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Abstract. Interpolation with the rational splines of the form ¢y + clx + c22* /(1 + d172) on

each subinterval [z;_;,z;] of the grida = 29 < z; <
...

< z, = bis considered. The

coefficients are determined from a nonlinear system which has a locally unique solution. The

convergence of order O(h*) is proved.
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1. INTRODUCTION

It is known that the cubic spline interpolant, although having good
approximation properties, preserves monotonicity of data under certain

conditions [']. The problem of shape preserving interpolation has been

studied by many authors, for example [>~°]. In our note we will discuss

the interpolation by second-degree rational splines with free parameters.
This problem leads to a nonlinear systemfor the determination of the first
moments of interpolating splines. We see that these splines preserve strict

monotonicity and strict convexity of the function to interpolate.

2. PROBLEM OF INTERPOLATION

leta =29 < 71 < ... < T, = b be an arbitrary fixed pastition ok the

interval [a, b] and let h; = z; —x;_l,7 = 1,
...,

n. Our object is the rational

spline .S which is a function of the form

https://doi.org/10.3176/phys.math.1996.1.04

https://doi.org/10.3176/phys.math.1996.1.04


39

2
CoT

S(z) =cy+cix + —( ) ° r
1 + dlx

on each subinterval [z;l,7i;). Forz € [ril,%], letr = til + thi,
t € [o,l]. Then we have a representation

tZ—ZhžMi—l
(1)S(.’L’) = S;_l +thy;m;_; +

m ,

where

S S(Ti-1) =c+azii+
Ty

15 NTi-1) = si 1 1 bl s ID2

CoZi—l CaZi—l
mia = S(tisl) =+ ———+————,! ( 1) !

1+ dlfL‘i_l (]. + dlx,-_l)?

262
M 1 =58"(z;1)= ————.

We seek a spline S € C?[a, b] such that

S(zi)= f(zi), i=0,...,n. (2)

The C? continuity of S on [a, b] involves 3(n —1) conditions, namely that

S, S’, and S” mustbe continuous at all interior knots xl,. .., Z,_;. Adding
n + 1 conditions from (2), we have them 4n — 2 to determine 4n free

parameters So,---,Sn-1» e, My MysPry - PO S,
so we set also two end conditions, for example mg, m,, or My, M, might
be given. We put

mO:f(;:f,(-'EO), mn:fylz:f,(xn)' (3)

3. CONSTRUCTION OF THE INTERPOLATING SPLINE

The C? continuity conditions of S give the equations

Si-1 + +i——.— 5I—l hi M i—l

ž

12+ iph_l
i ; ,

Mi1— = W ( )
21 zp)z 5

iDi
hi+i-1 2

mz-

L (6)Mi-1 =M;
,

(1 + h,—pi)3
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where ¢ = 1,...,n —1, but they hold also for : = n. According to (2) and

(3), 5;,i=0,...,n, and mg, m, are known. Setting T; = (fi — ficl)/hi,
we get from (4)—(6) the equations

Mi-1 + Z?f—fžz—pl—z) = 7;
)

i+ hiMi—lžäi—ZšššT =m;,

T = M (7)

mi + aai = Jin

mi + hi—HMi 2(3::__2:_;2:1)2 — Mi4l

for an index 7 = 1,...,n — 1. We intend to eliminate here M;_;, M;, p;,

p;+l to get an equation for m;_l, m;, m;y1.
The first two equations of (7) give

mi +(l+hipi)mi = (2+ hipi)fi
Or :

2f —m; — mM;_
Di = f“——,—l (8)

hi(mz’ — fz)

where: = 1,...,n as fori = n we get it from the last two equations of (7).
The second and third equations of (7) imply

1+ hipi)(2 + hipi

which gives with (8)

bl — mi )Mi = 2mi — F) (9)
The last two equations of (7) give

2(7;+1 — mi)2 = hi Mi(misi — .fil+l)
and, taking into account (9), we obtain the eguations

hi(mia - F)a — Fia)” +hi ma - F) mi -F) =0

i=1,...,n-1. (10)

Equations (10) with the end conditions my = fj and m, = f, form a

system that we have to solve. This done, we calculate from (8) p;, 1 =

1, ... ;n, and then; for example, from.(s) M, i =0,...,n — 1.
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4. EXISTENCE OF THE SOLUTION

Assume that h; = h forall? = 1,...,n. Then Egs. (10) with end
conditions give a system which we write in the following more suitable

form

hz(m() — f(l)) = 0,

{ (Mi-1 — T;)(mz — T;+l)2 + (mi — 7;)2(mi+l — 7;+1) =O,
i=]1,...,n-1, (11)

h(mn —f) =O.

We set m = (my, ...,m,) and consider (11) as

®(m) =0

with @ : R™*! > R"*! and ®(m) = (po(m), ..., vn(m)). It is clear that

® is Fréchet differentiable. We have 9y/omg = h?, 8,/om, = h? and

f0ri=1,...,n-1

Õ(p,- —1

Õm—H
= (m; — fi+l)2’

B‘lo2' —! ==f i —

oy = 2mi —fi u — Fiyl) + 2074 — fi)(mirl — fina)

ÕPi
—

7'\ 2
ami-i-l

— (m'l fz) °

Suppose that f € C*[a,b] andm; = f/ +0(h),i = 1,...,n — 1. Using
Taylor expansions, we get fori = 1,...,n—-1

Õšoi h2
1\ 2 2

SEieg O F h
St = (1) +o(A?).

0p;KV —h2 12 h2
,

õm; S N) +oh)

õ(Pi h?
\2 2

—— = —(f; h*).= ) +AI

We see that if f"(x) > 0 or f”(z) < 0 on [a,b], which means the strict

convexity or concavity of f, then, for small A, the matrix ®'(S) has the

dominant main diagonal. Thereby the Newton’s method

cI)’(m’“)m’““ — Õ'(mk)mk i q)(mk)

is applicable in the neighbourhood of the point (£}, fi,-- -, f1)-
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Our statement about the existence of a solution for (11) is based on a

lemma which is proved in [?], Ch. 4, §l9. We use it in the following special
version.

Lemma. Let ® : R™"' — IR™*! be differentiable in the ball B(m*,d) =

{m : ||m — m*|| < &} and let there be q € (0,1) such that

(@' (m*))"H(®'(m) — @'(m"))|| < g for meß(m*,ö), (12)

(@'(m*))"'®(m*)|| < 6(l—q). (13)

Then the equation ®(m) = 0 has a unique solution in the ball B(m*, ).

Taking m* such that m} = f! + 0(h),7 = 1,...,n —1, then under
the previous assumptions on f, we have ||®(m*)|| = o(h®). Choose

g € (0,1). Then for some § = o(h) > 0, condition (13) is satisfied
because ||(®'(m*))~|| = O(1/h?) for sufficiently small h. Further, m €

B(m*,) implies m; = f! + o(h) and ||®'(m) — ®'(m*)|| = o(h?)
as (0p;/0m;)(m) — (0p;/Om;)(m*) = o(h*). Thus we have also (12)
satisfied. By the lemma, system (11) has a unique solution in B(m*,?).
We have proved the following

Theorem 1. Let f € C?[a,b] be strictly convex or concave. Then

for h sufficiently small, system (11) has a unique solution in the o(h)
neighbourhood of (f§, fl,- .., f}).

5. ERRORBOUNDS

Let us assume more than in Theorem 1, namely let f”” € Lipl. This

allows the Taylor expansions of f up to the third derivative with the rest

of O(h*). For m* = (f§,fl,---,[f.), we obtain with straightforward
calculations ||®(m*)|| = O(h®). Thus we can take § = O(h?) to satisfy
(13), and (12) is satisfied also for small h. This means that the solution m

of (11) is such that

m; = f! +O(h®). (14)

Now, using this in formula (8), we get

M 3 +h+O
(15)

The first two equations of (7) give

2(F; — mi_l)?
W T

i Misa)
h(mi — fi)
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from which according to (14) we obtain

o)
M = Sa thLD (16)

b+ sy + O)

Putting (2) and (14) into representation (1), we see that

' ML
Stk thflorgit s s ).(@) = fiot +thfly +

5 T2+
O(hY)

Then with (15) and (16) we verify that

Mi
"

th m ) 2
-[ —£! — O(h

1 +thpz (fz—l +
3

fz—l O( )a

hence for z € [z;_l, z;],

th? 5
S(z) = fili 3 thf,5 + —z—fi"-1 + ——õ—fi,—lil + O(h*)

and therefore ||S — fllw = O(h*). We have proved the following

Theorem2. Let f” € Lipl and f be strictly convex or concave on

[a, b]. Let S be the second-degree rational spline ofthe continuity class C*?

satisfing (2) and (3). Then ||S — f|lco = O(h*).

6. REMARKS

According to (1) on [z;_l, z;]

(2+thpi)th
e gL 17S'(z) =mi_y+
i

! (17)

"
—

Mi—l

The strict convexity or concavity of f € C? on [a,b] yields 1 + thp; > 0

for small A and that all M; be positive or negative. Thus, according to

(18), S is also strictly convex or concave on [a, b]. Furthermore, the strict

monotonicity of f gives that all m; are positive or negative. Then from

(17) we see that S’(x) is increasing or decreasing on each subinterval and,

consequently, on [a, b] too. This means that the spline S preserves the strict

convexity or concavity of f and with one of them the strict monotonicity
of £.

Our other remark concerns the unigueness of the solution of (12).
Eliminate my and m, from (12). Then, as 7: = f'(E;) where ti1 < E <

Ti,1=1,...,n, setting
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o0 = f'(&) — f'(zo)

Oi :f'(§i+l) -P(6), i=1,...,n-1,

an = f'(za) = F(E),

LML= T, i=1,...,n-1,

we get the system

—ao(yl — al)® + 3y, = 0,

(i 1 —i) (W= )A
Y =O, i=2,...,n-2, (19

(yn—2 — an—Z)(yn—l — an—l)2 + yš-lan = 0.

Assume f be strictly convex, then o; > 0,7 = 0,...,n. Let at first

nbe even, then n — 1 is odd. System (19) has a solution: y; = 01,

y = 0,y3 = 3, 4 = 0,
..., Un-2 = 0, Y-1 satisfy the eguation

—OAn-2(Yn-1 — An-1)* +OAny2.,= 0 whose solutions are real and nonzero.

But (19) has also a solution ynl = 0, Yn-2 = Anh-23,> 006 Y = %3

y i -ao(y1 —1)? + a2y2 = 0. Let now n be odd, then n — 1 is even.

A solution of (19) isyl; = 01,y2 = 0,43 = 03, 4 = 0, ..

~ Yn-1 =O.

But (19) has another solution: y = 023, y 3 =O,Y4 = @l," s Upoo —U,

y, is determined by —ao(yl — 01)* + a2y? = 0, Yn-1 is determined by
—On-(Yn-1 — An-1)” + OnyŽ.; = 0. Thus we can conclude that system
(19), and therefore system (11), normally has more than one solution.
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TEIST JÄRKURATSIONAALSPLAINIDEGA

INTERPOLEERIMINE

Peeter OJA

On vaadeldud ratsionaalsplaine, mis vorgu ¢ = %% << y <

... < m, = bigal osaldigul [z;_l,;] on kujul ¢y + 17 + c922/(1 +

dix), ning nendega interpoleerimist. Interpoleeriva splaini kordajad on

madratud mittelineaarsest siisteemist ning uuritud viimase lahenduvust.

Selgub, et seesugused splainid sdilitavad interpoleeritava funktsiooni range
monotoonsuse jarange kumeruse. On tdestatud O(h*) jirku koonduvus.
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