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Abstract. The linear programming problem is transformed to the quadratic programming
problem. The objective function of the new problem is a sum of squares. To minimize this

sum of squares subject to the existing constraints, we use the well-known method of least

squares. The quadratic programming problem is solved by the finite orthogonal method, which,

compared to the simplex method, uses less high-speed storage, solves ill-conditioned problems
more precisely, and is better adjusted for problems with degenerate basis.
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1. INTRODUCTION

Suppose a p X n matrix E, p-vector f, m X n matrix A, and m-vector b are

given. We shall consider the quadratic programming problem of finding a n-vector

x* so that itminimizes the sum of squares

z =|| f-Er|*> min

subject to

Azr =l,

r > 0,

where || - || is the Euclidean norm. Assuming m< n, we examine both cases,

p<mnandp >mn. Usually, to solve quadratic programming problems, it is

(1)
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recommended to transform the objective function z =|| f — Ex || to the form

z = (c,z) + (z, Dx), see [']. If, however, we square the matrix E, its condition

number must also be squared (depends on the definition of the condition number).

Our paperrecommends the opposite —to transform the function z = (¢, z)+(z, Dz)
to the sum of squares (see Example 4). The matrix E can be determined by the

Cholesky (square root) method and the vector f by solving the triangular system,
where rank D = p (p is the number of rows in the matrix £) (see Example 4). The

purpose of the paper is to use the advanced least squares techniques in mathematical

programming. The most difficult problem arising in this procedure is how to handle

the inequalities

x >O.

We apply the method of least squares to solve the problem (1). To find an

approximate solution z(¢€) of this problem, we shall present an algorithm VR, using
the system

Ar = ,

B = ef,

r > 0,

where € is a small weight, used for the coefficients of the objective function. If

m + p > n, then the system is overdetermined and z(e) is its solution in least

squares. Let us denote the coefficients of the system (2) by a m 1 x n matrix D

and ml-vector h, where m 1 = m +p, D = (A,eE)T, h = (b, ef)T, and write the

system in the following form

Drx =A,

x >O.

We will solve this problem in least squares

®e(z) = || h — Dz ||* = min.

As Pe(z):(exe)=|b—Az|*: (exe)+ || f- Ex ||, this method is

analogous to the penalty function method, see [2]. We will also observe the process
of solving the linear programming problem

z = (c,7) — max,

Ar = b

x > 0,

with the algorithm VR, where cis a n-vector, and z* = (¢, z*) is the maximum
of the objective function. The problem (4) is transformed to the above-mentioned

2)

3)

4)
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quadratic programming problem

v = (20— (c,2))? — min,

Ar = ,

r > 0,

where z( is any number that satisfies the condition 2y > z*. A detailed description
of the algorithm VR with examples is given in Sections 2 and 3. Here we shall

briefly follow the solving of the problem (3). To find a solution in least squares, we

must present the coefficient matrix D as a product of an orthogonal matrix () and

a triangular matrix R, D = QR. This QR transformation differs from the usual

one in two aspects, see [2]. First, the order of the active variables (i.e., xj > 0) that

correspond to the columns of the triangular matrixR, is determined by the third step
of the algorithm VR — the variable z;, for which the column d; has the minimum

angle with the right-hand side A, is activized. Secondly, if in the solution of the

system with the triangular matrix R any variable z; < 0 (see Example 1, step 4),
then the column corresponding to this variable is eliminated from the matrix R and

other columns are again transformed to the triangular form by the Givens rotations.

After that the order of the matrix R equals to the number of active variables which
is one in the first step, two in the second step, etc. In each step their values are

determined from the triangular system with the matrix R. In [], Chapter 22, the

problem (1) is examined without the constraints z > 0, and it is proved that in this

case z(e) — z*,if e — 0. In the lemmaof Section 5 the same is proved if the con-

straints z > 0 exist. The algorithm VR is finite, because in each step we find the

minimum of the function ®¢(z) in a subspace the number of which is finite, see [3].

2. THE ALGORITHM VR OF THE APPROXIMATE SOLUTION TO THE

QUADRATIC PROGRAMMING PROBLEMS

Let us describe the algorithm VR for the solution of the problem (1). For this

purpose we need the m 1 x n matrix D of the coefficients of the system (3) and the

ml-vector h, where m 1 = m + p, n-vectors z, F', G, I.J and ml-vector w.

Description of the algorithm VR(D, h,IJ, z,u, F,G,ml,n, ¢, €l).
1. Initially the number of active (i.e., z; > 0) variables ¥ = 0 and z = 0.
2. Evaluate the n-vectors F' and G with the coordinates

F(s)=(d(j),h), GG)=(d(j),d(j)),;, 7=l...n.

3. Determine the new active variable z;o by computing

axFQ(j) /G (7) = F*(jo)/G(jo) = RE

where the maximum is found for all passive (z; = 0) variables, for which F(5) > 0
and G(j) > el.
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4. If RE < €l, then go to step 19.

5. Increase the number of active variables k = k£ + 1 and write the index jg into

the array I.J of active variables.

6. If £ < ml, apply Householder transformation with a vector v = djq to the

column d(7) and right-hand side h, assuming that these are m 1 — k£ + 1 dimensional

vectors, see [4], Chapter 10.

7. Compute new F(j) = F(j) — d(k,j)h(k), G(j)=G(j) - d(k,s)*,
j=1,...,n.

8. Solve the upper triangular system of order k to determine the active

variables z;.
9. Initially the number of the controlled variable L equalsto k4l, L =k+l.

(During steps 9—12 positivity of active variables is checked).
10. LetL' =L —l.

11. IfL = 0, then go to step 3.

12. Ifinequality 0 < z;, is satisfied, go to step 10 (7L is the index of the active

variable).
13. Let zjl, = 0 and delete the index jL from the massive IJ.

14. From the triangular matrix R we have to eliminate by the Givens rotations

the column d;, which corresponds to the active variable z;r. (To annihilate vo in

a two-dimensional vector v = (vq,v9)T, we have to multiply all two-dimensional

vectors in these rows, which correspond to v; and v, by the Givens matrix G, where

G(1,1) =c, G(l,2)=s, G(2,1) =—s, G(2,2) =c, c= w//(v7 +O3),
s = v 2 // (v 7 + 02)).

15. Displace the indices of active variables, [J(i) = IJ(i+1) for

i=L,...,k - 1.

16. Find new F(j) = F(j) + d(k,j)h(k), = G) = G(5) + P(k, j),
j=1,...,n. .

17. Reduce the number of active variables, k = k — 1.

18. Go to step 8.

19. Check the inequalities | h(i)|<el+e(| b2+ || fI?),: = k+ 1,

...,ml. If at least one inequality is not satisfied, the problem has no solution. Stop.
20. Find the minimum sum of squares for the system Dz =h,

s2=h2(kL£l)+..+ he(ml)
21. Find the approximate minimum of the objective function z(€) = s 2 /€.
22. The problem is solved.

Let us give an example for e = 0.3, el = 10725,

Example 1.

z = (8 = 2.’132)2 + (5 — :II3)2 — min,

1 +2z9 +sz3 = . 20,
2719 g oy =" 8,

x > 0,

for which we have z* = (0; 3.75; 2.5; 3)*, z* = 6.5.
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Iteration X1 X2 X3 X4 h

] 1 2 5 0 20

0 2 -1 1 8

0 0.6 0 0 24

0 0 03 0 1.3

% 0 0 0 0

F 20* 57.4000 92.4500 8

G 1* 8.3600 26.0900 1

2 -1 -2 -5 0 -20

0 2 -1 1 8

0 0.6 0 0 24

0 0 03 0 |
X 20 0 0 0

F 0 17.4400* -7.5500 8.0000

G 0 4.3600%* 1.0900 1.0000

3 -1 -2 -5 0 -20

0 -2.0881 0.9578 -0.9578 -8.3522

0 0 0.2873 -0.2873 0

0 0 0.3 0 15

x > 12.0000 4.0000 0 0 :
F 0 0 0.4500* 0.4663

G 0 0 0.1726* 0.0826

4 -1 -2 -5 0 -20.0000

0 -2.0881 0.9578 -0.9578 -8.3522

0 0 -0.4154 0.1988 —-1.0833

0 0 0 0.2075 1.0376

x > -3.4306 5.1961 2.6076 0

5 0.6917 2.8914 2.7669 0.6917 19.8660

0.7188 0 4.2935 -0.6787 8.7302

-0.0699 0 0 -0.1337 0.2397

0 0 0 0.2075 1.0376

x 0 4.9250 2.0333 0

F -0.0167 0 0 0.1832%

G 0.0049 0 0 0.0609*

6 0.6917 2.8914 2.7669 0.6917 19.8660

0.7188 0 4.2935 -0.6787 8.7303

0.0378 0 0 0.2469 0.7423

-0.0578 0 0 0 0.7635

x 0 3.7509 2.5086 3.0069

F -0.0448 0 0 0

G 0.0034 0 0 0
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First z; is activized (z; = 20), then z 5 (z; = 12,23 = 4), and z3. After

applying three times Householder transformations, we have z 1 = —3.4306 < 0.

Then we shall eliminate the first column from the set of active columns. For this

end we have to rotate the first and the second row, annihilate the element d(2, 2),
according to the 14th step of the algorithm VR. After that we will analogously
annihilate d(3, 3), and then find x 5 and z 3 from the 2 X 2 system. On the last step
x 4 is activized. The approximate solution z(e) = (0; 3.7509; 2.5086; 3.0069) and

z(€) = s%/(e x €) = h%/(e x €) = 0.76352/0.3% = 6.4776 that we find will differ

only slightly from z* and z*.

It is well known that the solution of the problem (3) satisfies the normal

equations DTDz = DTh,

T +279 +573 = 20,

271 +(8 + 4€?)x, 4823 +2z4 = 56+ 16€

571 +Bzs +(26+e2)r3 ——rz4 = 92+5e°,
219 —T3 +74 = &

Its non-negative solution in least squares

z(e) = (0; (3902 + 16€*)/t; (260€2 + 20€*) /t; (3122 + 20€*)/1) — z*,

e—>o, t=1042.+4e".

Remark 1. The problem (1) has no solution if 4* = min || b — Az ||>> 0, z > 0.

Let k be the number of active variables in the least-squares solution z(e) of (2). If

the right sides h(k+l), ...,
h(m1) are close to zero, then the problem (1) is solvable

because h?(k + 1) + ... + h?(m1) — u* if ¢ — 0. The approximate condition

of feasibility, given on step 19 of the algorithm, proves the results of calculations.

The solvability is determined more surely using the exact algorithm VRA where the

function ¢(z) =|| b — Az || on the set z > 0 is minimized, see [3].

Remark 2. Thecriterion for the determination of the activized variable that is used

on the third step of the algorithm guarantees maximal linear independence of active

columns, because for the dependent columns F'(j) = 0.

Remark 3. During the actual solution process the equality z; > 0 held almost

always.

3. AN APPROXIMATE SOLUTION TOLINEAR PROGRAMMING

PROBLEM BY THE ALGORITHM VR

As already mentioned, we can also use the earlier described algorithm VR for

solving linear problems. To solve a medium-size linear problem (4), we then have

(5)
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to find a solution to the system

Ar = ,

e(c,z) = ‘ez,

x > 0,

in least squares with the aid of the algorithm VR, where 2y is any number that

satisfies the condition 2y > z* = (¢, z*). An estimate for zq is presented in [°]. The

less zg differs from the maximum 2*, the more precise will be the approximate
solution z(e). Moreover, if zo = 2*, then z(e) = z* forevery € > 0. The

parameter zg must be sufficiently large if we do not know whether the objective
function is bounded or not. In the case of a large zy we can increase the weight of

the constraints by multiplying the equations of the system Az = b by a sufficiently
large number M and this will give us a more exact z(e). Actually, it gives the same

effect as decreasing e, i.e., decreasing the weight of the last equation in systems (2)
and (6). We will get the value z(¢€) of the objective function, which corresponds to

the found approximate solution z(e),

Z(G) =2O — X/E/G,

where s was found on step 20 of the algorithm VR. If the objective function of a

linear programming problem is not bounded or if the zy chosen is to small (if a

feasible solution zg exists for which zy = (c, zo)), then z(e) = 0.

Example 2.

1 +x9 +73 = Do
271 +3z3 = 6,

Ty +375 +273 = z > max,

x > 00.

The solution for the case e = 0.01, zp = 100 is given below.

Iteration X Xy X 3

1 3.002 0 0

2 2.995 0.034 0

3 —-69.751 24258 48.504
4 0 1.029 1.999

After two Householder and two Givens transformations (see the previous
paragraph), the system (6) has the following form

0:999821 .+1.000025; ~+1.0001z3;=, 3:0286,
2.0001z; +0.0000z; +3.0000z3 = 5.9969,

—0.0133z; +0.0000z2 +0.0000z3 = 0.9296.

(6)

(7)

(8)
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We will find the values of active variables x 5 and x 3 from the first two equations,
z(e) = (0;1.0290;1.9994)T, z(e) = 7.0704, according to the formula (7). Below

the values of z(¢) in the case of different 2y and € are given.

The quadratic programming problem (1) observed earlier can be regarded as

a multiobjective linear programming problem. The coefficients of the objective
function are the rows of the matrix E. The next paragraph examines also the

exactness of the solution to linear problems.

4. NUMERICAL EXPERIMENTS

Initially the equations Az = b must necessarily be present in systems (2) and

(3), because otherwise we would have to displace the rows in the systems to

quarantee a computing stability, see [], Chapter 22.

Let us firstobserve the selection of the weight e. It cannot be too small, because

if € —0, then the condition number of systems (2) and (6) may converge to infinity,
see the formula (5). Moreover, if € is too small, then the system has the same

solution as in the case of ¢ = 0 due to the limited accuracy of calculations.

This means that we will only get a feasible solution which does not depend on the

coefficients of the objective function. As pointed out in [4], Chapter 22, we have to

choose e so that beginning from the row (m + 1), the absolute values of the nonzero

coefficients are substantially smaller than the absolute values of coefficients in the

first m rows.

All computations were carried out on an IBM-4381, using FORTRAN codes.

For all variables double-precision was used.

Example 3. Let us consider a linear programming problem with the Hilbert matrix,
a(i,j)= 1/0 +53), b) = 1/0 +1) +l/6 +2) +...+1/(i +m), c(j) =

b(7)+l/(5+1), i, j =1,..-,m. Ineguality constraints are transformed to equality
constraints with the aid of slack variables. The optimal solution 25 = 1 was found

form = 12, e = 0.00001, zo = 30 with the accuracy of 0.0001. Well-known

programs solve this problem with Hilbert matrix only if m belongs to the interval

4—B.

Z0 € X1 X2 X3

10 0.1 0 1.085 1.996

10 0.0001 0 1.000 2.000

100 0.1 0 3.652 1.905

100 0.001 0 1.000 1.999

1000 0.1 0 29.313 0.989

1000 0.001 0 1.003 1.999
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Example 4.

z = -11071 + m% — 271795 + Zxš — min,

1 +275 +73 = . 10,

T 1 — +T92 +74 = 6,
x >O.

Transformthe problem to the form (1). We shall find the lower triangular matrix

R from the equation RTR = D by using the square root (Cholesky) method.

Calculate r(1,1) = /(d(1,1)) = 1, r(1,1)r(1,2) = d(1,2) = —l, r(1,2) =

~1, r(2,1) = 0, r(2,2)?2 = d(2,2) — r(l,2)> = 1. Determine the guantities
f 1 and fo from the triangular system —2f; = —lO, 2f; — 2f2 = 0, the solution

of which is fi = fo = 5. The matrix of this system is —2RT. Consequently, the

system Fx = f looks as follows:

Tls — 5,

Tg9 = 5,

where £ = R. The solution found by the algorithm VR is for ¢ = 0.00001 equal
to (4.600000000330; 1.399999999671; 2.600000000329;0) = xz(e). The Wolfe

method uses substantially more high-speed store than algorithm VR, see ['].

Remark 4. The algorithm VR uses less high-speed memory than the quadratic
programming algorithms based on the simplex method, see Example 4. The use of

orthogonal transformations instead of Gauss’s eliminations also enables us to solve

the problems more precisely, see Example 3.

5. PROOF OF CONVERGENCE

Lemma. The solution in least squares ofthe system (2) converges to the solution of
the problem (1), lim z(e) = z*,¢ — 0.

Proof. Form a system of normal equations. Let e — 0. In some neighbourhood
of the minimum point z* the active variables are determined from the system of

normal equations with the aid of Cramer formulas as a quotient of two polynomials,
see the formula(5). These normal equations that correspond to the passive variables

z; = 0 determine Õe;(x) > 0 in a certain neighbourhood of the point z*. There

exists €g > 0 such that for any positive € < ¢ the signs of the active variables and

the derivative do not change. This means that if having such ¢, we do not observe

the passive variables and normal equations corresponding to them. Then for € < ¢
all conditions presented in [*], Chapter 22, about the convergence of z(e) to z* are

satisfied.

The finiteness of the algorithm VR can be concluded from [3].
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