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Abstract. A useful Schur stability test by so-called reflection coefficients of the polynomial
is recalled. A Schur invariant transform is introduced, which preserves all the reflection

coefficients inside the unit hypercube. Some simple necessary stability conditions in terms

of unions of polytopes are obtained by splitting the unit hypercube ofreflection coefficients.

A rule for generating sufficient stability conditions in terms of simplexes is proposed using
linear Schur invariant transforms.

Key words: discrete-time systems, stability, polynomials.

1. INTRODUCTION

The design of digital controllers is an active area of research due to the

speed, low cost, and high computational power of new processors. The

stability of the closed loop system is a critical design criterion and can be

investigated by root placement of the characteristic polynomial a(z). For

a given polynomial a(z), many tests may be used to check its stability.
In the case of a family of polynomials, however, these tests require the

testing of a set of inequalities. The problem was elegantly solved in the

continuous-time case by the celebrated Kharitonov’s theorem [*]. To date
such a solution does not exist for the discrete-time case, although partial
results are available for special cases.

Our aim is to obtain some simple necessary and sufficient stability
conditions by using multiparametric Schur invariant transforms. A

transform S : R™"* x R™ — R"*! on the coefficients space of nth order

polynomials with r free parameters is called Schur invariant if it maps a

Schur (stable) polynomial a(z) into a family of Schur (stable) polynomials
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a(z,€) = S(§)f(2) by free parameters from a region §; € [šj,šj], j=

1,...,T.
The stability of polynomials can be investigated by checking whether

the real reflection coefficients k; are inside the unit hypercube k; €

(=1,1),4 = 1,...,n [2]. We introduce a Schur invariant transform which

preserves all the reflection coefficients inside the unit hypercube. This
transform is multilinear in respect of free parameters, whereas all of the
free parameters mustbe placed inside the unit hypercube §; € (—1,1), j =

1,...,m7;7 < n [*]. By this Schur invariant transform some necessary and

sufficient stability conditions are formulated.

We obtain a linear Schur invariant transform if only one of the free

parameters §; can be varied. Via the linear Schur invariant transforms a

simple necessary stability condition can be formulated. It gives an outside

approximation for the stability region of discrete polynomials as a union
of polytopes of polynomials. For low-order polynomials (n < a
sufficient stability condition is also formulated via linear Schur invariant
transforms. As a result, we obtain an inside approximation for the

stability region as a union of m-order simplexes. In order to improve
the both approximations (outside and inside), we have to add some extra

polytopes. These approximations are less conservative than the ones given
by Cohn [*], Fam and Meditch [°], Ackermann [®], and Docampo et al.

[’]. A counterexample is given to prove the incorrectness of Docampo’s
conjecture [*].

2. STABILITY TEST FOR SCHUR POLYNOMIALS AND

REFLECTION COEFFICIENTS

The problem of checking the stability of a linear discrete-time system
reduces to the determination of whether the roots of the characteristic

polynomial of the system lie inside the unit circle or not. A polynomial is

said to be Schur if it has all its roots inside the unit circle. In this section we

recall a simple test procedure for Schur polynomials [®] and its connection
with reflection coefficients [2].

Consider a polynomial a(z) of degree n

a(z) =ap2" + ...+ alz + ag

and let us define

a(z) = 2"a(z7') = ap2" +
...

+ an_l2 + a,

and

b(z) = 27 [a(2) — (aO/an)a(2)].
Then the polynomial b(z) is always of degree m < n — 1 and the following
lemma holds [?].
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Lemma 1. If a(2) satisfies |a,| > |ao|, then b(z) will be Schur ifand only
ifa(z) is Schur.

Lemma 1 allows us to reduce the degree of a polynomial without

loosing its stability. It leads to the following procedure for successively
reducing the degree and testing for stability:

1. Set a 9 (2) = a(z).
2. Verifyja0| > jad.
3. Construct

)
a(i+1)(z) =z7l [a(i) (z) — %Zna(i) (Z—l)]' (1)

a,_;

4. Return to 2. until you find either

* step 2. is violated, i.e. a(z) is not Schur or

*
you reach a(®1)(z) of degree 1, in which case condition 2. is also

sufficient, i.e. a(z) is Schur.

In fact, this procedure leads precisely to the Jury stability test.

Now, let us recall the recursive definition of reflection coefficients k; of

a polynomial a(z) [°]:

äž—n) = %;i, b s 08,0
An

ü>) +ka
|

ki = —a. (3)

The use of the term "reflection coefficient" comes from the transmission

line theory, where k; can be considered as the reflection coefficient at the

boundary between two sections [?]. The same explanation can be given
for any type of situation, where there is wave transmission with normal

incidence in a medium consisting of a sequence of sections or slabs with

different impedances, for example, digital filtering and signal processing
P]. ;

Obviously, from (1)—(3)

)
iOB

a‘n—i

and the following lemma holds.

Lemma 2 ["]. A polynomial a(z) will be Schur if and only if its reflection
coefficients k;,» = 1,

...,
n lie within the interval (-1,1), —1 < k; < 1.
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A polynomial a(z) lies on the stability boundary if some k; = =l,
i =. 1,...,.n. For monie Schur polynomials, a, = 1, there is a

one-to-one correspondence between the vectors a = (ay,...,a,_1) and

k = (ki,. kn).

3. SCHUR INVARIANT TRANSFORM

We call a transform on the coefficients space of polynomials a(z) Schur

invariant if it maps every Schur polynomial into another Schur polynomial.
Obviously, mapping (1) is a Schur invariant transform with

aš-z) = 0,7 =n—1,...,n. By means of a linear-fractional mapping, which

transforms the unitcircle into itself, another Schur invariant transform with

one free parameter £ € (—1,1) was introduced in ['°]. In this section we

introduce a Schur invariant transform S : R*"! x R™ — R withr < n

free parameters.
Let us define a polynomial of degree n

c(z, €) = zb(z2) + šõ(z), EER 4)

starting from a polynomial b(z) of degree n — 1 and b(z) = 2"~ 'b(z7l).
Lemma 3 [*]. If b(z) is a Schur polynomial, then c(z, €) will be a Schur

polynomialif and only if€ € (—1,1).

By sequential use of mappings (1) and (4) we generate according to

Lemmas 1 and 3 Schur invariant transforms R and S with a free parameter
¢ from the interval (—-1,1)

c(z,€) = R[b(z), €] = R(P[a(2)], €) = S[a(z), €]. (5)

In matrix form

c(€) = R(§)Pa = S(Eja,
where a and ¢(€) are the coefficient vectors of the polynomials a(z) and

c(z, £), respectively, and

P = In+l + knEn+l7

R(€) = In+l + €EEn+l

where J, isan x n unit matrix and E, = [eni..el], = (0...010...0)T.
j—l

To obtain a Schur invariant transform with r free parameters &, ..., &,
we, first, have to decrease the degree of polynomials by r-fold use of

mapping (1) and, second, to increase the degree by r-fold use of mapping
(4) with free parameters £;,j= 1, ...,r; 655 € (—l, 1).

In matrix form we have now
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S(E) = RP, (6)

where R(£) and P are matrices of dimensions (n + 1) X (n — 7 + 2) and

(n —r 4+ 2) x (n+ 1), respectively, and

P = [OEPn—r+2(kn—r+l)]---[OEPn(kn—l)]PnH(kn), (7)

RO =R)e)jlRt ) ®

Pj — IJ + kj—lEj)

R;(n—j+2) = Ij + En-j+2E;-

Theorem 4. The polynomial c(z, &) will be Schur ifand only if
1) the reflection coefficients k,

...,
ky_, ofthepolynomial a(z) lie in the

interval (—1,1);
2) the free parameters &1, ..., &, lie in the interval (—1,1).

Proof. It is easy to show with the help ofLemma 1 that the polynomial b(z)
of degree n — 1 preserves the first n — 1 reflection coefficients £, ...,

k,_l
of the polynomial a(z). By r-fold use of (1) we obtain a polynomial a(" (z)
of degree n — r with reflection coefficients &y, ...,

k,_,. By Lemma 2 the

polynomial a(™)(z) will be Schurifonly —1 < k; < 1, j =1,...,n—r. Let

now b(z) = a")(z). By r-fold use of (4) we obtain the polynomial c(z, £)
which will be Schur, according to Lemma 3, if only a(")(z) is Schur and

-I<B<l, j=al,.,r. D

Obviously, for Schur polynomials the first reguirement of Theorem 4 is

always satisfied.

Corollary 4.1. The polynomial c(z,&) will be Schur if a(z) is Schur and

-1<8;<1, j=1,...,r.

Corollary 4.2. Transform (6) will be Schur invariant if and only if
-1 < fj < 1, j=l-...T.

Corollary 4.3. The reflection coefficients k;(c) of the polynomial c(z, €)
have thefollowing values:

ki, i=l,...,.n—rT,
ki(c) . { §n—i+l7 I=n—r+ ]., ol

Corollary 4.4. The polynomial c(z,§) lies on the Schur stability boundary
if a(2) is Schurandif some & = +l, k € (1,..,7b; & € (-1,1), j F
k, j= 1,...,7r7.

Letus mention some properties of the Schur invariant transform S(€).
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1. The transform S(£) is multilinear in respect of independent
parameters £l, --- Er-

2. The transform S(€) is nonlinear in respect of polynomial coefficients

ag, ---y Qp.

3. The transform S(€) is linear in respect of coefficients by, ..., by_rll
of the auxiliary polynomial b(z) = Pla(z)].

4. The family of transforms S(¢;),&; € (—1,1),57 = 1,...,7 contains
the unit transform. Indeed, if {; = k,_;4+l, then by Corollary 3 k;(c) =

ki,i=1,...,n and by (6)~(8) c(z,£) = [T;-,(1 - kš)a(z).
5. If a(2) is monic,then &(2, €) =iIT i{4i ==c(7, €) is monic.

6. If the auxiliary polynomial b(z) = P[a(z)] is monic, then the

polynomial ¢(z, £) will be monic for arbitrary &; € (—1,1),7 =1,...,r.

4. NECESSARY STABILITY CONDITIONS =

It is obvious that the stability domains in the coefficients space are not

convex and that they have a complex structure [®]. In this section, we use

the reflection coefficients to obtain some necessary conditions for Schur

stability. We have to embed the actual stability domain into a "nice" set

(union of polytopes). We shall deal only with monic polynomials, i.e.

, = 1.

The stability boundary in the reflection coefficients space is presented
by the conditions

k=+l, — i1€(41...,n1). (9)

It can be shown [] that theseconditions generate in the space ofpolynomial
coefficients a;,i= 1,...,n —1:

* %n boundary hyperplanes and 5 boundary hypersurfaces for n

even and

* 2241 boundary hyperplanes and 25 boundary hypersurfaces for n

odd.

The nonlinearpart of boundary conditions is generated by k; = —1 and ¢

even. Then there is a complex conjugate pair of roots on the unit circle.
A simple but very conservative necessary condition is given by Fam and

Meditch [°]:
the convex hull of the Schur stability region in polynomial coefficients

space is a polyhedron P(a) whose vertices correspond to the n + 1

polynomials with zeros in the set {—l,l}

P(a) = conv{ai(z), ..., ansl(2)},

u =(z2+l)*(z2 i), i=0,..,n,
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where conv{a;(z),7 = 0,...,n} is a polytope of polynomials a;(z).
A less conservative conjecture for the necessary condition is given by

Docampo et al. [7]:
the stability region is contained in the union of the two polyhedra

Pi(a) = convi{ai(2),...,a,(2),a(2)},

> Pa(a) = conv{a(2),ao(2), .-, an-1(2)},

where ; ;
ai(2) =(z+1)(z—1)""

and
>

a(z) = (22 +l)2 if n even,

a(z) = 2(z2 +1)"= if n odd.

Unfortunately, this conjecture turns out to be incorrect (see Section 5).
We shall use the following lemma to give a more general and less

conservative necessary stability condition.

Lemma 5 ['!]. If ¢ is a multilinear mapping of a hyperrectangle R, then

¢(R) € conv{p(R")},

where RY is the set ofvertices of the hyperrectangle R.

Taking into account Corollary 3 and the first property of the Schur
invariant transform S (&), we can claim that S(§) is a multilinear mapping
from the reflection coefficients space into the polynomial coefficients

space. Indeed [°],

(4)
a = —k:

(i o ;— . ; ; 10
aš) :aš- I)—kia'z('z—jl)) v 17)77'7.7 =1,...,Z—]..

( )

It is easy to show that the vertex polynomials of the hypercube (9) in

the reflection coefficients space have their roots in the set {—l,l}. So, the

necessary stability condition by Fam and Meditch [°] is simply a corollary
of Lemma 5.

Let us split the unit hypercube of reflection coefficients £ = {k; €

(—1,1), ¢ = 1,...,n} into two hyperrectangles XC; (k;) and Ky(k;) by the

hyperplane k; = k!, kF € (—1,1). And let the multilinear mapping (10)
transform the vertex sets Kt (k;) and KCY (k;) of these hyperrectangles into
the vertex sets A 7 (k;) and A% (k;) of polynomials a(z), respectively. Then,
according to Lemma 5,

P[lCl(k;)] C conv[AT(k;)], (11)

Because mapping (10) is a single-valued function, we have
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() = o{[Kl(ki)] U [Ka(ki)]} = S[Kl(Ri)] U o[Ko(k:)] (13)

and by (11)—(12)

P(K) S conv[A](ki)] U conv[AS(ki)]. (14)

In case of splitting the unit hypercube Kby another hyperplane k; =

k3, 1# j; 1,5 = 1,...,n we have

P(K) C conv[A](k;] U conv[As(k;)]. (15)

From (13) and (14) we obtain

#(K) C {conv[AY(k;)]Uconv[As(k;)]} N{conv[AY(k;)]Uconv[As(k;)]}.

In general, we can split the unit hypercube K by several hyperplanes
ki=kž, ki € (—1,1) for every coordinatei= 1,...,n; m=1,..., Ni.
Then

¢(IC) C {conv[A7(k)] U
... Uconv[Ay, ~ (kl)]} N

...

...
N {conv[A](kn)] U

...
U conv[Ay. (kn)]}, (16)

where A” (k;) is a vertex set of polynomials a(z) corresponding to the

hyperrectangle KC(k; < k; <k kj= £l, j #1).
Now, let us consider the relations between the vertex sets K” of

the reflection coefficients unit hypercube and A” of the corresponding
polytopes of polynomials. It can be easily verified that every vertex from

the set ¥ = {kY, ..., k%,} will be transformed by (10) into a single member

of the set A” = {af,...,a;,}. Butto a vertex a¥,j = 1,...,n + 1 may

correspond several vertices of the set K” because 2" > n + I,n > 0. The

splitting of the hypercube K by the hyperplane k; = £}, k € (—1,1) is not

reasonable if:

2. GK" (k; = 1)) = A* or

3. oK"(ki = -V)] =A".

A straightforward implementation of (10) gives for k; = +1:

lK(ki= 1) F oK“(ki= -l)], i=1,..,n;
2.oK“(k;= D] AA%, i=1,..,n;
3. PlK"(ki = -1)] = A°

p ) I=l—2), j=1,..,5—1 . forneven,lf{izn—2j+l, j=1,..,21 fornodd. (17)

oe= DAY i=]l,..,n,
where ¥(k; = 1) denotes the set of vertices of the unit hypercube K with

fixed k; = 1(k; = +l, j #li, j=1,...,n).
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The splitting of the hypercube Kby the hyperplane k; = kI, kI €

(—1,1) is reasonable if only ¢[K"(k; = £l)] # A” and @[KY(k; =

1)] # ¢[K¥(k; = —l)]. Taking into account the properties 1-4 of (10)
and relationship (17), we can claim the following.

Theorem 6. The Schur stability region A ofpolynomials a(z) is contained

in the intersection ofthefollowing unions ofpolyhedra

N;+l

A= |) conv[AZ (k)]
m=]l

. 1 #n—27, j=1,...,3—1 forneven,Z6{l""’”}’{2's:sl7,—2]'+l, jz1,...,"T_1 for n odd,

where N; is the number of splitting hyperplanes k; = ki, m =

1,...Ni; 1 = 1,...,n, k; is the reflection coefficient of a polynomial
a(z) and AY,(k;) is the vertex set ofpolynomials a(z) corresponding to the

hyperrectangle K(k} <k; <k , kj= 1, jF.

Obviously, the necessary stability conditions will be less conservative

if we increase the number NV; of different splitting hyperplanes.

Corollary 6.1. The Schur stability region Aof polynomials a(z) is

contained in the union of two polyhedra

A C conv[A 7 (k;)] U conv[AY(k;)], i=1,...,n.

Docampo’s necessary stability condition for n = 3 [7] follows

immediately from Corollary 6.1 by k 7 = 0.

Corollary 6.2. The Schur stability region Aof polynomials a(z) is

contained in the intersection of two unions offourpolyhedra

A C {conv[A](k;)] U conv[A;(k;)]} N conv[A](k;)] Uconv[As(k;)]},

ii jETL....nh ey

Corollary 6.3. The Schur stability region Aof polynomials a(z) is

contained in the union ofthe polyhedra

N;+l

AC |) conv]A i=l,..n; m=l,...Ni+l.
m=l
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Example. Let n = 3. By Fam’s condition [°] we obtain the tetrahedron

ABCD: A = (1,3,3), B = (-1,—1,1), C = (1,-—l,—-1), D =

(—1,3, —3).
By Corollary 6.1 we obtain two sets of polyhedra. First, splitting the

unit cube of reflection coefficients Xby k; = kj, ki € (—1,1) gives
the unions of two polyhedra ABC'F and BCDE. For ki = 0 we obtain

(Fig. 1) 2 =(1,1,1), FP=(—l,l,—l), i.e.

1 —1 1 —1 -1 1 —ll 1

.ACconv(?) -1l —1 1)U(—1 —1 31).3 1 71 —1 1 —1 —l 1

Second, splitting X by ks = kž, kž € (—l, 1) gives the unions of two

polyhedra ABCH and BCDG. For kš = 0 we obtain G = (0,1,2)T,
H = (0,1,—2,)" (Fig. 2).

By Corollary 6.2 we obtain a set of polyhedra (ABCF U BCDE) n

(ABCHU BCDG). For ki =O, kš = 0 we have (Fig. 3)

1 —1 1 —1 -1 1 —l 1

AC {conv(B -1 -1 I)Uconv(—l -1 3 I)}fl3 1 =1 -1 1 -1 —3 1

1 —1 1 0 —1 1 -1 0

fl{conv(3 i I>Uconv(—l 1 1)}3 1 —l._ -2 1 —1 —3 2

By Corollary 6.3 we obtain for ki, = 0.5, kji,=o, kiy = —0.5 (Fig. 4)

A C (BCDE, U BCEF; U BCE;F, U ABCF3).

S. SUFFICIENT STABILITY CONDITIONS

In this section we use the Schur invariant transform introduced in

Section 3 to obtain some sufficient conditions for Schur stability in the

polynomial coefficients space. We have to embed a "nice" set (simplex)
into the actual stability domain. So far only few sufficient stability
conditions in the coefficients space have been proposed, which are as a rule

very conservative [*] or valid only for low-degree polynomials n < 3 [®],
[7].

Let us have the stability region A" for monic polynomials a(z) of

degree n. Our aim is to find a (n + 1)-dimensional simplex S™** inside the

stability region A"tSl C A"*! starting from a reasonably selected set

of points a; € 2Y,j—=l,.. M,
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Fig. 1. Necessary stability conditions forn = 3, kJ = 0.

Fig. 2. Necessary stability conditions for n = 3, k 3 = 0.
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Fig. 3. Necessary stability conditions forn = 3, k 7 = 0,k 3 = 0.

Fig. 4. Necessarystability conditions for n = 3, kj; = 0.5, ki, = 0, ki3 = —0.5.
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We shall increase the degree ofpolynomials by invariant transform (8)

A= BEs, — EE(-1L1),
a €R™,
a(§) € R

It means r = 1. By Property 1 the coefficients a(£) depend linearly on

the free parameter £. By Property 6 the polynomial a(z, £) will be monic

because a(z) is monic. By Theorem 4 a(z, &) will be Schur because a(z)
is Schur and £ €.(—1,1).

In other words, to draw a simplex S™*! we shall use the following rules:

1. A single point a; € A" will be transformed into a line segment
conv[a;(l),a;(-1)] € A" by R(£), &€ € (—1,1). By Corollary 4.3 the

points a(1) and a(—1) will lie on the stability boundary of A"+
2. Aline segment conv(a;, ax) € A" will be transformedby R(§), & =

¢*, & € (—1,1) into a line segment conv{a,;(£*), ax(&*)] € A"
3. Two line segments, conv[a;(l),a;(—l)] and conv[ax(l), ax(—l)],

will have a common endpoint

or

a](—l) = ak(—l) ifRn+l(—l)aj = Rn+l(—l)ak. (19)

Altogether, we have to find n + 2 vertices a;(§) of a simplex S"*! and,
according to the edge theorem [*?], (n + 1)2" stable line segments (edges)
between these vertices.

Theorem 7. Supposea; € S" C A",j =l,
...,

M,

M
(2+l)* _ifneven,

n— fn+l4“n+3g lf'n Odd

and

R(—l)ak = R(—l)ak+l, (20)

k=m(s)+l, m=0,..,35, 11=1,....,5 fneven,
m(n—l n

o

n— .

RL T(R AR22L ifnoda,

R(l)ar = R(l)ak+i, (21)

k = 1,...,;—;3—1, lzmn(ž+ ), m=1,...,3 zfn even,

k=l„T, lsz, lfnodd

Then

Ss**! = conv(R(+l)a;, j= 1,... M» S A 1 (22)

Proof. By assumption conv{a;,j = 1,..., M,} C A" since 8" is convex

(n-dimensional simplex). Therefore the polytopes conv{R(l)a;, j =

a;(1) = ax(1) ifRn+1(1)a; = Rn4+l(l)ak (18)
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1/.5M,} and conv{R(—l)a;; j = 1,..,M,) lie on the stability
boundary of A™*! by Corollary 4.4. By assumption (20) the polytope
conv{R(l)a;, j = 1,..., M,} has % + 1 vertices by n even or 24+ vertices

by n odd. By assumption (21) the polytope conv{R(—l)a;, j = 1,..., M,}
has 7 + 1 vertices by n even or "T“ + 1 vertices by n odd. By Theorem
4 all of thestamileyeds&) = R(&a, - (=1 1) :7 = 1,... M,
will be Schur stable and by Property 1 all of them will be line segments

c; = conv{R(l)a;, R(—l)a;}. According to (20) and (21) we have % + 1

stable line segments by 7 even and ”T“ stable linesegments by n odd from

every vertex R(—1)a; to all vertices R(1)a;. Thus we have stable line

segments between:
* all of the vertices of the polytope conv{R(l)a;,j =l,

..., M,},
* all of the vertices of the polytope conv{R(—l)a;,j =l, ..., M},
* every vertex R(—1)a; and all of the vertices R(l)a;,j =1;...; M,,.
It means, the simplex conv{R(*l)a;,j = 1,..., M,,} will be Schur

stable by edge theorem ['?]. DO

Theorem 7 gives us a convenient tool for constructing sufficient

stability regions in shape of simplexes (or unions of simplexes). The task

of seeking for a; € 8™ in accordance with linear relations (20) and (21) is

a problem of linear planning.
Let us start from the well-known sufficient (and necessary) Schur

stability condition for n = 2 [7]

22 1 —1 = 1A—conv(2 0 _2).
From (8) and (20)-(21) we obtain the conditions for selecting

aD € R j=1,.4 —

; d) 1o |
a® =R3(l)l [ =Re(l) |B ], j=l,3,

(3) 12 1 (e |
a (—1) — R3(_]) ä — R3(_l) Jf_z ) )=l7 27

L

where

001 0 0 —1

Rs(1l)= |ll 0j, Rg(—l)z( I—l 0)
11 0 -1 1 0

or
M 2 2)off + o) = ) + af): 2 2asy +asy = ajo + ag) (23))
-

pD -jIe

taa — to=o = a — o).
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In order to get the least conservative sufficient condition, we choose (if

possible) the points a§-2), j = 1,...,4 from the boundary of A2. In Fig. 5a

the stability region .A? is presented by the triangle ABC. According to (23)
the line segments conv[a§2), a§2)] and conv[a:(f), a,ff)] must be parallel to the

edge BC and the line segments conv[a{”, as?] and conv[as?, a{?] mustbe

parallel to the edge AB. Let us choose a point ašZ) on the edge AB and

find appropriate points a§2) on AC and aff) on BC. Then a;(f) coincides

w(l2t)h the vertex B. Obviously, we have one degree of freedom in choosing

aj ” € AB.

The simplex S? is defined by the relations

(2) (2)

(1) =Ry(1) [ i ] = Rs(1) [ " ] ,

(2) (2)
£-r| 4 |-mo| 4 |,

(2) (2)
-0=R| % | =ma-) | % ],

(2) (2)

Let af? = .(0,1)7, then a = (1,0)7, « = (—-1,0)7, andald =

(0, —l)7 (square DEF BinFig. sa). Now we finda{¥(1) = (-1, -1, 1)7,

Fig. 5. Sufficient stability conditions forn = 2andn = 3
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(1) = (-L,1,-17, a’(-1) = (L,1,1)7, and af’(-1) =

(I,—l,—l)T. According to Theorem 7 the 3-dimensional simplex ABC'D

(Fig. sb)

1 1 —1 —1

S3=conv{<l> (—1)(—1)( 1)}:1 —1 1 —1

1 1 —1 —1

zconv(l -1 -1 1) cC X
1 -1 1 -1

is Schur stable and coincides with the one given in [].
Let now a?) = (0.5,1.5)", then agQ) = (1,1)T, a,:(,,z) = (1.0,

oy = (—=0.5,—0.5)T (rectangle D'E'F'B in Fig. 6a) and a(l?’)(l) =

(-1,—1,1)7, aX(1) = (-1,0,07, a(-1) = (1,2,2)7, a (-1) =

(1,—1,—1)" (tetrahedron ABC'D' in Fig. 6b)

1 I—l —1 _83:conv(2 -1 -1 O)CA3.2. —1 1 0

In a similar way we can find the stable tetrahedron ABC" D" (Fig. 6b)
starting from the rectangle D"E”F"B (Fig. 6a). Obviously,

(ABCDU ABC'D' U ABC"DY") c 42

(Fig. 6b) since ABCD c A43, ABC'D' c A3, and ABC"D" c A3.
Increasing the number N of different stable simplexes S) C 43,..., S%y C

Fig. 6. Sufficient stability conditions forn = 2 and n = 3.
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A 3, we obtain a less conservative sufficient stability condition as the union

of 5?,j=1,.., N, and ifN> oo (Fig. 7)

e 3 3

j=l

Now we are able to construct a counterexample for Docampo’s
conjecture [7]. For n = 3 the conjecture claims:

A 3 g Pl(a) U P?(a)a

where

1 1 -1 0 [1 1 —1 0

Py(a) = conv (3—l—l 1 > ;. Pule) — cony 3-I—l 1

3. -1 10 -3 -1 1.0

Let us choose a point i) = (—0.5,0.4,0.4)7. It is easy to check that

0¥ ¢ Pi(a) and a!® ¢ Ps(a) ,
ie. by the conjecture a!® ¢ A3. But

in the above example for n = 3 we found a® € ABC"D" c A 3 (Fig. 6b),
i.e. contradiction. In fact, the roots of the polynomial

a*(z) = 23+0.4272 +0.42 — 0.5

are A; =0.546, Ap3 = —0.473+0.832i, i.e. |X] < llandad e A3,
thus the conjecture is incorrect.

Fig. 7. Schur stability region forn = 3.
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Now, let us start from the stability simplex SS = ABCD c 2A
(Fig. 6b). The conditions for selecting a§-3) € 83,5 =1,..., 6 are, according
to (8) and (20)—(21), as follows

i a® a®
Q=R | % |=R)| %|, k=l2 1=24

4 a® a 3
a (—1) = Ra(—l) k |=Ri(l)| %1, k=1,3,5, I=l

where

0001 00 0 —1

10190 1 0 -1 0R4(1)‘(0200)’ R4(‘l)—( 00 0 0)'
101490 -1 0 1 0

It is possible and reasonable to choose a§3) on the edge AC and find

appropriate points ag‘o’) on BC, a§,,3> on AD, aff') on BD, a?) and aés) on

AB of the simplex ABCD c A3. We have one degree of freedom in

choosing a§3) € AC. Let a?) = (1,0,0)". Then aš') = (0,0,1)T,
a¥ = (0,0,-1)7, a® = (~1,0,0)7, ¢ = (0.5,—1,—0.5)T7, a =

(—0.5,—1,0.5), and

1 1 1 —1 —1

4 1 —1 0 1 —1 4S—conv(o 0 —2 0 O)CA.
1 —1 o.—l 1

Proceeding in the similar way we obtain, for example,

1 1 1 —1 —l —l

1 —1 0 0.1 —1

3 10 6 -1 1 0 o]|c4s,
0 0 —1 —1 0 0

1 —1 0 o.— 1

1 1 1 1 -1 -1 -1

5=5 0 0 0° .5 —.5

6
—

0 0 —.5 —.5 .5 0 0 6

=WO 0 0 5 0. 0 . o]|4
0 0 —.5 —.5 —.5 0 0

5 —.5 0 0 0 —.5 1%
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1 1 1 1 —1 —1 —l —1

2 =2 0 0 0 0 —2 2

0 0 -2 -2 gk 2 0 0

S'=conv] 0 0 0 .06 —.066 @ § B led
0 0 0 .06 — .06 0 0 0

0 0 -2 =2. -2 -2 0 0

2 —.2 0 0 0 0. .2 —.2

Let us mention the following properties of all stable simplexes obtained

above:

1. all vertices of these stable simplexes S™ lie on the stability boundary
of A",

2. some of the generating points aš-") € SBY*,j = 1,..., M, may be

placed on the boundary hyperplanes (or edges) of S™,
3. all of the vertices of $" have k, = +l.

6. CONCLUSIONS

A useful Schur stability test by the so-called reflection coefficients of

the polynomial is recalled: all of the reflection coefficientsk; must lie inside
the unit hypercube k; € (—1,1),¢ = 1,...,n. Then a Schur invariant
transform S(€) is introduced which preserves all the reflection coefficients

within the unit hypercube. This transform is multilinear in respect of free

parameters £;,j = 1,...,r. Some simple necessary stability conditions in

terms of unions of polytopes are obtained by splitting the unit hypercube
of reflection coefficients and taking into account the multilinear nature

of the transform from the reflection coefficients space into the space of

polynomial coefficients. Via the linear Schur invariant transforms a general
rule is proposed for generating sufficient stability conditions in terms of

simplexes. Some examples for low-order (n < 7) polynomials are given.
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SCHURI STABIILSUSEST JA INVARIANTSETEST

TEISENDUSTEST

Ulo NURGES

On uurituddiskreetsetepoliinoomide stabiilsustja leitud selle tarvilikud

tingimused poliitoopide ühendi kujul ldhtudes nn. poliinoomi
peegelduskoefitsientide iihikkuubi tilkeldamisest. Kasutades mitme vaba

parameetriga Schuri invariantset teisendust on leitud stabiilsuse piisav
tingimus n-modtmelise simpleksina (vdl simpleksite tihendina).
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