

= —i o il iolL eš(zll'i'])z„ (2) [ 2p+2n+l] p.;-lz +iii+%il! !'H-š
4

+—s/i)—;— I——x—/i5 +....
(FH' 5) (l—H' 5)2! |.l+s

(16)

Using (9) and (16), the wave functions (8) can be easily calculated. A slight
problem is, however, how to determine the phase constant ¢ in (9). To overcome

this difficulty, let us express the wave function in the form

(14)

(15)



W =2C,cos(D, +¢, - kR), 17)

36

where the functions C, and D, are defined in (16), k=.E/e @ and

@o=+E/€ N(2\[AE )~¢. As is known (see, e.g., ['']), the modulus of the

confluent hypergeometric function exponentially increases in the range of small

internuclear disctances. At the same time the wave function should rapidly

disappear in the classically forbidden region. = Consequently,
cos(D, +9,—kß)=o at any distance R << R,, where R, is determined by the

condition U(R )=E .

This gives ground to a very simple and precise method of

calculating the phase constant @, .
One only has to evaluate the function (15) at

a suitable point X, << R,. Thereafter, ¢, is determinedfrom the condition

tan @, = cot(D, (X,) —kX,).

In this context it should be pointed, however, that a high computer precision is

needed for the accurate calculation of the phase constant according to (18). An

example of a ground state wave function, calculated as described in this section,
is seen in Fig. 2.

Fig. 2. A ground state wave function of Xe, corresponding to the pseudo-Morse potential (5) at

energy E=2.seV.

(18)
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4.2.0," state of the excimerXe,

In this section we presume that energy is measured relative to the potential’s
minimum. We do not examine specially the highest bound states in the narrow

energy range D, <E <D =D, +A, (see Section 2), not so important for spectro-

scopic applications. Therefore, when studying the bound states of xenon

excimers in the 0, state, we restrict ourselves to the vibrational levels n < 50,
when description in terms of the “pure” Morse potential (2) is applicable. The

wave functions in this case can be calculated in a standard manner. However, for

the wave functions of upper vibrational levels an effective algorithm that enables

simultaneous determination of all zeros of the confluent hypergeometric function

could be used [°].
Let us consider now the continuum states £ > D. Examination of this energy

region is important, e.g., for the adequate interpretation of the observed emission

corresponding to the classical left turning points of free Xe*—Xe pairs. This way
one gets very useful information on the potential energy curves at very small

distances (down to about 2.7 A [*]). According to Section 2, three different but

smoothly joined distance regions of the potential curve should be studied:

1.R<295A, 2.2.95 A <R <509 A (the point where the level n = 50 crosses

the potential curve), and 3. R > 5.09 A.
A pseudo-Morse approximation (4), very similar to that described in the

previous section, is used for region 1, a “reversed” Morse potential (3) is adjusted
for region 3, and the Morse potential (2) is applied to the bound states’ region 2.

One has to solve the Schrodinger equation for each of these areas and merge the

separated parts requiring, as usual, continuity of the wave function and its first

derivative (or logarithmic derivative) at the boundary points (2.95 A and 5.09 A).
Compared with earlier reports [>], essentially improved algorithms regarding
regions 2 and 3 are presented here. Another new element is special account taken

of the small distances’ area 1. Let us, therefore, begin with studying the wave

functions corresponding to region 1. The treatment is completely analogous to

that in the previous section. Thus, if energy is measured relative to the minimum

of the potential well and if one takes account of the differences of the parameters
in (4) and (5), the wave function can be expressed as

¥ =C,Cy cos(DY + g’ —kR),

where CS) and DS) are given by (16), @{" can be determined from (18),

= i,/(E —-D) [g,, and k;= ~
The main difference from the previous case is

that one cannot fix the normalization factor C;, because (17’) cannot be extended

to the free particle’s region. The superscript is introduced to distinguish the

symbols here from the ones in the previous section. We also have to evaluate the

derivative (or logarithmic derivative) of (17°) in the boundary point

17"
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R(g') =2.95A. The procedure is analogous to that described in [°]. As a result, the

following formula is obtained:

e e 7CD coD +OO -kR)

i (1)
x

where Cl(lljl(x) e
D

£ e—x/Z(D(u +l, 2u+l, x). From a general formula

forconfluent hypergeometric functions ['']

PD(u+l,2u+l, x) =e*D(u, 2u+l,— x),

1.6.,

ePO +l, 2u+l, x) = 2D (I, 2u+l, -x)

we see that the functions C ;(11431 and DS), can also be calculated with the help

of (16), 1f one only substitutes the negative argument x=-y=

— 24[A;/Ey €
°°° into this formula.

Now, letus examine region 2 (still assuming £ 2 D), where the wave function

is expressed by

W=e7"? F(-y, 24+1, y).

Here, j

F(-y, 24U+1, y)še—i(py“q)(—'y, 21t y)+ei“’y‘“(l)(—y*,—2u+l, y), (22)

y=2ae™""" ‘u=ia J(E= D, )/D, ,and y=a—|.l—% (see (2) for other

definitions). Again, we can use the Tricomi expansion (10) and the recurrent

relation (12) to simplify the calculation of confluent hypergeometric functions
in (22). In this case, b=-y, B=2u, and k =a. As a result of a deduction like

that leading to (16), one comes to the following main formula forregion 2:

e—x/2¢(_,y, 2,.L+ 1, x) = C:f)(x) eiD:lz)(x) — an,
n=o

B,=l, B =
Y

,
and

]+21
11?0

hereW

(19)

(20)

(21)

(23)
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Formulae (23) and (24) can also be applied to calculate another

function e"‘/zd)(—'y+l, 2u+l,x) that is needed to evaluate the derivatives

of the wave function at the boundary points. For this purpose we

only should replace a—>a—l. Thus, defining the function

eePD = o=s2@(—y+l, 2u+l, x), one easily obtains

LW y+l
k
c sin( D + 97—k,R)

bl Pl lt
TDmL,OLR¥ 2 G %e08D, +9" ~¥;R)

1)C3) cos(DF + 9P~kyR)
VsF

150 TROOLB2 jC cos(D,”+ @y —k,R)

On the basis of Egs. (21)—(25) the wave function in region 2 can be written as

¥ =C,CP cos (DP +¢f? —k,R),

2) . . ,
where k, = oy and the phase constant 90(() )is determined from the eguation

F(R")=F,(RP), (R =2.95 &)
according to (19) and (25). The normalization factor C, will be fixed later.

The treatment of distance range 3 based on the “reversed” Morse potential (3)
is analogous to that of region 2. The same basic formulae (21)—(26) can be used

if one makes the following adjustments of the parameters:

a—ia, Ei,/mD2 /ha 2 , y> Y, =2ia, e"

and u— iu=ia, /(E-D+D,)/D,

(note that L is a real quantity here, because E > D). As a result, the wave function

in this region becomes (see [°] for details)

v_27900¥ =2CP cos (D, +95 ~k;R),

where k; =o,p

] .
<

DO 21057 ((a,-u)+—, 2iu+l, = 2BCE)(yz)e DH (y 2 =e y2/ q)['—l(az ~L)+
2

, 2llvl+ l)’2) š
with B, =l, B, =%, and

iu+

Bn =
———y— aan_l —an_z , h= 2, 3,

2

n(2iL+ n) 4

At large distances, as needed, (17””) approaches the free wave form. To calculate

the logarithmic derivative in region 3, another function

(25)

(17°)

(26)

( 1 7///)

(27)

(28)
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. (3) :

C) =g l2g (—i(az—u)+%, 2iu+l, iy2)
is needed. Similarly to the previous cases, it can be evaluated with the help of the

same main formulae (27) and (28) if one replaces a, —a, +i
.

The logarithmic
derivative in region 3 then becomes

F,=š =k, -0 1211+(o,a, —k;) tan(D” +5" —k,R)

8 0/2-cos(DE) +9§ ~k,R)+ (o, ~ ky)sin(DS) +8 ~ k,R)
C cos(D) +;" -k,R)

;

and the phase constant @’ is determined from the boundary condition

F,(RP)=F,(R?), (R =5.09A).

Thus, we have fixed the phase constants in three different distance regions
under examination. From demand of continuity of the wave functions (17°),

(17”), and (17””) at the boundary points R{’andß{®, we can now easily
determine the normalization factors C; and C,. Therefore, we have completed all

the procedures needed for fast analytic solving of the Schrédinger equation
corresponding to the 0," state of Xe>. In Fig. 3, three characteristic wave

functions, calculated at essentially different energy values, are presented.

5. QUANTUM-MECHANICALFRANCK-CONDON FACTORS FOR

THE ELECTRONIC TRANSITION 0," —0," IN Xe,

In this paper we do not examine the variation of the molecular transition

moment with internuclear separation, assuming therefore that it does not change
dramatically within the range of interest for Xe, ["']. Therefore, in examples
presented below the emission profiles are calculated simply by summing the

relevant integrated Franck—Condon factors. The common (semiclassical) method

of calculating these factors for any fixed vibrational level n is based on the well-

known formula

3 2 dU(R)IW,(E,)=E; |,(R)| B

(29)

(30)

31)
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where W, (E,) is the Franck—Condon factor, ¥, (R) is the wave function of the

vibrational state n, and U(R) =U,(R) —U,(R) = E, is the difference between the

upper (U;) and lower (U,) potentials.
Our treatment is completely quantum-mechanical. On the other hand, we do

not restrict ourselves to studying only the bound-free transitions. Consequently,
there ils no need to use the simplified formula (31) that describes quantum-
mechanically only the initial bound state and does not account correctly for

changing the density of final states (proportional to ,/ E—U(o) ; ['*]), especially

at small energies. The wave functions corresponding to the continuous spectrum

Fig. 3. Wave functions for the 0," state of the excimer Xe, calculated at energies 5, 505, and 1005

meV above the dissociation limit. The dashed vertical lines correspond to the boundary points

R =295 A and R(D = 5.09 Ä that separate three differently treated parts ofthe wave functions.
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are normalized by the condition (7). An equivalent description in terms of the

energy space can be achieved by multiplying these wave functions with ['°]
1

dk ? 1
_]/4

—— li->--M> C E—U oo .[Zn dEr 1/27rhv
( ())

When calculating the components of the emission spectrum corresponding to a

continuum of final states, the factor (32) should be quadrated. Consequently, the

two factors, proportional to 4/E —U(e) and 1/v E —U(o0)
,

respectively, are

cancelled, and the wave functions described in Section 4 can be directly (without
any additional factors) substituted into the formulae for the overlap integrals. In

many cases the details concerning the accurate quantum-mechanical description
of the final states are not very important. However, such details become crucial if

total energy comes close to the limit of potential energy at infinity. An example
of a quantum-mechanical Franck—Condon factor, which cannot be correctly
computed on the basis of the semiclassical formula(32), is seen in Fig. 4.

6. COMPARISON BETWEEN THEORY AND EXPERIMENT

6.1. Oscillatory structures in bound-freefluorescence spectra of Xe,
corresponding to the left turning point region of Xe,

Time-resolved fluorescence measurements related to the inner part of the
excimer states provide useful information for checking potential curves at small

distances. As unambiguously demonstrated by Moller et al. [*], such an emission

originates from the left turning points of the bound excimers.

Fig. 4. An integrated Franck—Condon factor corresponding to the vibrational level n = 40 of the 0,"
state of the excimer Xe,.

(32)
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In Fig. 5 one can see an experimental spectrum for Xe, taken from [*], and a

calculated spectrum that corresponds to the left turning point region. The

experimental spectrum was recorded within the time window of 4 ns immediately
after the exciting spectrally selected synchrotron radiation pulse. At room

temperature the excitation wavelength for the curve presented in Fig. 5 (148 nm)
suits best to populate the vibrational levels n = 45-50 of xenon excimers in the

0, state. Therefore, due to possible slight relaxation during registration, it seems

reasonable to presume a Gaussian distribution of relative statistical weights of the

levels that contribute to the emission in the left turning point region:

{n—no ]2
gn < e

An 1

This simple model was used to fit the experimental spectrum to the relevant

theoretical one. Quantum-mechanical Franck—Condon factors for the vibrational

levels 30 to 50 of the 0," state were calculated and summed according to (33),

taking n, =4O and An= 5. A pseudo-Morse approximation was used for the

repulsive ground state and the calculations involved continuum states in the

range from 0.5 to 3.0 eV. The result is seen in Fig. 5. Note, however, that the

Fig. 5. Experimental and theoretical fluorescence spectra in the left turning point region of the

excimer Xe,. The experimental spectrum taken from [3] corresponds to a selective optical
excitation of 148 nm (8.38 eV). The theoretical curve takes account of the vibrational levels from

30 to 50, assuming a Gaussian distribution of their weights. In the lower part of the figure (in a

different scale) the Franck—Condon factors of the levels n = 36—44 (from right to left) are

presented. The solid line corresponds to n = 40.

(33)
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problem of relative weights of the levels is actually of secondary importance
here, because Franck—Condon factors of the upper levels are very similar in

shape, as is also demonstrated in Fig. 5. Therefore, the resulting spectrum would

be nearly the same if one would simply sum the Franck—Condon factors of the

levels 40 to 50 presuming their equal weight.
Good accordance between the theoretical and the experimental spectrum in

Fig. 5 is a clear evidence of the reliability of the potential energy curves used

(see Fig. 1) down to rather short internucleardistances (~ 2.9 Ä).

6.2. Hot luminescence of localized excitons in solid Xe

The theoretical method described in this paper is applicable not only to study
various processes concerning the gas phase. It is also well suited, e.g., to examine

the vibrational relaxation of excitons in rare gas crystals. A localized exciton in

solid represents an analogue of the excimer R, in gas, having nearly the same

equilibrium nuclear separation and the transition energy to the repulsive ground
state. Therefore, radiative decay of self-trapped excitons results in luminescence

bands that are very similar to the well-known second emission continua of rare

gases (see, e.g., [']).
Recently a nonperturbational theory of multiphonon anharmonic decay of

strongly excited local modes in crystals was worked out ['>l%]. Here this new

theoretical model is applied to describe the two-phonon anharmonic decay of

vibrationally strongly excited quasimolecular emission centres Xe, in solid

xenon. The same potential curves described in Sections 2 and 3 are used, and the

treatment concerns only the bound states’ region 2 (see Section 4.2) of the upper
electronic state. As regards the ground state potential, this is just the case when a

single pseudo-Morse approximation can be successfully used for all internuclear

distances (roughly from 3 to 4 A).
The peculiarities of the vibrational relaxation of the system under study are

described in detail elsewhere ['’]. The most important point is that sharp
acceleration of the two-phonon decay rate is expected for the quasimolecule Xe,
near a critical vibrational level (n.. = 23) and such relaxation jumps should reveal

themselves in the hot luminescence spectrum of solid xenon. To verify these

theoretical predictions, one has to calculate all Franck—Condon factors for the

levels n = 0—44 (see an example in Fig. 4), ascertain their relative statistical

weights by solving the corresponding system of kinetic equations, and finally
sum them up to obtain the desired hot luminescence spectrum. It should be

pointed out that fully quantum-mechanical calculation of the Franck—Condon

factors is absolutely needful to get the correct hot luminescence spectrum
(containing the oscillatory structures on the high-energy side) of the

quasimolecule Xe,. Indeed, as has been checked, semiclassical approaches like

(31) lead to completely wrong emission profiles in this case. The resulting
spectrum presented in Fig. 6 also contains a contribution from the zeroth level of
the 1, state. The calculated hot luminescence spectrum is in good accordance
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with the available experimental data ['*], which confirms the validity of the

general relaxation model [’s"6] on the one hand and the efficacy of the elaborated

analytic method for solving the Schrodinger equation on the other hand.

7. CONCLUSIONS

The main goal of this paper was to demonstrate that the consistently analytic
method of solving the Schrodinger equation is well suited to spectroscopic study
of simple one-dimensional quantum systems. The author has composed a set of

32-bit computer programs based on the algorithms described in Section 4. This

special software was the main tool that enabled the quantum-mechanical
calculations briefly described in Section 6 (much more examples are presented in

[*]), and fixing the parameters of the potential energy curves given in Sections 2

and 3. It is worth mentioning that, compared with the previous ones [*'], these

new algorithms ensure a win in the computation speed of at least ten times,
simultaneously essentially reducing the demands for the precision of the

calculations. Therefore, it is expected that the elaborated method will be used

much more widely than for solely studying diatomic rare gas molecules (or
quasimolecules).

Fig. 6. Calculated hot luminescence spectrum of the quasimolecule Xe, in solid Xe. The

characteristic features depicted in the inserts cannot be explained by the common perturbation
theory.
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ÜHEDIMENSIOONILISE STATSIONAARSE SCHRÖDINGERI
VÕRRANDI ANALÜÜTILINE LAHENDAMINE

Matti SELG

On tuletatud uued algoritmid ja loodud tarkvara, mis sobib iihedimensioo-

niliste lainefunktsioonidekiireks arvutamiseks pideva energiaspektri piirkonnas.
Meetodit saab rakendada kvantmehhaaniliste Francki—-Condoni faktorite ja
lihtsate kvantsiisteemide optiliste spektrite peenstruktuuri arvutamiseks. See

voimaldab tidpsustada nimetatud siisteemide tegelikke potentsiaalikdveraid, mida

on demonstreeritud ksenooni kaheaatomiliste molekulide puhul.
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