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Abstract. Proceeding from general Maxwell equations, a straightforward method for the

calculation of the light absorption coefficient in the region of an isolated exciton absorption band

has been worked out. The treatment is based on a simple expansion of the real and the imaginary
part of the transverse dielectric constant, specified as the weak absorption approximation. The

method has been applied to the calculation of the long-wavelength edge of the exciton absorption
band I"(3/2) of solid xenon.
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1. INTRODUCTION

Since the pioneering studies by Anselm and Firsov ['], and Toyozawa
[>7°] a guite thorough theory of lineshapes of optical absorption bands in

the region of exciton resonances has been worked out. Apart from the

papers dealing with the overall lineshape, a vast number of publications
concern absorption near band edges, especially the origin of the

exponential behaviour of absorption in the low-energy side, known as the
Urbach tail (see, e.g., [4] and [s] for review). Probably the most fruitful

starting point for the explanation of this phenomenon has been proposed
by Schreiber and Toyozawa [6]. In a remarkable series of numerical

experiments, performed for a large number of finite Monte-Carlo samples,
they ascribed the Urbach tail to the discrete localized states below the

renormalized exciton band edge. According to their model, momentarily
trapped excitons can be formed below the free exciton states due to

fluctuations in the random potential of lattice vibrations. The existence of

localized states as well as the validity of the Urbach rule has been
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demonstrated simply by numerically solving the standard model of linear

on-site exciton—phonon interaction, neglecting intersite correlation, and

including the adiabatic approximation for the harmonic lattice vibrations.

The present report also touches upon the low-energy side of the exciton

absorption bands. However, it does not pretend to offer any new

interpretation of the Urbach tail. This would probably be excessively
speculative in the frameworkof the approach specified below. Exponential
tailing is usually observed in the near-edge region of the absorption

bands [°]. Here, on the contrary, the presumable transparency region of

insulating crystals is examined. This study has partly been stimulated by
some unexpected experimental results concerning absorption in the off-

resonance region of condensed xenon, which could be a very promising
medium for gamma-scintillators []. Unfortunately, registration of

scintillations happens to be restricted due to abnormally strong self-

absorption (0.5—1 cm7') of the emission from quasi-molecular scintillation
*

centres Xe, [®°]. Consequently, quite remarkable absorption has been

detected in the region more than 1 eV below the bottom of the exciton

zone, which isin conflict with the predictions of the common polariton
theory where the dielectric constant tensor is expressed interms of

renormalized damping polaritons P
Recently the author has proposed a different approach ['?] where the

dielectric constant depends on the spectrum of renormalized damping
excitons, not directly on polaritons. Nonstationarity of polariton states in

this model, i.e. their frequency shift and damping, are also determined by
the corresponding parameters of excitons. The absorption coefficient,
when calculated according to [l2], tails off much slower as compared to

the polariton theory (illustrations are given in Section 4). In addition to

intraband scattering, [l2] takes account of the interband exciton—phonon
processes. This may be important with regard to the interpretation of the

mentioned anomalous absorption in the far off-resonance region in

condensed xenon where the energetically lowest dipole "allowed" exciton
zone I'(3/2) overlaps the "forbidden" zone I'(3/2) [l3]. This essential

peculiarity of rare gas crystals does not find any reflection in the polariton
picture. Indeed, from the point of view of the polariton theory the

absorption in the off-resonance region is practically independent of the

presence of "forbidden" exciton zones, whereas according to [l2] the

interband scattering to the "forbidden" zone I'" (3/2) can contribute to the

damping of I'(3/2) excitons in Xe. In the region of small wave vectors this

contribution may gradually become predominant. As a result, the

absorption coefficient in the far off-resonance region would tail off slower
than expected. The above-given qualitative considerations are supported
by the corresponding model calculations in Section 4.

Therefore, the starting point for the theoretical discussion in this paper
is the general expression for the dielectric constant tensor. The crystals
under study are considered to be isotropic and nongyrotropic. Provided
that free charges are absent, the optical properties of such crystals in the
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region of an isolated exciton zone €2(k), characterized by the oscillator

strength F, can be described in terms of the transverse dielectric constant

scalar

Q°F
e, (k, @) =Bo+———š——2, (1)

[Q(k) +d,]l - (o+igp)

where Qz is the quadrate of plasma frequency, and the physical
backgroufi)d of the parameters d, and g, depends on the model used for

their specification. According to [l2], they should be interpreted as the

freguency shift and damping of excitons with the wave vector k, whereas

irllOtl}? polariton theory g, would correspond to the damping of polaritons
[as v

The goal of this paper is to elaborate an easily applicable method for the

calculation of the absorption coefficient in the region energetically far

below the exciton resonance, independent of the specification of the

damping parameter g,. As will be demonstrated, a special weak

absorption approximation suits well for this purpose.

2. ENERGY FLUX DENSITY

In a simplified version of the polariton theory, presuming weakness of

the damping parameter g,, the recommended way for the calculation of
the absorption coefficient can be expressed by the formula 14 15]

8y (@)

e == @

where vy 1s the group velocity of free polaritons. In other words, the

absorption coefficient would simply be inversely proportional to the mean

free path length of polaritons.
The viewpoint expressed by Eq. (2) is not very rigorous, because it is

based on several simplifying suppositions. First, it is assumed that a

monochromatic electromagnetic wave can create in the crystal free
polaritons of the same frequency, i.e. the solutions of the dispersion
relation |

02k2
— =¢,(k o), (1')
@

neglecting damping. Second, the complex frequency shift ow, of

polaritons is supposed to be determined by the complex increment 01% the

wave vector: |

do, -
õ(x)k = Vkõk, VkEW j
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Third (probably the most arbitrary presumption), damping affects only
the imaginary part of the polariton frequency and wave vector, whereas

their real component remains unchanged:

ök = i -Imk,

ow, = ig, ().

Making use of those assumptions, one readily comes to Eq. (2) indeed.

However, apart from the conceptual differences concerning the physical
meaning of the damping parameter, none of the mentioned approximations
enter into the model specified below.

According to the general (inhomogeneous) Maxwell equations, the

electromagnetic field in the crystal can be expressed through the so-called

foreign currents. For an optically isotropic crystal the general expression is

as follows [l6]:

2
4[kZ—%egk, w)]A(k, 0) = Tj(k, ), ©

where k is the wave vector (k = |K|), c is the speed of light, A(k, ®) and

J(k, ®) are the Fourier transforms of the vector potential and the current

vector, respectively. Therefore, the vector potential

3 j(k, CO)ei(kr—cot)
Ag = 4nc]do ]a k 55 5. .i (4)

k c -0 ei(k, ®)

To retain the rigorousness of the further treatment, we make use of the

approximation of a semi-infinite crystal. Let us assume that a

monochromatic electromagnetic wave of the frequency ® falls onto the

surface of the crystal perpendicular to the plane z=o. The system of
coordinates should be chosen such that the direction of the falling wave

would coincide with that of the x-axis. Under these conditions the

components of the foreign currents induced on the surface become [!7]

:
»

1O , :
j3OD =je ÕÖÕ(), j=j =0 - (5)

whose only component of the corresponding Fourier transform different
from zero is

(6)K. ))8(k)8(K,Äg—õ(m'—m(o,k) =

2TJ 5

where k= kz'
Substituting Eq. (6) into (4), one obtains
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2e—imtj
= i%)Nz

A,(z ) = -TOJdN——Ze——, NE-C-]—c
. (7)

=

N -g, (N, o)
Õ

The methods commonly used for the evaluation of integrals similar to

Eq. (7) are based on the theory of complex variables, i.e. they require the

calculation of the poles of the integrand. In the present case, however, to

make such an approach really possible, one should specify the parameters
dy and g in Eq. (1) for complex wave vectors, which need not be an easy
task at all. This gives a reason for introducing the weak absorption
approximation mentioned above and performing integration in Eq. (7)
directly along the real axis.

As 1s known, the electric and magnetic field strengths can be expressed
via the vector potential:

E = -JA H=rot4. (8)
c dt

Therefore, in accordance with Eq. (7), one can write

4ie—iwtj
- cos(mN )—Nz

By (@t = ———R e (9)

5
N —& (N, 0)

. 00 o

46_’“”]'0 sin(‘C—Nz)
H (21) = ——|dN————— (10)

c

o
N -£, (N, )

(only different from zero components of vectors are written).
Equations (9) and (10) lead to the following expression for the energy

flux density:

s 100

st%t(ExH:+E:Hy) = Z—l]C—Ol— x

X {U:dN- cos(%Nz)FZJ [J:dN- Nsin(%oNz)Fl:l T
— [J:dN- cos(%Nz)Fl] [J:dN : Nsin(%)Nz)Fz:l } ,
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where

N2—£l g,
FIE—Z——Z—Z , FZE—Z—Z—Z, (12)

(N —81) +€, (N -e) +Be,

slšße si(N, o), ezslm si(N, o) .

3. WEAK ABSORPTION APPROXIMATION

As we are examining the off-resonance region, the quantity g, which is

responsible for the imaginary part of the dielectric constant, has to be a

small parameter, independent of its more specific physical background. It

then follows that the poles of the integrands on the right side of Eq. (11)
must be very close to some resonant value, which can be determined from
the equation

2,2

2 Ckr
N, E’;{ =g (N,,0), (13)

where €, is defined by Eq. (12). Note that k, cannot be identified with the

wave vector of the free polaritons corresponding to the frequency 0),

although it does not differ very much from the latter.
Direct integration along the real axis can be performed easily, if one

takes into account that integrals in Eq. (11) are determined by a shallow

range of wave vectors in the immediate vicinity of k, . Consequently, it is

reasonable to approximate

e, = 8 .+Bl,(k-k), e, =e (k,o0),1 174 r r lr 15
(14)

s'„-ss'l(kr,(o), €, = ezrzez(kr,u)).

Equation (14) can be treated as the mathematical formulation of the so-

called weak absorption approximation used in this study. Within this
approximation

F, (ky-k,) (k-k))
F —a——a (15)

(k-k) + (ky~k)
and

Bl
Pyt 16

(k-k) #(k,—k)
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where

.
>1

Fnl=F2(kr) —

š-—,
X

82r
ko‘=‘kr ll+7——— [,

2"::lr_elrkr
I.e.

1
Fi(ky) = F,(kg) = m

Using Egs. (14)—(16), one can rewrite Eq. (11), simultaneously
replacing the bounds of integration with N, — A and N, + A (the quantity
A will be specified below):

22 2

som e 1
z C

(12_34)' ()

Here

A ®

cos zxz+krz ck,
= getS s=yM 18

X +xo—A

A
O

x sin —c-xz+krz
1, = s eS (19)

X +Xx
-A 0

A
0

X COS -C-xz+krz
= [a —AEA , (20)

X +x
2 A 0

A o )esm(zxz + krz)
I4 = erojdxS e (21)

X +X
-A 0

and the value of the parameter A is limited by the inequality

Nr>A»xO' - ; (22)

Inequality (22) represents an additional condition related to the weak

absorption approximation, which allows us to replace the bounds of
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integration £ A in Eqgs. (18)-(21) with + oo (the inequality is fulfilled

when €5, « 281 r). Thereafter, the evaluation of the integrals is elementary:

—(k,—k)z
I, = mcos (kz)e ,

—(kO—kr)z
I, = TN, cos (krz)e ,

: Mk ) 7

I, =-T sin (krz)e
9

,

. —(kO—kr)z
I, = TN, sin (krz)e ,

I.e.

2 ‘“2(ko_kr)z
1112—1314 = Nre

and, consequently,

-(k,-kj)z
SZ = SOe

28 0 2

2|]Ol ki e

el (23)
® (2e, —€,k)

E=kll __B2L__ k. =k I_,__B2’__
10 2£lr—B'lrkr

> 2° 281r—8'1rkr '

As can be inferred from Eq. (15), k; and k, in Eq. (23) are just the

extremum points of the function F; at a given frequency ®. In accordance

with the commonly used definition of the absorption coefficient

ds
—=

=
_ (24)

dz
° nSZ’

one therefore comes to a formula of an especially simple form

u =k,-k. (25)

According to Egs. (13) and (23), when B’lrkr « 281r, the latter formula

can be rewritten as

WE

W=
lire_zr G (26)

81” c/\lslr
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4. MODEL CALCULATIONS

In the framework of the weak absorption approximation, specified by
Eq. (14) and complemented with Eq. (22), the calculation of the absorption
coefficient at any given photon energy in the off-resonance region reduces

to a simple problem of finding extremum points of the functionF'| defined

by Egs. (12) and (15). Such a problem can be readily solved with the help
of even a simple computer as may be inferred from Fig. 1. However, for

the actual employment of the method one should specify the damping
parameter g, which is a much more complicated task. The adjustment of

the frequency shift dj, is less important because one may assume that only
renormalized frequencies are observable.

In this section the method is applied to the low-energy side of the

lowest-energy absorption band of crystalline xenon. The band is related to

the exciton zone [I(3/2) characterized by the effective mass

M=24sm, [lB]. Only longitudinal acoustical phonons are of importance
for the exciton-phonon cou}l)ling [2]. Their dispersion can be well

approximated by the formula ['°]

= E sin 7 L
Eq = ELsm(2 qm), (27)

where ¢ is the modulus of the phonon wave vector, g, is its maximum
—

193 : : :

value, and E; =
5.4 meV [ 7] is the corresponding maximum energy. |

Fig. 1. A graphical illustration of the method used for the calculation of the absorption coefficient

(ky—k;) within the weak absorption approximation. The curve corresponds to the function F/
defined by Eq. (12), depending on the wave vector at a given photon energy £ = 8 eV. The intraband

scattering mechanism of excitons according to Eq. (33) is presumed. The zero-pointcorresponds to

the resonant value k, that can be determined from Eq. (13) (k, =704 922.81 cm™! for the curve

presented).
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Now let us try to sgecify the damping parameter. In the framework of

the polariton theory [19% 117, for the idealizedclass of crystals under study,

8 = /F1k) e (k) o(k +q) x

g

x(nõ[E(k) -E(k+g) +o]+

+(n,+l)õ[E(k) -E(k+9g) -o])., (28)

while according to another model discussed here [l2]

& = T|F,,| x

q,n .

x {n,B[Q; (k) -Q,(k+q) +o_] +

+ (n,+l)B[Q(k) -Q, (k+q) ~o ), (29)

E(K) in Eq. (28) denotes the polariton frequency, whereas the symbol
Ql (k) in Eq. (29) has been used for the main dipole allowed exciton zone

(h =1). The values of the subscript n>l in the last formula take account

of the possible interband exciton—phonon processes. At this point, as [!2]
may not be yet available to the readers, some comments are probably
needed in connection with the physical meaning of Eg. (29). This formula,
which is an essential constituent of earlier theories of the lineshape of the

exciton absorption bands [2], seems to be incompatible with the polariton
theory. Indeed, in those preliminary versions of the theory aiming at direct
calculation of the absorption coefficient, the exciton—lghoton coupling has
been treated applying the perturbation methods. In [*“], two independent
approaches for the calculation of the transverse dielectric constant are

proposed, whereas the problem of light absorption is discussed only in

passing. Both derivations presented in [l2], proceeding from the Green

functions of excitons and transversal photons, respectively, lead to Eg. (1)
of the present report. It is essential that the corresponding damping term is

expressed by Eg. (29). Therefore, [] proposes a new viewpoint on this
well-known formula. This viewpoint does not actually contradict to the

polariton theory, while polaritons can be still treated as the solutions of the

dispersion relation (1') where, however, damping cannot be neglected any
more.

The quantity

E(k)Q,(k)
ü(k) =

———a (30)

2 SO[QI (k)_E (k)]
Q, (k)e

QPF
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in Eq. (28) is the so-called exciton component of polaritons [2o]. Only the

case T =0 is examined here, I.e. the mean occupation number of phonons
n, = O.

qln fact, the most difficult problem is the adjustment of the exciton—-

phonon coupling parameters Fj, entering into Egs. (28) and (29).
However, in the far off-resonanceregion, i.e. in the case of small exciton

wave vectors, we can make use of the approximation of a guasi one-

dimensional crystal. To a first approximation, assuming k=o, one

therefore obtains [2l]

= A sin7(T. 2 7_‘._‘l_)Fi, = Al,Bin (2 qm)cos(2 7
, (31)

where the constants A, can be treated as some variational parameters
within this approach.

Now intraband polariton—phonon scattering should be nearly elastic

[22]. It means that g = 2k - sin (0/2) ,
where 0 is the angle of scattering,

i.e. g should also be a small parameter and according to Eq. (31) the

guadrate of Fj 1s nearlõ/ š)roportional to g. Therefore, in the framework of

the polariton theory [1 11] one comes to the following formula for the

damping parameter in the off-resonance region:

22
2 K)( k 3

g= Al DE ) (32)k 11 m k 9%

where v, 1s the group velocity of polaritons.
Analogous formulas can be derived for the model of damping excitons

[l2]. In this case, in accordance with the mentioned peculiarities of solid

xenon, the contributions from two different exciton—phonon coupling
channels should be summed up. Here, the effective mass approximation
with M = 2.45 m, for both exciton zones, I'(3/2) and I"(3/2), has been

used. The intraband scattering of excitons with small wave vectors can be
assisted by low-energy phonons only. The corresponding damping term

thereforebecomes

811(k) = Aš1%2(1 —%)3(5];)2, (33)

where B=o.B eV [l3’ 23] is the width of the exciton zone in the effective
mass approximation and

¥
074 Bm:
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Note that the intraband scattering channel switches off when k<k,.

However, as results from the last formula, kj is actually a very smefil
parameter.

Comparing Egs. (32) and (33), one can easily conclude that the

polariton theory predicts the off-resonance absorption to tail off much

quicker as compared to the model proposed in [l2] (see also Figs. 2, 3 and
the Table). As already mentioned, the interband scattering in the case of

solid xenon does not enter into the polariton picture. According to ['%], on

the contrary, the interband scattering of excitons is an important
constituent of their damping. These processes can be taken into account

through the terms with n = 2 in Eq. (29). The energy se3paration between
the I'B/2)and T’ (3/2) exciton zones- AE =O.l ¢V [1 ]. Therefore, the

interband scattering is assisted by phonons whose wave vectors should be
close to some characteristic value g that can be determined from the

relation

Fig. 2. Calculated low-energy tails of the lowest-energy exciton absorption band of crystalline
xenon at 7'= 0 K for various theoretical models. Curve 1 corresponds to the polariton theory 10 H
where the parameter gy in Eq. (1) is directly related to the damping of polaritons according to

Eq. (32). Two more curves correspond to the model [l2] assuming intraband (curve 2) and interband

(curve 3) scattering of excitons on phonons, expressed by Eqs. (33) and (34), respectively. The

bottom ofthe exciton zone is fixed at E = 8.35 eV.
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Consequently, g,=0.35¢,.Using Eq. (31) one may check that the

exciton—phonon coupling parameters F;, change very slowly in the

vicinity of gg. As k« g, in the region under study, it then follows that the

interband scattering at ?: 0 is nearly proportional to g,. In other words,

g, (k) = const (34)

in a wide range of wave vectors corresponding to the off-resonance region
of crystalline xenon.

The calculated absorption spectra corresponding to the different

damping models expressed by Egs. (32)—(34) are presented in Figs. 1-3.

The bottom of the exciton zone I"(3/2) has been fixed at E = 8.35 eV [23].
In Fig. 1, a typical depiction of the function F; depending on the wave

vector can be seen. It has been calculated from Eq. (12) for £ = 8 €V,
assuming the intraband scattering mechanism of excitons according to

Eq. (33). The extremum points of the curve can be determined very easily.
This, in turn, immediately fixes the value of the absorption coefficient

according to Eq. (25). The curves, quite similar to the presented one, can

be calculated for a wide range of wave vectors. The procedure does not

include any peculiarities related to the damping mechanism of elementary
excitations in the crystal. On the other hand, different damping models
expressed by Eqgs. (32)—(34) are easy to compare. The proportionality
factors in those formulas have been arbitrarily chosen to give u =5 cm”' at

E = 8 eV, independent of the model. The parameters needed for the

calculation of polariton dispersion curves have been taken from [23].

Fig. 3. The same calculated absorption curves (see explanations to Fig. 2) depicted on a different

scale.
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Figures 2 and 3 clearly demonstrate that the polariton theory in its
10, 11 :

common form [ ] cannot be responsible for the observed abnormally
strong absorption in the transparency region of condensed xenon. Much
better agreement with the experimental data [B’ 9] was obtained with the

help of the model of damping excitons ['?], including their interband

scattering mechanism, which becomes predominant in the far off-
resonance region of crystalline xenon.

5. CONCLUSION

In this paper, the validity of the weak absorption approximation for the

calculations in the low-energy off-resonance region of exciton absorption
bands is demonstrated. The applicability of the approach does not depend

Exciton—phonon coupling 2]
Photon energy Polariton—phonon
(eV) coupling 1011 intraband interband

scattering scattering

8.3 23080 > 935.5 144.2

8.25 1134 143.5 46.1

8.2 195.7 48.0 23.0

8.175 100.3 31.7 17.5

8.15 56.3 22.2 13.8

8.125 34.0 16.1 11.2

8.1 21.4 12.1 9.22

8.075 14.2 9.43 7.74

8.05 9.76 7.47 6.59

8.025 6.91 6.04 5.67

8 5.00 5.00 5.00

7.95 2.79 3.43 3.83

7.9 1.68 2.56 3.06

7.85 1.05 1.90 2.49

7.8 0.68 1.47 2.08

7.75 0.48 1.16 1.75

7.7 0.33 0.92 1.49

7.65 0.24 0.75 1.28

7.6 0.18 0.62 1712

7.5 0.10 0.43 0.87

7.4 0.06 0.31 0.70

7.3 0.04 0.23 0.57

7.2 0.18 0.47

7 0.11 0.33

6.8 0.25

6.6 0.19

Absorptioncoefficient (cm™) of solid Xe at 7= 0K for various theoretical models. The value

u=s cm”! at E =8 eV, independentof the model, has been fixed by an appropriate choice of

the proportionality factors of the exciton--phononcoupling. The bottom of the exciton zone is

located at E = 8.35 eV
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on the physical meaning of the damping parameter gy entering into the

general expression for the dielectric constant. Nevertheless, to make use of

this method, one should specify the mechanism of damping in the wave

vector representation. The approximation is usable in a wide range of

frequencies below the exciton resonance and even relatively close to it, as

can be seen from the Table. However, at the frequencies approaching
resonance, i.e. ® = Q (k)

,
the calculations abruptly become impossible,

as the absorption cannot be considered weak any more.

The validity of the method has been verified for the examination of the

origin of unexpectedly strong absorption in the presumable transparency
region of solid xenon. Three possible damping mechanisms of the

elementary excitations of the crystal have been compared. In spite of a

somewhat simplified character of those calculations (e.g. only 7 = O case

was examined) it seems reasonable that the effect is essentially related to

the interband scattering of excitons from the dipole allowed zone I'(3/2)
into the forbidden zone I' (3/2), according to the model proposed in [l2].
In fact, this model does not contradict to the polariton theory. It only
ascribes the nonstationariness of polariton states directly to the damping of
excitons.
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ELEKTROMAGNETVÄLJA NÕRGENEMINE
MITTEJUHTIVATE KRISTALLIDE LÄBIPAISTVUSE

PIIRKONNAS

Matti SELG

Uldistest Maxwelli vorranditest lihtudes on vilja tootatud otsene mee-

tod valguse neeldumiskoefitsiendi arvutamiseks isoleeritud eksitontsooni

piirkonnas. Kisitlus baseerub transversaalse dielektrilise konstandi reaal-

ja imaginaarosa lihtsatel rittaarendustel, mida on nimetatud nérga neel-
dumise ldhenduseks. Meetodit on rakendatud tahke ksenooni eksiton-

neeldumisriba I"(3/2) pikalainelise serva arvutamiseks.
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